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» Short time theory: Hairer '14, Catellier-Chouk '14.
» Show non-explosion!

» Uniform control over solutions at large times = Construction
of invariant measure.

Main result:
Xp initial datum, e > 0, p < c©
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Discussion

p
E[ sup sup (VEIX(8) 3.) | <o
0<t<1 B
Xo Boo5

» BS, = B, o = C* = Besov spaces.
> Regularity —% for Xp is arbitrary - anything > —% is OK.
» Prefactor v/t is optimal.

Compare to ODE

Solution of x = —x3 with initial datum x

1 1

x(t) = < —.
2t 4352 V2t

Bound uniform over initial datum = Coming down from oo.
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Discussion cont'd

E| sup sup . <\/E||X(t)||87%7e)p] < 0.

0<t<1
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Uniform control over large times
For t + 1 > 1 restrict dynamics to [t, t + 1] and use
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Discussion cont'd

E| sup sup . <\/E||X(t)||87%7€)p] < 0.

0<t<L1 = [e9)
XoGBoos

Uniform control over large times
For t +1 > 1 restrict dynamics to [t, t + 1] and use

IX(t+ 1)y < supsup (VEIX(E+9) )

0<s<1 _3
- =7 X(t)eBod

[ee]

= uniform-in-t bound on moments.
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= uniform-in-t bound on moments.

= Tightness for Krylov-Bogoliubov approximations of invariant
measure
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Discussion cont'd

p
E| sup sup (\/?HX(t)H ,;,s) ] < 0.

0<t<1 _3 Boo?
XOGBOQS

oo

Uniform control over large times
For t +1 > 1 restrict dynamics to [t, t + 1] and use

X+l 3. < supsup (VsIX(E+8)] g )

0<s<1 _3
> = X(t)eBxb -

= uniform-in-t bound on moments.

= Tightness for Krylov-Bogoliubov approximations of invariant
measure

i
pr(A) = ;/0 P(X(t) € A) dt.

= Alternative construction of ®4 Euclidean Field Theory.
p.4
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Euclidean &3 theory
Classical Problem:

» Construct the measure

poce (=2 [ [51Vp00R ot + 5oeex?]ax) T] ot

» Verify the so called Osterwalder-Schrader axioms.

Solution:

» Glimm-Jaffe '73, Feldman and Osterwalder '76, ... Phase-cell cluster
expansion.

» Benfatto et al. '80, Gawedzki and Kupiainen '85, Brydges et al. '94, ...
Renormalisation group.

> Brydges-Frohlich-Sokal 83, ... Skeleton inequalities.

OS axioms tricky - closely related to stability/uniqueness. o5
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2-d case: Better than uniqueness - Spectral Gap

Theorem (Tsatsoulis, W. '16)

P; = transition kernel for (®*) over two-dimensional torus.

» There exists a unique invariant measure i associated to (®%).

» 3\ > 0 such that fort > 1

sup || Pe(x) — pllTv < (1—X)°.

Comments:
» Uniqueness already shown by Réckner-Zhu-zhu '16.
» Convergence to equilibrium uniform over all initial data. Due
to strong non-linear damping.
» Important that we work on finite volume.
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Strategy for exponential equilibration

Doeblin criterion:
P; = transition kernel for (®*). Show that 3 A > 0 such that

sup 1P3(x) — P3(y)llrv < (1 —A).

p.7



Strategy for exponential equilibration

Doeblin criterion:
P; = transition kernel for (®*). Show that 3 A > 0 such that

sup 1P3(x) = Ps(y)llTv < (1= A).

Three ingredients:

p.7



Strategy for exponential equilibration

Doeblin criterion:
P; = transition kernel for (®*). Show that 3 A > 0 such that

sup [ Ps(x) = Ps(y)[rv < (1= ). J

Three ingredients:

» Non-linear dissipative bound: Coming back from oo in finite
time - exactly 2-dimensional version of our 3-d result.

p.7



Strategy for exponential equilibration

Doeblin criterion:
P; = transition kernel for (®*). Show that 3 A\ > 0 such that

sup [P3(x) — Ps(y)lltv < (1 = A).

Three ingredients:

» Non-linear dissipative bound: Coming back from oo in finite
time - exactly 2-dimensional version of our 3-d result.

» Support theorem: Transition probabilities have full support.

p.7



Strategy for exponential equilibration

Doeblin criterion:
P; = transition kernel for (®*). Show that 3 A\ > 0 such that

sup [P3(x) — Ps(y)lltv < (1 = A).

Three ingredients:
» Non-linear dissipative bound: Coming back from oo in finite
time - exactly 2-dimensional version of our 3-d result.
» Support theorem: Transition probabilities have full support.

» Strong Feller property: Regularity of transition probabilities.

p.7



Strategy for exponential equilibration

Doeblin criterion:
P; = transition kernel for (®*). Show that 3 A\ > 0 such that

sup [P3(x) — Ps(y)lltv < (1 = A).

Three ingredients:

» Non-linear dissipative bound: Coming back from oo in finite
time - exactly 2-dimensional version of our 3-d result.

» Support theorem: Transition probabilities have full support.

» Strong Feller property: Regularity of transition probabilities.

3-d case:

» Strong Feller property Hairer-Mattingly '16.

p.7



Strategy for exponential equilibration

Doeblin criterion:
P; = transition kernel for (®*). Show that 3 A\ > 0 such that

sup [P3(x) — Ps(y)lltv < (1 = A).

Three ingredients:
» Non-linear dissipative bound: Coming back from oo in finite
time - exactly 2-dimensional version of our 3-d result.
» Support theorem: Transition probabilities have full support.

» Strong Feller property: Regularity of transition probabilities.

3-d case:

» Strong Feller property Hairer-Mattingly '16.
» Support theorem: Work in progress Hairer-Schénbauer.
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Why is the a priori bound true?

Scaling argument (general dimension d)

9:X = AX — X3 1 ¢. J

Rescaling f = \2t, £ = Ax, £ = A\5°¢, X = A" X yields

MX = AX = \IX3 4 €

» Small scales A — 0: cubic term disappears = Subcriticality
of equation.
» Large scales A — oo: cubic term dominates.

Strategy

» Use Schauder theory (aka Regularity structures, paracontrolled
distributions) for small scales.

» Use energy estimates on large scales.

» Difficulty: Combine the two. .
p.
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1 solution of stochastic heat equation:

Ot = At + &

Can construct 12 ~ v and 13 ~» . All 1, v, distributions in C~.

Deterministic step:
u=X-—1
oru =Au— (1 +u)®
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The 2-d case- Da Prato-Debussche trick

Stochastic step:
1 solution of stochastic heat equation:

Ot = A1+ €.

Can construct 12 ~ v and 13 ~» . All 1, v, distributions in C°~.
Deterministic step:
u=X-—1
oru =Au— (1 +u)®
=Au— (B +310 +3vu+v).
Multiplicative inequality: If « < 0 < 8 with a4+ 8> 0
17 ullge, < M7 llse sz

= Short time existence, uniqueness.

p.9
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Renormalised powers

B[] = [ [ 60 n(E[300530)] o

Gaussian moments

= 6E[T5(X)T5(y)]3 + 9E[T§(X)T5(y)] E[T(;(X)T(;(X)]2

< [log(x — y)[* + | log(8)|?| log(x — y)|-

> | log(x — y)| term is integrable. | log(8)| term diverges.
= E[(13,1)?] diverges for § — 0.
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Renormalised powers cont'd

13(x) = 13(x) — 3Cst5(x) where C5 = E[T(;(x)z] ~ |log(9)].

jE[ 13(x) 113 (y) :} = 6E[75(X)75(y)]3.
=E[(: 13 :,n)?] remains bounded.

Theorem (Glimm, Jaffe, Nelson, Gross... 70s)

: 13 converges to a random distribution  : in B3 for all a > 0.

» « : called third Wick power.
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The paracontrolled approach Il - The 3-d case

Da Prato-Debussche trick does not work.
Stochastic step:

) . 1_

1, Vv, ¥ can still be constructed but lower regularity: 1t € C™27,
3

veCl -, veC 2.

Deterministic step:
» Equation for u = X —1
Oru =Au— (P 43102 +3vu+v)

cannot be solved by Picard iteration.

» Next order expansion u = X — 1+ Y gives
oty =Au — (u3+3Tu2+3Vu—3\VV+...).

Still cannot be solved, because of vu. Expanding further does
not solve the problem.



The paracontrolled approach Il - A system of equations

Catellier-Chouk: Split up remainder equation: v =v + w



The paracontrolled approach Il - A system of equations

Catellier-Chouk: Split up remainder equation: v =v + w

(O —Alv==3v+w-Y) v,

» v € C™ is the most irregular component of u.



The paracontrolled approach Il - A system of equations

Catellier-Chouk: Split up remainder equation: v =v + w

(O —Alv==3v+w-Y) v,
(0r — A)w = —(v + w)3 +...

» v € Cl™ is the most irregular component of u.

3_ :
» w € C2~ more regular remainder.



The paracontrolled approach Il - A system of equations

Catellier-Chouk: Split up remainder equation: v =v + w

(Or —Av=-3v+w-Y)ov,
(0r — A)w = —(v + w)3 +...

» v € C'~ is the most irregular component of u.
3_ .
» w € C2~ more regular remainder.

» © paraproduct.



The paracontrolled approach Il - A system of equations

Catellier-Chouk: Split up remainder equation: v =v + w

(0r — A)v=-3(v+w-Y)ov,
Or —D)w=—(v+w)P-3v+w-Y)ov+...

» v € C'~ is the most irregular component of u.
3_ .
» w € C2~ more regular remainder.

» © paraproduct.



The paracontrolled approach Il - A system of equations

Catellier-Chouk: Split up remainder equation: v =v + w

(0r — A)v=-3(v+w-Y)ov,
(Or —D)w=—(v+w)P-3v+w-Y)ov+...

v € C1~ is the most irregular component of w.

v

3_ :
» w € C2~ more regular remainder.

v

® paraproduct.
Term v ©V can be rewritten as

v

vov=-3[(v+w-Y)eY]oev+com(v,w)ov
= =3(v+w — V) + coma(v + w) + comy (v, w).
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Main result
(0r — A)v = F(v + w) — cv,
(0 — A)w = G(v, w) + cv.

Theorem
» Forr=1,v, Y, V% &, & assume
IF7(2) =¥ (s)Il 3
sup |[7(t)llper < K, sup —— < K.
0<t<1 h 0<s<t<1 |t —s|e
3

» Assume ¢ = cgK3%, set vy := 0, wp = Xp € Boo®.

= for t € (0,1]
KK'/
= , and ||v(t)||BZ;35 < CK".

[w(t)l[3e-2 < NG
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Discussion of terms

(Or—A)yv=-3v+w-Y)ov—cv,
(0r — A)w = — (v +w)® —3comy(v,w) OV —3wov+....

v

v € C~1~ most irregular term, but r.h.s. linear.
» —(v+ w)3 good term! v term can be absorbed in w term if
c large enough.

1. . . .
» comi(v,w)©oVv € C2" linear in v, w. Time regularity of v, w
needed to control this.

» w oV linear in w, but derivative or order 1+ needed to control
this.
— small scale problem!



Elements of proof

The irregular term v
(0 — A)v==3(v+w-T)ow.

Duhamel (parabolic regularity) and “Gronwall” give for 8 < 1—
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Elements of proof
The irregular term v
(0 — A)v==3(v+w-T)ow.
Duhamel (parabolic regularity) and “Gronwall” give for 8 < 1—

v(E)lige < - IIVOH+K/ (t HW(U)HLP+K)d (1)

Control for wov
Duhamel (parabolic regularity) gives for v < %f

lw(t)llsy < lle®®wo

t 1
3
i+ ([ w1 as)”
1
([ 1Ny 05) + ol 4o @)




Elements of proof cont'd

Testing the equation
If ¢ > K30 | p large enough.

3 2 3
Iw(8)IP52 + / Iw(s)|%2, ds

t
S o573 + (RO [1+ w0l + [ ()20 d].
0 P

(3)




Elements of proof cont'd

Testing the equation
If ¢ > K30 | p large enough.

3 2 3
Iw(t)IP52 + / lw(s)|I%, ds

t
<||wO||L3,,2+(cK)*’~[1+||vO||B ot [ Iy ds] @)

v

Conclusion
Combining (2) and (3), using v = 1 + 5¢ we get

Iw(6)[?52 + /:F(r)Adr < KE[1 4 u(s )H,g_aa F(s)|.

for F(s) = [ w(s) 122 + w(s) s and A= 5225 > 1.

= Conclusion by "ODE comparison" and "stoppmg for v".
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Summary and outlook
Main result
» Strong a priori bound for solutions of ®* equation on T3.

» Strong enough to construct invariant measures (®3 theory on
finite volume).

» On T2 we have exponential convergence to equilibrium.
Ingredients seem to be there for T3 as well.

Method

» Catellier-Chouk's paracontrolled ansatz. Work with a system.

» Parabolic regularity to control small scales. Energy estimate
for large scales.

Outlook

» How about infinite volume? Uniqueness for invariant measure
not (always) expected.



