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1. Introduction

This work focusses towards model order reduction (MOR) of hyperbolic systems. The main
contribution of this work is the application of Proper Orthogonal Decomposition - (Discrete)
Empirical Interpolation Method, known as POD-(D)EIM to model-reduce the multi-phase flow
model. This work also sheds light towards hybrid and alternative approaches for MOR.

2. Governing Models - Mathematical framework

Equation (1) represents a multiphase flow model, popularly called Drift Flux Model (DFM) and
Equation (2) represents the acoustic propagation in homogeneous/ heterogeneous media.
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Parameters α, ρ, v, p, a and B are void fraction, density, velocity, pressure, sound speed in
the medium and bulk modulus, respectively. Subscripts l and g refer to liquid and gaseous
phase respectively. ρ0 is the reference density and p0 is the reference pressure. K and S are
flow dependent parameters. s1, s2, s3 are the source terms.

Both models belong to the class of Hyperbolic Partial Differential Equations (PDEs).
A dynamical system, of the form dy

dt = L(y) + N(y) is obtained after the finite volume method
is used to perform spatial discretization. Here, y refers to the states of the system, L(y) refers
to the linear term and N(y) refers to the non-linear term in the obtained system of Ordinary
Differential Equations (ODEs).
PDEs can also be written in the form of Delay Differential Equations (DDEs), whose gen-
eral form is: d

dty(t) = f (t, y(t), yt) where y(t) ∈ Rn and yt = {y(τ ) : τ ≤ t} represents the
trajectory of the solution in the past.

3. Challenges for Model Order Reduction

• Presence of travelling and standing waves;
•Dynamical behavior of transport dominated phenomenon requires quite a large number of

spatial modes for sufficient accurate approximation;
•Real world applications have multiple transported quantities.

4. Numerical Results

POD-(D)EIM is a model order reduction technique [1, 2] and it is applied to DFM, governed
by Equation (1), in this work. Source terms have been neglected in this particular shock-tube
test case.

Figure 1: Behavior of singular values for transported quantities.

Figure 2: POD-(D)EIM results for Drift Flux Model at t = 1s. Blue curve represents the
high fidelity simulation, Red Curve represents the approximated solution and ’circle’ markers
represents value at (D)EIM interpolation indices. 10 basis were used to construct separate
reconstructions for three different transport quantities. Major reason of using 10 basis was to
demonstrate that POD-(D)EIM yields exact results at the (D)EIM interpolation indices.

5. Envisaged Approach for Model Order Reduction of Hyperbolic Systems

POD-(D)EIM gives good numerical results. The question now is: Can we do better to ob-
tain lowest possible dimensional representation?
The two key observations are as follows:
1. Rows 1 to 2 reveal that 60 (D)EIM basis are quite large to represent the physical feature.

Row 4 represents that just sufficient basis have been used for accurate representation.
Row 5 fails to reveal small gradient around 40m as per representation at selected (D)EIM
interpolation indices;

Figure 3: Evolution of the transport quantities when 60 (D)EIM basis are used. Rows 1 to 5
represent the behavior at ∆t, 500∆t, 1000∆t, 1500∆t and 2000∆t respectively. Columns 1 to 3
represent the conservative quantities Q1, Q2 and Q3 respectively.

2. Transport quantities have underlying diagonal structure in space-time diagram. Figure
4 (Right) can be represented appropriately by 2 basis if snapshot matrix is pre-processed
such that the shifted matrix corresponds to the solution in co-moving reference frame [3].

Figure 4: (Left): Space-time behavior of gas-void fraction obtained from DFM and (Right):
Space-time behavior of velocity obtained from acoustic equations.

It can be concluded that an adaptive basis construction, for example, by exploiting lo-
calization across space or time [4], is required for appropriate feature representation and
efficient resource management. Keeping above insights in mind, the envisaged procedure is:
• Pre-process the snapshot matrix (of the solution of the PDE or the quantity of interest)

to obtain the stronger decay of the singular values, as in [5] and references there-in;
•Obtain adaptive basis using the knowledge of underlying dynamics/ transport structure;
• Perform model order reduction on the transformed matrix and reconstruct the solution.

Another envisaged approach for MOR is pursued in the form of DDEs to accurately approxi-
mate wave effects [6].

Figure 5: Two different angles of attack for complexity reduction via DDEs.

6. Future Work

The aim is to apply model order reduction techniques to study:
• Fast transients - Propagation of pressure pulses;
• Slow transients - Transport of a gas volume fraction contact discontinuity.

in the context of simulation and control of multi-phase model, governed by Equation (1).
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