The stochastic Cauchy problem driven by cylindrical Lévy processes

Markus Riedle

King's College

London

Some parts are based on joint work with Umesh Kumar

In this talk

$$dX(t) = AX(t) dt + G dL(t)$$
 for all $t \in [0, T]$

- A generator of C_0 -semigroup $(S(t))_{t\geqslant 0}$ in Hilbert space V;
- $G: U \to V$ linear and bounded;
- $(L(t): t \ge 0)$ cylindrical Lévy process in Hilbert space U.

In this talk

$$dX(t) = AX(t) dt + G dL(t)$$
 for all $t \in [0, T]$

- A generator of C_0 -semigroup $(S(t))_{t\geqslant 0}$ in Hilbert space V;
- $G: U \to V$ linear and bounded;
- $(L(t): t \ge 0)$ cylindrical Lévy process in Hilbert space U.

Literatur with specific examples of L:

- Peszat and Zabczyk. 2007
- Brzeźniak, Goldys, Imkeller, Peszat, Priola and Zabczyk. 2010.
- Brzeźniak and Zabczyk. PA, 2010.
- Priola and Zabczyk. PTRF, 2011.
- Liu and Zhai, C.R.A.Sci., 2012.
- • • •

In this talk

$$dX(t) = AX(t) dt + G dL(t)$$
 for all $t \in [0, T]$

Problems:

L does not attain values in U

Consequences: ullet no semimartingale decomposition in U

ullet no stopping times in U

solution and L may not have finite moments

Consequences: • no $L_P^p(\Omega)$ spaces

solution may have unbounded paths

Consequences: • no integration by parts formula

no usual Fubini argument

Cylindrical random variables

and

cylindrical measures

Cylindrical processes

Let U be a Banach space with dual space U^* and dual pairing $\langle \cdot, \cdot \rangle$ and let (Ω, \mathscr{A}, P) denote a probability space.

Definition: A cylindrical random variable X in U is a mapping

$$X \colon U^* \to L^0_P(\Omega; \mathbb{R})$$
 linear and continuous.

A cylindrical process in U is a family $(X(t):t\geqslant 0)$ of cylindrical random variables.

- I. E. Segal, 1954
- I. M. Gel'fand 1956: Generalized Functions
- L. Schwartz 1969: seminaire rouge, radonifying operators

Cylindrical processes

Let U be a Banach space with dual space U^* and dual pairing $\langle \cdot, \cdot \rangle$ and let (Ω, \mathscr{A}, P) denote a probability space.

Definition: A cylindrical random variable X in U is a mapping

$$X \colon U^* \to L^0_P(\Omega;\mathbb{R})$$
 linear and continuous.

A cylindrical process in U is a family $(X(t):t\geqslant 0)$ of cylindrical random variables.

A cylindrical random variable $X\colon U^*\to L^0_P(\Omega;\mathbb{R})$ is uniquely described by its characteristic function

$$\varphi_X \colon U^* \to \mathbb{C}, \qquad \varphi_X(u^*) := E[e^{iXu^*}].$$

Example: induced cylindrical random variable

Example: Let $X: \Omega \to U$ be a (classical) random variable. Then

$$Z \colon U^* \to L_P^0(\Omega; \mathbb{R}), \qquad Zu^* = \langle X, u^* \rangle$$

defines a cylindrical random variable with characteristic function

$$\varphi_Z(u^*) = E\left[e^{iZu^*}\right] = E\left[e^{i\langle X, u^*\rangle}\right] = \varphi_X(u^*).$$

Example: induced cylindrical random variable

Example: Let $X: \Omega \to U$ be a (classical) random variable. Then

$$Z \colon U^* \to L_P^0(\Omega; \mathbb{R}), \qquad Zu^* = \langle X, u^* \rangle$$

defines a cylindrical random variable with characteristic function

$$\varphi_Z(u^*) = E\left[e^{iZu^*}\right] = E\left[e^{i\langle X, u^*\rangle}\right] = \varphi_X(u^*).$$

But: not for every cylindrical random variable $Z\colon U^*\to L^0_P(\Omega;\,\mathbb{R})$ there exists a classical random variable $X\colon\Omega\to U$ satisfying

$$Za = \langle X, u^* \rangle$$
 for all $u^* \in U^*$.

Example: cylindrical Brownian motion

Definition:

A cylindrical process $(W(t): t \ge 0)$ is called a *cylindrical Brownian* motion, if for all $u_1^*, \ldots, u_n^* \in U^*$ and $n \in \mathbb{N}$ the stochastic process

$$\left((W(t)u_1^*, \dots, W(t)u_n^*) : t \geqslant 0 \right)$$

is a centralised Brownian motion in \mathbb{R}^n .

Example: cylindrical Brownian motion

Definition:

A cylindrical process $(W(t): t \ge 0)$ is called a *cylindrical Brownian* motion, if for all $u_1^*, \ldots, u_n^* \in U^*$ and $n \in \mathbb{N}$ the stochastic process

$$\left((W(t)u_1^*, \dots, W(t)u_n^*) : t \geqslant 0 \right)$$

is a centralised Brownian motion in \mathbb{R}^n .

Example: in the standard case, the cylindrical random variable $W(1)\colon U^* \to L^0_P(\Omega;\mathbb{R})$ is called canonical cylindrical Gaussian and has characteristic function

$$\varphi_{W(1)}(u^*) = \exp\left(-\frac{1}{2} \|u^*\|^2\right).$$

Cylindrical Lévy processes

Definition: cylindrical Lévy process

Definition: (Applebaum, Riedle (2010))

A cylindrical process $(L(t): t \ge 0)$ is called a *cylindrical Lévy process*, if for all $u_1^*, \ldots, u_n^* \in U^*$ and $n \in \mathbb{N}$ the stochastic process :

$$\left((L(t)u_1^*, \dots, L(t)u_n^*) : t \geqslant 0 \right)$$

is a Lévy process in \mathbb{R}^n .

Lévy-Khintchine formula

Theorem: The characteristic function $\varphi_{L(t)} \colon U^* \to \mathbb{C}$ of a cylindrical Lévy process L is given by

$$\varphi_{L(t)}(u^*)$$

$$= \exp\left(t\left(i\,p(u^*) - \frac{1}{2}q(u^*) + \int_U \left(e^{i\langle u, u^*\rangle} - 1 - i\langle u, u^*\rangle\,\mathbb{1}_{B_1}(\langle u, u^*\rangle)\right)\nu(du)\right)\right)$$

$$=: \exp\left(t\,\Psi_{p,q,\nu}(u^*)\right)$$

- where \bullet $p:U^* \to \mathbb{R}$ is (non-linear) continuous and p(0)=0;
 - $q:U^* \to \mathbb{R}$ is a quadratic form;
 - \bullet ν cylindrical measure, $\int_U \left(\langle u,u^* \rangle^2 \wedge 1\right) \nu(du) < \infty$ for all $u^* \in U^*$;
 - $B_1 := \{ \beta \in \mathbb{R} : |\beta| \leqslant 1 \}$

Example: series approach

Theorem Let U be a Hilbert space with ONB $(e_k)_{k\in\mathbb{N}}$ and $(\sigma_k)_{k\in\mathbb{N}}\subseteq\mathbb{R}$;

 $(h_k)_{k\in\mathbb{N}}$ be a sequence of independent, real-valued Lévy processes.

If for all $u^* \in U^*$ and $t \geqslant 0$ the sum

$$L(t)u^* := \sum_{k=1}^{\infty} \langle e_k, u^* \rangle \sigma_k h_k(t)$$

converges P-a.s. then it defines a cylindrical Lévy process $(L(t): t \ge 0)$.

Example: series approach

Theorem Let U be a Hilbert space with ONB $(e_k)_{k\in\mathbb{N}}$ and $(\sigma_k)_{k\in\mathbb{N}}\subseteq\mathbb{R}$;

 $(h_k)_{k\in\mathbb{N}}$ be a sequence of independent, real-valued Lévy processes.

If for all $u^* \in U^*$ and $t \geqslant 0$ the sum

$$L(t)u^* := \sum_{k=1}^{\infty} \langle e_k, u^* \rangle \sigma_k h_k(t)$$

converges P-a.s. then it defines a cylindrical Lévy process $(L(t):t\geqslant 0)$.

Example 0: for h_k standard, real-valued Brownian motion:

$$(\sigma_k)_{k\in\mathbb{N}}\in\ell^\infty\iff \text{cylindrical (Wiener) Lévy process}$$

$$(\sigma_k)_{k\in\mathbb{N}}\in\ell^2\iff \mathsf{honest}\;(\mathsf{Wiener})\;\mathsf{L\'{e}}\mathsf{vy}\;\mathsf{process}$$

Example: series approach

Theorem Let U be a Hilbert space with ONB $(e_k)_{k\in\mathbb{N}}$ and $(\sigma_k)_{k\in\mathbb{N}}\subseteq\mathbb{R}$;

 $(h_k)_{k\in\mathbb{N}}$ be a sequence of independent, real-valued Lévy processes.

If for all $u^* \in U^*$ and $t \geqslant 0$ the sum

$$L(t)u^* := \sum_{k=1}^{\infty} \langle e_k, u^* \rangle \sigma_k h_k(t)$$

converges P-a.s. then it defines a cylindrical Lévy process $(L(t): t \ge 0)$.

Example 1: for h_k symmetric, standardised, α -stable:

$$(\sigma_k)_{k\in\mathbb{N}}\in\ell^{(2lpha)/(2-lpha)}\iff ext{cylindrical L\'evy process}$$
 $(\sigma_k)_{k\in\mathbb{N}}\in\ell^lpha \iff ext{honest L\'evy process}$

Example: subordination

Theorem

Let W be a cylindrical Brownian motion in a Banach space U,

 ℓ be an independent, real-valued, $\alpha/2$ -stable Lévy subordinator; Then, for each $t \geqslant 0$,

$$L(t): U^* \to L_P^0(\Omega; \mathbb{R}), \qquad L(t)u^* = W(\ell(t))u^*$$

defines a cylindrical Lévy process $(L(t):t\geqslant 0)$ in U with

$$\varphi_{L(t)} \colon U^* \to \mathbb{C}, \qquad \varphi_{L(t)}(u^*) = \exp\left(-t \|u^*\|^{\alpha}\right).$$

Stochastic integration for deterministic integrands

Assume: Y classical Lévy process in a Banach space U

$$\Phi(s) := \sum_{k=0}^{n-1} \mathbb{1}_{(t_k, t_{k+1}]}(s) \varphi_k \quad \text{for} \quad \varphi_k \in \mathcal{L}(U, V).$$

Assume: Y classical Lévy process in a Banach space U

$$\begin{split} \Phi(s) := \sum_{k=0}^{n-1} \mathbbm{1}_{(t_k,t_{k+1}]}(s) \varphi_k \quad \text{for} \quad \varphi_k \in \mathcal{L}(U,V). \end{split}$$
 Then $\langle \int_0^T \Phi(s) \, dY(s), v^* \rangle = \sum_{k=0}^{n-1} \langle \varphi_k \big(Y(t_{k+1}) - Y(t_k) \big), v^* \rangle$
$$= \sum_{k=0}^{n-1} \varphi_k^* v^* \big(Y(t_{k+1}) - Y(t_k) \big)$$

$$= \int_0^T \underbrace{\Phi^*(s) v^*}_{U^* \text{ related}} dY(s)$$

Assume: Y classical Lévy process in a Banach space U

$$\begin{split} \Phi(s) := \sum_{k=0}^{n-1} \mathbbm{1}_{(t_k,t_{k+1}]}(s) \varphi_k \quad \text{for} \quad \varphi_k \in \mathscr{L}(U,V). \end{split}$$
 Then $\langle \int_0^T \Phi(s) \, dY(s), v^* \rangle = \sum_{k=0}^{n-1} \langle \varphi_k \big(Y(t_{k+1}) - Y(t_k) \big), v^* \rangle$
$$= \sum_{k=0}^{n-1} \varphi_k^* v^* \big(Y(t_{k+1}) - Y(t_k) \big)$$

$$= \int_0^T \underbrace{\Phi^*(s) v^*}_{U^* \text{ valued}} dY(s)$$

For a cylindrical Lévy process:

1st step: define the integral for U^* -valued integrands

Assume: Y classical Lévy process in a Banach space U

$$\begin{split} \Phi(s) := \sum_{k=0}^{n-1} \mathbbm{1}_{(t_k,t_{k+1}]}(s) \varphi_k \quad \text{for} \quad \varphi_k \in \mathcal{L}(U,V). \end{split}$$
 Then $\langle \int_0^T \Phi(s) \, dY(s), v^* \rangle = \sum_{k=0}^{n-1} \langle \varphi_k \big(Y(t_{k+1}) - Y(t_k) \big), v^* \rangle$
$$= \sum_{k=0}^T \varphi_k^* v^* \big(Y(t_{k+1}) - Y(t_k) \big)$$

$$= \int_0^T \underbrace{\Phi^*(s) v^*}_{U^*} \, dY(s)$$

For a cylindrical Lévy process:

1st step: define the integral for U^* -valued integrands

2nd step: interpret this integral as a cylindrical random variable

Assume: Y classical Lévy process in a Banach space U

$$\begin{split} \Phi(s) := \sum_{k=0}^{n-1} \mathbbm{1}_{(t_k,t_{k+1}]}(s) \varphi_k \quad \text{for} \quad \varphi_k \in \mathcal{L}(U,V). \end{split}$$
 Then $\langle \int_0^T \Phi(s) \, dY(s), v^* \rangle = \sum \langle \varphi_k \big(Y(t_{k+1}) - Y(t_k) \big), v^* \rangle$
$$= \sum \varphi_k^* v^* \big(Y(t_{k+1}) - Y(t_k) \big)$$

$$= \int_0^T \underbrace{\Phi^*(s) v^*}_{U^* - \text{volued}} dY(s)$$

For a cylindrical Lévy process:

1st step: define the integral for U^* -valued integrands

2nd step: interpret this integral as a cylindrical random variable

3rd step: call a function stochastically integrable if this cylindrical variable is induced by a classical random variable (Pettis idea).

The cylindrical integral

Denote by $S(U^*)$ the space of all U^* -valued simple function

$$f(s) := \sum_{k=0}^{n-1} \mathbb{1}_{(t_k, t_{k+1})}(s) u_k^* \quad \text{ for } u_k^* \in U^*,$$

equipped with $\|\cdot\|_{\infty}$ and define

$$J(f) := \sum_{k=0}^{n-1} (L(t_{k+1}) - L(t_k)) (u_k^*).$$

Then we obtain

$$J \colon S(U^*) \to L_P^0(\Omega; \mathbb{R})$$

is continuous.

The cylindrical integral

Theorem: If $\Phi:[0,T]\to \mathscr{L}(U,V)$ is a mapping such that

$$\Phi^*(\cdot)v^*:[0,T]\to U^*$$
 is regulated for all $v^*\in V^*,$

then

$$Z(\Phi): V^* \to L_P^0(\Omega; \mathbb{R}), \qquad Z(\Phi)v^* := J(\Phi^*(\cdot)v^*)$$

defines a cylindrical random variable with characteristic function

$$\varphi_{Z(\Phi)}(v^*) = \exp\left(\int_0^T \Psi_{p,q,\nu}\Big(\Phi^*(s)v^*\Big) \, ds\right) \qquad \text{ for all } v^* \in V^*,$$

where $\Psi_{p,q,\nu}$ is the Lévy symbol of L.

The stochastic integral

Definition:

A function $\Phi:[0,T]\to \mathscr{L}(U,V)$ is called stochastically integrable if there exists a random variable $I(\Phi):\Omega\to V$ such that P-a.s.

$$\langle I(\Phi), v^* \rangle = Z(\Phi)v^*$$
 for all $v^* \in V^*$.

The stochastic integral

Definition:

A function $\Phi:[0,T]\to \mathscr{L}(U,V)$ is called stochastically integrable if there exists a random variable $I(\Phi):\Omega\to V$ such that P-a.s.

$$\langle I(\Phi), v^* \rangle = Z(\Phi)v^*$$
 for all $v^* \in V^*$.

Conclusion: The following are equivalent:

- (a) Φ is stochastically integrable;
- (b) the characteristic function $\varphi_{Z(\Phi)}$ is the characteristic function of a genuine probability measure μ on $\mathfrak{B}(V)$.

In this case, μ is an infinitely divisible measure.

The stochastic integral

Definition:

A function $\Phi:[0,T]\to \mathscr{L}(U,V)$ is called stochastically integrable if there exists a random variable $I(\Phi):\Omega\to V$ such that P-a.s.

$$\langle I(\Phi), v^* \rangle = Z(\Phi)v^*$$
 for all $v^* \in V^*$.

Theorem: Assume V is a Hilbert space with ONB $(e_k)_{k\in\mathbb{N}}$. Then $\Phi:[0,T]\to\mathscr{L}(U,V)$ is stochastically integrable if and only if:

- (a) $v^* \mapsto p(\Phi^*(\cdot)v^*)$ is weak-weakly sequentially continuous;
- **(b)** $\int_0^T \operatorname{tr}[\Phi(s)q\Phi^*(s)]\,ds < \infty;$
- (c) $\limsup_{m\to\infty} \sup_{n\geqslant m} \int_0^T \int_U \left(\sum_{k=m}^n \langle u, \Phi^*(s) e_k \rangle^2 \wedge 1 \right) \nu(du) \, ds < \infty;$

A stochastic Fubini theorem

Theorem: (with Umesh Kumar)

Let S = [a, b] and $f: S \times [0, T] \rightarrow U^*$ a function satisfying:

- (i) f is jointly measurable;
- (ii) for almost all $s \in S$, the map $t \mapsto f(s,t)$ is in $D_{-}([0,T],U^{*})$;
- (iii) the map $t\mapsto f(t,\cdot)$ is in $D_-([0,T];\,L^2(S;U^*))$.

Then we have P-a.s. that

$$\int_{S} \int_{0}^{T} f(s,t) \, dL(t) \, ds = \int_{0}^{T} \int_{S} f(s,t) \, ds \, dL(t).$$

Here: $D_{-}([0,T];B)$ is the space of all càglàd, functions.

The function

$$F: [0,T] \to \mathcal{L}(U,L^2(S)), \qquad F(t)u = \langle u, f(\cdot,t) \rangle$$

The function

$$F: [0,T] \to \mathcal{L}(U,L^2(S)), \qquad F(t)u = \langle u, f(\cdot,t) \rangle$$

$$\int_{S} \left(\int_{0}^{T} f(s,t) dL(t) \right) ds = \int_{S} \left(\int_{0}^{T} F(t) dL(t) \right) (s) ds$$

The function

$$F: [0,T] \to \mathcal{L}(U,L^2(S)), \qquad F(t)u = \langle u, f(\cdot,t) \rangle$$

$$\int_{S} \left(\int_{0}^{T} f(s,t) dL(t) \right) ds = \int_{S} \left(\int_{0}^{T} F(t) dL(t) \right) (s) ds$$
$$= \left\langle \int_{0}^{T} F(t) dL(t) \right\rangle \left\langle 1 \right\rangle_{L^{2}(S)}$$

The function

$$F: [0,T] \to \mathscr{L}(U,L^2(S)), \qquad F(t)u = \langle u, f(\cdot,t) \rangle$$

$$\int_{S} \left(\int_{0}^{T} f(s,t) dL(t) \right) ds = \int_{S} \left(\int_{0}^{T} F(t) dL(t) \right) (s) ds$$

$$= \left\langle \int_{0}^{T} F(t) dL(t) \right\rangle \left\langle 1 \right\rangle_{L^{2}(S)}$$

$$= \int_{0}^{T} F^{*}(t) 1 dL(t)$$

The function

$$F: [0,T] \to \mathcal{L}(U,L^2(S)), \qquad F(t)u = \langle u, f(\cdot,t) \rangle$$

$$\int_{S} \left(\int_{0}^{T} f(s,t) dL(t) \right) ds = \int_{S} \left(\int_{0}^{T} F(t) dL(t) \right) (s) ds$$

$$= \left\langle \int_{0}^{T} F(t) dL(t) \right\rangle \left\langle 1 \right\rangle_{L^{2}(S)}$$

$$= \int_{0}^{T} F^{*}(t) 1 dL(t)$$

$$= \int_{0}^{T} \int_{S} f(s,t) ds dL(t).$$

Ornstein-Uhlenbeck process

$$dX(t) = AX(t) dt + G dL(t)$$
 for all $t \in [0, T]$

- A generator of C_0 -semigroup $(S(t))_{t\geqslant 0}$ in Hilbert space V;
- $G: U \to V$ linear and bounded;
- $(L(t): t \ge 0)$ cylindrical Lévy process in Hilbert space U.

Definition: A stochastic process $(X(t):t\in[0,T])$ in V is called a **weak solution** if it satisfies for all $v^*\in \mathsf{D}(A^*)$ and $t\in[0,T]$ that

$$\langle X(t), v^* \rangle = \langle X(0), v^* \rangle + \int_0^t \langle X(s), A^* v^* \rangle \, ds + L(t)(G^* v^*).$$

$$dX(t) = AX(t) dt + G dL(t)$$
 for all $t \in [0, T]$

- A generator of C_0 -semigroup $(S(t))_{t\geqslant 0}$ in Hilbert space V;
- $G: U \to V$ linear and bounded;
- $(L(t): t \ge 0)$ cylindrical Lévy process in Hilbert space U.

Theorem: The following are equivalent:

- (a) $t \mapsto S(t)G$ is stochastically integrable;
- **(b)** there exists a weak solution $(X(t): t \in [0,T])$.

In this case, the weak solution is given by

$$X(t) = S(t)X(0) + \int_0^t S(t-s)G\,dL(s) \qquad \text{ for all } t \in [0,T].$$

Define for each $t \in [0, T]$

$$Y(t) := \int_0^t T(t-s)G \, dL(s).$$

Define for each $t \in [0, T]$

$$Y(t) := \int_0^t T(t-s)G \, dL(s).$$

$$\int_0^t \langle Y(s), A^* v^* \rangle \, ds = \int_0^t \left(\int_0^s G^* T^*(s - r) A^* v^* \, dL(r) \right) \, ds$$

Define for each $t \in [0, T]$

$$Y(t) := \int_0^t T(t-s)G \, dL(s).$$

$$\int_{0}^{t} \langle Y(s), A^{*}v^{*} \rangle ds = \int_{0}^{t} \left(\int_{0}^{s} G^{*}T^{*}(s-r)A^{*}v^{*} dL(r) \right) ds$$
$$= \int_{0}^{t} \left(\int_{r}^{t} G^{*}T^{*}(s-r)A^{*}v^{*} ds \right) dL(r)$$

Define for each $t \in [0, T]$

$$Y(t) := \int_0^t T(t-s)G \, dL(s).$$

$$\int_{0}^{t} \langle Y(s), A^{*}v^{*} \rangle \, ds = \int_{0}^{t} \left(\int_{0}^{s} G^{*}T^{*}(s-r)A^{*}v^{*} \, dL(r) \right) \, ds$$

$$= \int_{0}^{t} \left(\int_{r}^{t} G^{*}T^{*}(s-r)A^{*}v^{*} \, ds \right) \, dL(r)$$

$$= \int_{0}^{t} \left(G^{*}T^{*}(t-r)v^{*} - G^{*}T^{*}(0)v^{*} \right) dL(r)$$

Define for each $t \in [0, T]$

$$Y(t) := \int_0^t T(t-s)G \, dL(s).$$

$$\int_{0}^{t} \langle Y(s), A^{*}v^{*} \rangle \, ds = \int_{0}^{t} \left(\int_{0}^{s} G^{*}T^{*}(s-r)A^{*}v^{*} \, dL(r) \right) \, ds$$

$$= \int_{0}^{t} \left(\int_{r}^{t} G^{*}T^{*}(s-r)A^{*}v^{*} \, ds \right) \, dL(r)$$

$$= \int_{0}^{t} \left(G^{*}T^{*}(t-r)v^{*} - G^{*}T^{*}(0)v^{*} \right) dL(r)$$

$$= \langle Y(t), v^{*} \rangle - L(t)(G^{*}v^{*}).$$

$$dX(t) = AX(t) dt + G dL(t)$$
 for all $t \in [0, T]$

- A generator of C_0 -semigroup $(S(t))_{t\geqslant 0}$ in Hilbert space V;
- $G: U \to V$ linear and bounded;
- $(L(t): t \ge 0)$ cylindrical Lévy process in Hilbert space U.

Example: Let L be the canonical α -stable cylindrical Lévy process with characteristic function $\varphi_{L(t)}(u^*) = \exp\left(-t \|u^*\|^{\alpha}\right)$. Then the following are equivalent:

(1) there exists a weak solution;

(2)
$$\int_0^T \|S(s)G\|_{HS}^{\alpha} ds < \infty.$$

Irregularity of trajectories

$$dX(t) = AX(t) dt + G dL(t)$$
 for all $t \in [0, T]$

- A generator of C_0 -semigroup $(S(t))_{t\geqslant 0}$ in Hilbert space V;
- $G: U \to V$ linear and bounded;
- $(L(t): t \ge 0)$ cylindrical Lévy process in Hilbert space U.

In specific examples of cylindrical Lévy processes it was observed that the solution exits but with very irregular paths in V:

- ullet Brzeźniak, Goldys, Imkeller, Peszat, Priola and Zabczyk. 2010: sum of independent real-valued Lévy processes no left or right limits in V
- Brzeźniak and Zabczyk. PA, 2010. canonical α -stable cylindrical process no càdlàg modification in V:

• • • • • •

Irregularity of trajectories

$$dX(t) = AX(t) dt + G dL(t)$$
 for all $t \in [0, T]$

- A generator of C_0 -semigroup $(S(t))_{t\geqslant 0}$ in Hilbert space V;
- $G: U \to V$ linear and bounded;
- $(L(t): t \ge 0)$ cylindrical Lévy process in Hilbert space U.

Theorem: If there exists a constant c > 0 such that

$$\sup_{n \in \mathbb{N}} \nu \left(\left\{ u \in U : \sum_{k=1}^{n} \langle u, e_k \rangle^2 > c \right\} \right) = \infty,$$

then there does not exists a modification \tilde{X} of X such that

$$(\langle \tilde{X}(t), v^* \rangle : t \in [0, T])$$
 has càdlàg paths for all $v^* \in V^*$.

Regularity of trajectories

$$dX(t) = AX(t) dt + G dL(t)$$
 for all $t \in [0, T]$

- A generator of C_0 -semigroup $(S(t))_{t\geqslant 0}$ in Hilbert space V;
- $G: U \rightarrow V$ linear and bounded;
- $(L(t): t \ge 0)$ cylindrical Lévy process in Hilbert space U.

Theorem: Assume that the weak solution X exists. Then

Regularity of trajectories

$$dX(t) = AX(t) dt + G dL(t)$$
 for all $t \in [0, T]$

- A generator of C_0 -semigroup $(S(t))_{t\geqslant 0}$ in Hilbert space V;
- $G: U \to V$ linear and bounded;
- $(L(t): t \ge 0)$ cylindrical Lévy process in Hilbert space U.

Theorem: Assume that the weak solution X exists. Then (a) X is continuous in probability.

Regularity of trajectories

$$dX(t) = AX(t) dt + G dL(t)$$
 for all $t \in [0, T]$

- A generator of C_0 -semigroup $(S(t))_{t\geqslant 0}$ in Hilbert space V;
- $G: U \to V$ linear and bounded;
- $(L(t): t \ge 0)$ cylindrical Lévy process in Hilbert space U.

Theorem: Assume that the weak solution X exists. Then

- (a) X is continuous in probability.
- (b) X is cylindrically square integrable, i.e. for each $v^* \in V^*$ there exists a modification \widetilde{X}_{v^*} of $(\langle X(t), v^* \rangle : t \in [0, T])$ with

$$\int_0^T |\widetilde{X}_{v^*}(s)|^2 \, ds < \infty$$