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In this talk

dX (t) = AX(t)dt + GdL(t) for all ¢t € [0,T]

e A generator of Cp-semigroup (S(t))¢=0 in Hilbert space V;
e (G :U — V linear and bounded:
e (L(t): t > 0) cylindrical Lévy process in Hilbert space U.
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In this talk

dX (t) = AX(t)dt + GdL(t) for all ¢t € [0,T]

Problems:
e [, does not attain values in U

Consequences: e no semimartingale decomposition in U

e no stopping times in U

e solution and L may not have finite moments

Consequences: e no L%, (€)) spaces

e solution may have unbounded paths
Consequences: e no integration by parts formula

e no usual Fubini argument



Cylindrical random variables

and

cylindrical measures



Cylindrical processes

Let U be a Banach space with dual space U* and dual pairing (-, -)
and let (€2, @7, P) denote a probability space.

Definition: A cylindrical random variable X in U is a mapping
X:U* = LY R)  linear and continuous.

A cylindrical process in U is a family (X(t) : t > 0) of cylindrical

random variables.

e |. E. Segal, 1954
o |. M. Gel'fand 1956: Generalized Functions

e L. Schwartz 1969: seminaire rouge, radonifying operators



Cylindrical processes

Let U be a Banach space with dual space U* and dual pairing (-, -)
and let (€2, @7, P) denote a probability space.

Definition: A cylindrical random variable X in U is a mapping
X:U* = LY R)  linear and continuous.

A cylindrical process in U is a family (X(t) : t > 0) of cylindrical

random variables.

A cylindrical random variable X: U* — L% (Q;R) is uniquely described by
Its characteristic function

ex:U" = C, px(u™) = E[eiX“*].



Example: induced cylindrical random variable

Example: Let X: Q) — U be a (classical) random variable. Then
Z:U* = LEH (2 R), Zu* = (X, u*)
defines a cylindrical random variable with characteristic function

pz(u*) = B[¢7"] = B[] = px (u").



Example: induced cylindrical random variable

Example: Let X: Q) — U be a (classical) random variable. Then
Z:U* = LEH (2 R), Zu* = (X, u*)
defines a cylindrical random variable with characteristic function

pz(u*) = B[¢7"] = B[] = px (u").

But: not for every cylindrical random variable Z: U* — L%(Q; R) there

exists a classical random variable X : {2 — U satisfying

Za = (X,u") for all u* € U™.



Example: cylindrical Brownian motion

Definition:
A cylindrical process (W(t) : t > 0) is called a cylindrical Brownian
motion, if for all u],...,u; € U* and n € N the stochastic process

((W(t)u;, W) s 0)

n

is a centralised Brownian motion in R".



Example: cylindrical Brownian motion

Definition:
A cylindrical process (W(t) : t > 0) is called a cylindrical Brownian
motion, if for all u],...,u; € U* and n € N the stochastic process

((W(t)u;, W) s 0)

n

is a centralised Brownian motion in R".

Example: in the standard case, the cylindrical random variable
W(l): U* — L%(2;R) is called canonical cylindrical Gaussian and
has characteristic function

* * (12
SOW(l)(U ) :eXP(—% u” || )



Cylindrical Lévy processes



Definition: cylindrical Lévy process

Definition: (Applebaum, Riedle (2010))
A cylindrical process (L(t) : t > 0) is called a cylindrical Lévy process,
if for all uy,...,u € U* and n € N the stochastic process :

((L(t)u;, L)t o)

is a Lévy process in R".



Lévy-Khintchine formula

Theorem: The characteristic function pr): U" — € of a cylindrical
Lévy process L is given by

PL(t) (U*)

= oxp (¢ (ipt) ~ Jatw) [ () 1= i) () Yot

—: exp (t \I!p,q,y(u*))

where e p:U* — R is (non-linear) continuous and p(0) = 0;
e ¢:U* — R is a quadratic form;
e v cylindrical measure, / ((u, u*)? A1) v(du) < oo for all u* € U*;

U
o By:={feR: |B <1}



Example: series approach

Theorem Let U be a Hilbert space with ONB (ex)ren and (ox)ren C R;

(hk)ren be a sequence of independent, real-valued Lévy processes.

If for all u* € U* and t > 0 the sum

Mg

ek, uYophk(t)
k—1

V
=

converges P-a.s. then it defines a cylindrical Lévy process (L(t) : t



Example: series approach

Theorem Let U be a Hilbert space with ONB (ex)ren and (ox)ren C R;

(hk)ren be a sequence of independent, real-valued Lévy processes.

If for all u* € U* and t > 0 the sum

Mg

ek, uYophk(t)
k—1

converges P-a.s. then it defines a cylindrical Lévy process (L(t) : t > 0).

Example 0: for hj standard, real-valued Brownian motion:

(0k)ken € £7° <= cylindrical (Wiener) Lévy process

(0k)ken € £2 <= honest (Wiener) Lévy process



Example: series approach

Theorem Let U be a Hilbert space with ONB (ex)ren and (ox)ren C R;

(hk)ren be a sequence of independent, real-valued Lévy processes.

If for all u* € U* and t > 0 the sum

(e, u")ophi(t)

Mg

k=1

V
=

converges P-a.s. then it defines a cylindrical Lévy process (L(t) : t

Example 1: for h; symmetric, standardised, a-stable:

(0k)keN € 20/ 2=2)  ——  cylindrical Lévy process

(0k)ken € LY <= honest Lévy process



Example: subordination

Theorem
Let W be a cylindrical Brownian motion in a Banach space U,

¢ be an independent, real-valued, a//2-stable Lévy subordinator;
Then, for each t > 0,

L(t) : U* — LY (4 R), Lt)u* = W(L(t))u*

defines a cylindrical Lévy process (L(t) : t > 0) in U with

PL(t)* U* — C, @L(t)(U*) — €XPp (—t HU*HQ) -



Stochastic integration

for deterministic integrands



Integration: motivation

Assume: Y classical Lévy process in a Banach space U

n—1
(I)(S) = Z ﬂ(tk’thrl](S)gOk for P € g(U, V)
k=0
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1st step: define the integral for U*-valued integrands



Integration: motivation

Assume: Y classical Lévy process in a Banach space U

n—1
(I)(S) = Z ﬂ(tk,tk+1]<3>¢k for P € g(U, V)
k=0

Then </O O(s)dY (s),v") = (ou(Y(tes1) — Y(t)),v*)

T
= / O*(s)v* dY (s)
0 H/_/
U*—valued
For a cylindrical Lévy process:
1st step: define the integral for U*-valued integrands

2nd step: interpret this integral as a cylindrical random variable



Integration: motivation

Assume: Y classical Lévy process in a Banach space U

n—1
(I)(S) = Z ﬂ(tk,tk+1]<3>¢k for P € g(U, V)
k=0

Then </O B(s)dY (s),0") = Y (or (Y (trs1) = Y (tr)),v")

T
= / O*(s)v* dY (s)
0 W—/
U*—valued
For a cylindrical Lévy process:
1st step: define the integral for U*-valued integrands
2nd step: interpret this integral as a cylindrical random variable

3rd step: call a function stochastically integrable if this cylindrical variable

is induced by a classical random variable (Pettis idea).



The cylindrical integral

Denote by S(U*) the space of all U*-valued simple function

n—1
f(s) = Z Litotpen)(8)uy  foruy € U,
k=0

equipped with ||| and define
n—1
J(f) =Y (L(tes1r) — L(tr)) (up)-

k=0

Then we obtain
J: S(U*) — LY (Q: R)

IS continuous.



The cylindrical integral

Theorem: If ®: [0, 7] — Z(U,V) is a mapping such that
O*()v* : [0,T] — U™ s regulated for all v* € V™,
then
Z(®): V* = LY (% R), Z(P)v* = J(®*(-)v")

defines a cylindrical random variable with characteristic function

T
©z(3) (V") = exp (/ Uy, 0w (@*(s)v*) ds) for all v* € V*
0

where W, ., is the Lévy symbol of L.

~



The stochastic integral

Definition:

A function @ : [0,T] — Z(U,V) is called stochastically integrable if
there exists a random variable I(®) : 2 — V such that P-a.s.

(I(®),v*) = Z(P)v* for all v™ € V™.



The stochastic integral

Definition:

A function @ : [0,T] — Z(U,V) is called stochastically integrable if
there exists a random variable I(®) : 2 — V such that P-a.s.

(I(®),v") = Z(P)v" for all v* € V™.

Conclusion: The following are equivalent:
(a) @ is stochastically integrable;

(b) the characteristic function ¢ gy is the characteristic function of a
genuine probability measure 1 on B(V).

In this case, i is an infinitely divisible measure.



The stochastic integral

Definition:

A function @ : [0,T] — Z(U,V) is called stochastically integrable if
there exists a random variable I(®) : 2 — V such that P-a.s.

(I(®),v™) = Z(P)v" for all v™ € V™.

Theorem: Assume V is a Hilbert space with ONB (eg)ren. Then
¢ :10,T) — Z(U,V) is stochastically integrable if and only if:

(a) v* — p(P*(-)v*) is weak-weakly sequentially continuous;

(b)/0 tr|®(s)q®*(s)] ds < oo;

(c) limsup Sup/ / < (u, ®*(s5)er)? A 1) v(du) ds < oo;
m—0o00 n=>m



A stochastic Fubini theorem

Theorem: (with Umesh Kumar)
Let S = [a,b] and f: S x [0,T] — U* a function satisfying:
(i) f is jointly measurable;

(ii) for almost all s € S, the map t — f(s,t) isin D_(|0,T],U*);
(iii) the map t — f(t,-) isin D_([0,T]; L*(S;U*)).

Then we have P-a.s. that

/S/OTf(s,t)dL(t)ds:/OT/Sf(s,t)dde(t).



Here: D_([0,T]; B) is the space of all caglad, functions.



Proof: Fubini theorem

The function
F:0,T] — D?(U, L2(S)), F(t)u = (u, f(-,1))

is stochastically integrable w.r.t. L.
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is stochastically integrable w.r.t. L. Thus,
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Proof: Fubini theorem

The function
F:[0,T] = 2(U, L*(S)), F(Hu = (u, f(-, 1))

is stochastically integrable w.r.t. L. Thus,

/(/ f(s,t)dL(t > ds—/ </0TF(t)dL(t)>(s)dS
— </0 F(t) dL(t)><1>L2(S)

—/T F* (1)1 dL(1)

//fstdde



Ornstein-Uhlenbeck process



Stochastic evolution equations

dX(t) = AX(t)dt + GdL(t) for all ¢t € [0, T]]

e A generator of Cp-semigroup (S(t))¢=0 in Hilbert space V;
e (G :U — V linear and bounded:
e (L(t): t > 0) cylindrical Lévy process in Hilbert space U.

Definition: A stochastic process (X(t): t € [0,T]) in V is called
a weak solution if it satisfies for all v* € D(A*) and t € [0,T]
that

(X (1), v*) = (X(0),v") +/0 (X (s), A*0*) ds + L(t)(G*v").



Stochastic evolution equations

dX (t) = AX(t)dt + GdL(t) for all ¢t € [0,T]

e A generator of Cp-semigroup (S(t))¢=0 in Hilbert space V;
e (G :U — V linear and bounded:
e (L(t): t > 0) cylindrical Lévy process in Hilbert space U.

Theorem: The following are equivalent:
(a) t — S(t)G is stochastically integrable;
(b) there exists a weak solution (X (¢) : t € [0,T]).

In this case, the weak solution is given by

X(t)=S(t)X(0)+ /Ot S(t—s)GdL(s) for all t € [0,T].



Stochastic evolution equations

Define for each ¢t € [0, T

Y (t) = /OtT(t — $)G dL(s).
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Define for each ¢t € [0, T

Y (t) = /OtT(t — $)G dL(s).

Then we obtain for each v* € Dom(A*):

/O (Y (s), A" ds = /0 t ( /O G (s — 1) A" dL(r)) ds

_ /O t ( / G (s — 1) A" ds> dL(r)



Stochastic evolution equations

Define for each ¢t € [0, T

Y (t) = /OtT(t — $)G dL(s).

Then we obtain for each v* € Dom(A*):

/O (Y (s), A" ds = /0 t ( /O G (s — 1) A" dL(r)) ds

_ /O t ( / G (s — 1) A" ds) dL(r)

— /Ot (G*T*(t — ¥ — G*T*(O)U*) dL(r)



Stochastic evolution equations

Define for each ¢t € [0, T

Y (t) = /OtT(t — $)G dL(s).

Then we obtain for each v* € Dom(A*):

/Ot< ), A" (/ G*T*(s — ) A™v* dL(r )) ds
( / G*T*(s — 1) A™v* ds) AL (r)

( G*T*(t — r)v* — G*T*(0)v *)dL(r)

L({)(G0").

|
QNN%



Stochastic evolution equations

dX (t) = AX(t)dt + GdL(t) for all ¢t € [0,T]

e A generator of Cp-semigroup (S(t))¢=0 in Hilbert space V;
e (G :U — V linear and bounded:
e (L(t): t > 0) cylindrical Lévy process in Hilbert space U.

Example: Let L be the canonical a-stable cylindrical Lévy process
with characteristic function ¢ (u*) = exp (—t||u*||"). Then the
following are equivalent:

(1) there exists a weak solution;

@) [ 1S)GI5s ds < .



Irregularity of trajectories

dX (t) = AX(t)dt + GdL(t) for all ¢t € [0,T]

e A generator of Cp-semigroup (S(t))¢=0 in Hilbert space V;
e (G :U — V linear and bounded:
e (L(t): t > 0) cylindrical Lévy process in Hilbert space U.

In specific examples of cylindrical Lévy processes it was observed that
the solution exits but with very irregular paths in V:
e Brzezniak, Goldys, Imkeller, Peszat, Priola and Zabczyk. 2010:
sum of independent real-valued Lévy processes
no left or right limits in V'
e Brzezniak and Zabczyk. PA, 2010.
canonical a-stable cylindrical process
no cadlag modification in V:



Irregularity of trajectories

dX (t) = AX(t)dt + GdL(t) for all ¢t € [0, T]]

e A generator of Cp-semigroup (S(t))¢=0 in Hilbert space V;
e (G :U — V linear and bounded:
e (L(t): t > 0) cylindrical Lévy process in Hilbert space U.

Theorem: If there exists a constant ¢ > 0 such that

sup V({u cU: Z(u, er)? > c}) = 00,
neN L—1

then there does not exists a modification X of X such that

((X(t),v*): t € [0,T]) has cadlag paths for all v* € V*.



Regularity of trajectories
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e (G :U — V linear and bounded:
e (L(t): t > 0) cylindrical Lévy process in Hilbert space U.

Theorem: Assume that the weak solution X exists. Then
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Regularity of trajectories

dX (t) = AX(t)dt + GdL(t) for all ¢t € [0,T]

e A generator of Cp-semigroup (S(t))¢=0 in Hilbert space V;
e (G :U — V linear and bounded:
e (L(t): t > 0) cylindrical Lévy process in Hilbert space U.

Theorem: Assume that the weak solution X exists. Then
(a) X is continuous in probability.

(b) X is cylindrically square integrable, i.e. for each v* € V* there
exists a modification X, of ((X(¢),v*) : ¢ € [0,T]) with

T
/ 1 X+ (s)]? ds < o0
0



