Homogenization of a semilinear heat equation with a

highly oscillating random potential

Etienne Pardoux

Aix—Marseille Université

joint work with Martin Hairer

Etienne Pardoux (AMU) LMS EPSRC Durham Symposium 2017 with M. Hairer 1/18



The problem

@ We start with the PDE (dim(x)=1)
Arua(t, x) = 2u.(t, x) + H(u:(t, X)) + G(u(t, x))n:(t, x)
U-(0,x) = up(x), u:(t,0)=u-(t,1)=0.
where
n(t,x) = e 'n(e 2t e x),
and n(t, x) is a stationary zero—-mean generalized random field with
“good” mixing properties.

Etienne Pardoux (AMU) LMS EPSRC Durham Symposium 2017 with M. Hairer 2/18



The problem

@ We start with the PDE (dim(x)=1)

Aru(t, x) = d2u.(t, x) + H(u(t, x)) + G(u(t, x))n-(t, x)
u-(0,x) = up(x), u:(t,0)=u(t1)=0.

where

n(t,x) = e 'n(e 2t e x),

and n(t, x) is a stationary zero—-mean generalized random field with
“good” mixing properties.

@ This problem has been studied in case H =0 and G(u) = uin P,
Piatnitski *12 and Hairer, P., Piatnitski ’13, with different respective
scalings of t and x. Those papers establish the LLN u. — u, with a
limiting PDE which depends upon the specific scaling.
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@ This problem has been studied in case H =0 and G(u) = uin P,
Piatnitski *12 and Hairer, P., Piatnitski ’13, with different respective
scalings of t and x. Those papers establish the LLN u. — u, with a
limiting PDE which depends upon the specific scaling.

@ Bal’11 proves both the LLN and the CLT in the linear case, with a
Gaussian perturbation ..
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The problem

@ We start with the PDE (dim(x)=1)

Aru(t, x) = d2u.(t, x) + H(u(t, x)) + G(u(t, x))n-(t, x)
u-(0,x) = up(x), u:(t,0)=u(t1)=0.

where

n(t,x) = e 'n(e 2t e x),

and n(t, x) is a stationary zero—-mean generalized random field with
“good” mixing properties.

@ This problem has been studied in case H =0 and G(u) = uin P,
Piatnitski *12 and Hairer, P., Piatnitski ’13, with different respective
scalings of t and x. Those papers establish the LLN u. — u, with a
limiting PDE which depends upon the specific scaling.

@ Bal’11 proves both the LLN and the CLT in the linear case, with a
Gaussian perturbation ..

@ Here we prove both the LLN and the CLT in the semilinear case,
with a non—Gaussian 7..
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Comparison with earlier results

@ Wong-Zakai, see Hairer, P.15. Consider for x € S’
O = Au. + H(u:) — C.G'G(u.) + G(u.)&.
where £.(t,x) = e 3/2p(e2t,e'x)and C. ~ ' u. > u

ou = Au + H(u) + G(u)¢.
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Comparison with earlier results

@ Wong-Zakai, see Hairer, P.15. Consider for x € S’
O = Au. + H(u:) — C.G'G(u.) + G(u.)&.
where £.(t,x) = e 3/2p(e2t,e'x)and C. ~ ' u. > u
o = Au + H(u) + G(u)¢.

@ Homogenization. Consider for x € [0, 1], with
n-(t,x) = e~ (e 2t,e7"x),

Otu: = Au: + H(u:) + G(u:)ne.
LLN u. — wu in probability, where
0yl = AT+ H(T) + ¢,GG ().
CLT Let v. = e~ "2(u. — 0). v. = v, where

O = Av + (H + ¢,GGY (U)v + G(U)E.
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Our assumptions

@ We assume that the noise 7(t, x) is zero-mean, stationary, has
finite moments of all order, and moreover that for any ¢ > 1, the
¢—th joint cumulant x(z1, ..., zy) of the random variables
n(z1),...,n(2¢) satisfies certain bounds (z = (t, x)).
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Our assumptions

@ We assume that the noise 7(t, x) is zero-mean, stationary, has
finite moments of all order, and moreover that for any ¢ > 1, the
¢—th joint cumulant x(z1, ..., zy) of the random variables
n(z1),...,n(2¢) satisfies certain bounds (z = (t, x)).

@ Let us recall what are the cumulants. Formally, the joint cumulant of
the random variables Xj,..., X, is

v .
Ke(Xe, .o, Xe) = (—/)Kmk’gE exp ’ZZIXJ'
j=1

z1=--=2,=0
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Our assumptions

@ We assume that the noise 7(t, x) is zero-mean, stationary, has
finite moments of all order, and moreover that for any ¢ > 1, the
¢—th joint cumulant x(z1, ..., zy) of the random variables
n(z1),...,n(2¢) satisfies certain bounds (z = (t, x)).

@ Let us recall what are the cumulants. Formally, the joint cumulant of

the random variables Xj,..., X, is
o° ‘
ke( Xy, ... Xp) = (—i)fm logE |:exp (1121 z,-x,-) .
@ Cumulants can be expressed in terms of moments
ke( Xty Xp) = S ()T r=1)IE(X®) x - x E(XY),

ta,..aryeP([n])

where [n] = {1,2,...,n} and if b C [n], X = T];cp X;-
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More on cumulants

@ x1(X) =E(X), ro(X,Y) = Cov(X,Y), etc...
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More on cumulants

@ x1(X) =E(X), ro(X,Y) = Cov(X,Y), etc...

@ {Xj, jc J}is Gaussian < r(Xj,...,X) = 0 whenever ¢ > 3.

@ If X ~ Poisson(\), k¢(X,...,X) =\, forall £ > 1.

@ If (Xy,...,X)and (Xj1,...,X;) are independent, then
ke(X1,..., X)) =0.
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More on cumulants

@ x1(X) =E(X), ro(X,Y) = Cov(X,Y), etc...
@ {Xj, jc J}is Gaussian < r(Xj,...,X) = 0 whenever ¢ > 3.
@ If X ~ Poisson(\), k¢(X,...,X) =\, forall £ > 1.
@ If (Xy,...,X)and (Xj1,...,X;) are independent, then
ke(Xy,..., X)) =0.
@ If ¢q,..., ¢y are constants, ¢ > 2,
Ke( X1+ €1y, Xo + Co) = ko( X1, ..o, Xo).
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More on cumulants

@ x1(X) =E(X), ro(X,Y) = Cov(X,Y), etc...

{X;, j € J} is Gaussian < r¢(Xj,, ..., X;,) = 0 whenever / > 3.
@ If X ~ Poisson(\), k¢(X,...,X) =\, forall £ > 1.

If (X,...,X;) and (Xj1,..., X;) are independent, then
ke(Xy,..., X)) =0.

@ If¢q,..., ¢y are constants, ¢ > 2,

Ke( X1+ €1y, Xo + Co) = ko( X1, ..o, Xo).

If the two vectors (Xi,..., Xy) and (X], ..., X)) are independent,
then KZ(X1 —f-X’,...,Xg—i—Xé) = Hz(X1,...,Xg) +I€K(X1,,...,Xé).
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More on cumulants

r1(X) = E(X), k2(X, Y) = Cov(X,Y), etc...
{X;, j € J} is Gaussian < r¢(Xj,, ..., X;,) = 0 whenever / > 3.
If X ~ Poisson(\), x¢(X,...,X) =\, forall ¢ >1.

If(Xq,...,X)) and ( ir1, - - -, X¢) are independent, then

ke(Xy,. .., Xe) =

Ifcy,...,coare constants, {>2,

Ke( X1+ €1y, Xo + Co) = ko( X1, ..o, Xo).

If the two vectors (Xi,..., Xy) and (X], ..., X)) are independent,
then KZ(X1 +X,..., X —i—Xé) = Hz(X1,...,Xg) +I€K(X1,,...,Xé).

If N is a Poisson point measure on RY with mean measure 1,
fi,..., f, are continuous and have compact support, then

we(N(F), ..., N(£)) / F(X) - % fo(X) ().
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Precise assumptions

@ Hand G are of class C* and C® resp., H, G and GG having at
most linear growth at infinity.
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Precise assumptions

@ Hand G are of class C* and C® resp., H, G and GG having at
most linear growth at infinity.

@ Denote by (21, ..., z) the joint cumulant of n(z;),...,n(z,). We
assume that uniformly over all zy, ..., z, € R?,

|ke(21, ..., 2g)] S 200N TT 20N,
AeV
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Precise assumptions

@ Hand G are of class C* and C® resp., H, G and GG having at
most linear growth at infinity.

@ Denote by (21, ..., z) the joint cumulant of n(z;),...,n(z,). We
assume that uniformly over all zy, ..., z, € R?,
lke(z1, ..., 20)| < 2¢(Q)n () H 2¢(An(A)
AcV

@ where V denotes the set of interior nodes of the minimal spanning
tree of the complete graph with vertices {z,..., z;}, Q; is the root
of that tree, n(A) = —[log, d-(A1, A2)] and ¢(A) = 1/2if n(A) > 0,
c(A) = 3/2 + § otherwise.
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An example satisfying our assumptions

@ Suppose 7(z) = N(o(z - -), with N a Poisson point process on R?
with mean measure Lebesgue, N(dz) = N(dz) — dz, and
l0(2)| < |z|787 % for |z| > 1, and |o(2)| < |z|7/? for |z| < 1.
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An example satisfying our assumptions

@ Suppose 7(z) = N(o(z - -), with N a Poisson point process on R?
with mean measure Lebesgue, N(dz) = N(dz) — dz, and
l0(2)| < |z|787 % for |z| > 1, and |o(2)| < |z|7/? for |z| < 1.

@ In that case,

55(21,...,25):/#@(21 —Z)x - X o(z, — 2)dz.

@ lItis not too hard to verify the assumption thanks to that formula.
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Regularity structures

@ We shall write 1 for the unit constant, |1| = 0, X for an “abstract
version” of the first order monomial x — x. | X|=1.
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Regularity structures

@ We shall write 1 for the unit constant, |1| = 0, X for an “abstract
version” of the first order monomial x — x. | X|=1.

@ We have the

three following elements of 7 with negative regularity :

e = stands for &., or space—time white noise itself in
the limit, |=| = —3/2 — &;

e = stands for the noise driving our approximate PDE

= /e&.), is zero in the limit, |Z| = —1 — &;
e = stands for ¢, is zero in the limit, |=| = —1/2 — &.

Etienne Pardoux (AMU)
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Law of Large Numbers 1

@ We want to show that u. — u, where u solves the parabolic PDE

del(t, x) = 02u(t, x) + H(T(t, x)) + ¢, GG (u(t, x)),
(0, x) = up(x), G(t,0) = u(t,1) =0,

where ¢, = [g: P(2)r2(0, z)0z.
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Law of Large Numbers 1

@ We want to show that u. — u, where u solves the parabolic PDE

del(t, x) = 02u(t, x) + H(T(t, x)) + ¢, GG (u(t, x)),
(0, x) = up(x), G(t,0) = u(t,1) =0,

where ¢, = [g: P(2)r2(0, z)0z.
@ We rewrite the equation for u. as

U = P1eo(H(U) + G(U)Z) + Puy,

where if U = u1 + U, H(U) = H(u)1 + H'(u)D.
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Law of Large Numbers 2

U = P1o(AU) + G(U)Z) + Pug.
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Law of Large Numbers 2

U = P1o(AU) + G(U)Z) + Pug.

@ U is of the form (for some functions u and v’)

U=ul+ GU)I(Z)+ u'X,
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Law of Large Numbers 2

U = P1o(AU) + G(U)Z) + Pug.

@ U is of the form (for some functions u and v’)
U=ul+ GU)I(Z)+ u'X,
@ The right hand side of the above is given as

H(u)1 + G(u)= + G (u)G(U)Z(Z)= + G (u)U' X=.
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Law of Large Numbers 2

U = P1o(AU) + G(U)Z) + Pug.

@ U is of the form (for some functions u and v’)
U=ul+ GU)I(Z)+ u'X,
@ The right hand side of the above is given as
H(u)1 + G(u)= + G (u)GU)I(Z)= + G (u)u'X=.

@ The LLN follows from the two facts M5= — 0, N$Z(Z)= — ¢,
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Central Limit Theorem

@ Now let v.(t,x) = M\;’(’X)
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Central Limit Theorem

@ Now let v.(t, x) = M\g’(”)
° Wlth CE = \/‘gné‘s

_ 7l o /AT
OfVe = 02v: + H(u:) — H(@) + G(ue)n- — ¢, G G(U)

Ve €
o HW) - H@) ... Gw)-G@E) GG
—8§V5+f+e(u)§s+ \/g Ne — \/g
~ BVt H @)Vt GE)E + G (0)Ven+ 5 G (@)VEC - a6 (@)
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Central Limit Theorem

@ Now let v.(t, x) = M\E’(’X)
° Wlth CE = \ﬁna,

_ 7l o /AT
OfVe = 02v: + H(u:) — H(@) + G(ue)n- — ¢, G G(U)

Ve €
_ H(u:) — H(T) - G(u:) - G(u) ~ enG'G(0)
—8§V5+f+e(u)§s+ \/g Ne — \/g
~ 92v.+H'(u )v€+G(u)£5+G’(u)v577€+; ”(u)vfge—\c/’éGG’( )

@ Consider the fixed point problem
. ..
V =Pl (L(H/(U)) VL(G(B)Z+L(G (8) VE+5 £(G"(D)) vzz),

where (Lf)(z) = f(2)1 + 0xf(2) X, z = (1, x).
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@ Note that we have left out the last term of the previous equation. At
the end we renormalize the equation, which means bring back in
that term.
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@ Note that we have left out the last term of the previous equation. At
the end we renormalize the equation, which means bring back in
that term.

@ V must be of the form (up to terms of homogeneity > 1)

V=v1+GO)I(=)+G@vI(E)+VvX.
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@ Note that we have left out the last term of the previous equation. At
the end we renormalize the equation, which means bring back in

that term.
@ V must be of the form (up to terms of homogeneity > 1)

V=v1+GO)I(=)+G@vI(E)+VvX.
@ The factor of P in the righthand side reads (up to terms of
homogeneity > 0)
H'()v1+ G(0)= + G(0)t X=+ G(u)v=
+G(0)G(L)I(2)=+ G ()G (D)VI(Z)=+ G"(0)U'v X=

+G (V' X= + %G”(D)vzé + G"(0)G(O)VI(Z)= .

with M. Hairer 12/18
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@ The canonical model satisfies M= = &, and also
E(nfz(z)é) —1/2g,.
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@ The canonical model satisfies M= = &, and also
E(nfz(z)é) —1/2g,.

@ We define a renormalized model [1¢ by setting
Ner = N7

for all other basis vectors .
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@ The canonical model satisfies M°= = &, and also
E(nfz(z)é) —1/2g,.

@ We define a renormalized model [1¢ by setting
Ner = N7

for all other basis vectors .
@ The core result says

The random models ¢ converge weakly to a limiting admissible model
I such that with £ = space-time white noise,
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@ As a consequence

The sequence v. converges weakly to the limit v given by the solution to

v =d2v+ (H+¢,GG) () v+ G(@)¢, v(0,-)=0.
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@ As a consequence

The sequence v. converges weakly to the limit v given by the solution to

v =d2v+ (H+¢,GG) () v+ G(@)¢, v(0,-)=0.

@ Among the various technical aspects which | have left under the rug
is the treatment of the boundary condition, for which we need the
very recent work of Mate Derencsér and Martin Hairer.
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d> 1

@ After all, the above result makes sense in dimension d > 1. The
following is work in progress.
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d> 1

@ After all, the above result makes sense in dimension d > 1. The
following is work in progress.

@ Consider in dimension d = 1,2, 3 the SPDE

Oru(t, x) = Auc(t, x) + H(u(t, x)) + G(uc(t, x))n:(t, x)
u-(0,x) = up(x), x e D wu.(t,x)=0, x € dD.
where
ne(t, x) = 67177(5721‘, 5*1X),

and n(t, x) is a stationary zero—mean generalized random field with
“good” mixing properties.
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Resultsincase 1 <d <3

@ Consider the following deterministic PDEs (H, = H + ¢,GG')

o’ = AT + H,(T°).

o' = AT + w(@®, vad),
WP, vi®) = a3(GPG")(W°) + &(G(G)?)(W°) + G (W°)?cho .
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Resultsincase 1 <d <3

@ Consider the following deterministic PDEs (H, = H + ¢,GG')
o’ = AT + H,(T°).

o' = AT + w(@®, vad),

v(@, = c3(G*G")(T°) + c3(G(G)?)(T°) + G (T°)?chord’.

V)
@ LLN u. — @° in probability.
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Resultsincase 1 <d <3

@ Consider the following deterministic PDEs (H, = H + ¢,GG')
o’ = AT + H,(T°).
o' = AT + w(@®, vad),
V(@°, VI°) = 63(GPG")(T°) + c3(G(G')?)(T°) + G (0°)?cs0,t°

@ LLN u. — @° in probability.
@ CLT ¢ 92(u, — @ — u') = v, where

Ov = Av + H (@) v + G(@°)¢,

where ¢ is space—time white noise.
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@ Recall from previous slide :

u. —° — e’

= V.
~d/2
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CLT

@ Recall from previous slide :
u. - — et

= V.
~d/2

@ Incase d = 1, we have
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CLT

@ Recall from previous slide :

u. —° — e’ N
£d/2 :
@ Incase d = 1, we have
U — 0 = v
2172 :
@ Incase d = 2, we have
UE‘_UO —1
—=1U +V.
3
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CLT

@ Recall from previous slide :

u. —° — e’ N
£d/2 :
@ Incase d = 1, we have
U — 0 = v
2172 :
@ Incase d = 2, we have
UE‘_UO —1
—=1U +V.
3

@ In case d = 3, we have
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THANK YOU FOR
YOUR ATTENTION !




