Atmospheric Modelling

T. Melvin

thomas.melvin@metoffice.gov.uk

Met Office, Exeter, Devon

© Crown Copyright 2017 Met Office - p. 1/21

1024

Todays Weather

Overview

- Weather and Climate modelling: System Complexity
- Met Office approach to modelling
- Atmospheric Modelling
- Dynamical Core: Equation Sets & Approximations
- Design Factors
- Current development

02

System Complexity: Physical

System Complexity: Model

System Complexity: Model

Met Office Approach: Unified Model (UM)

Single Model (Single numerics, Single source code) for all time and space scales

Climate Modelling: up to 100's Km for 1000's Years

Weather Forecasts: 1-10 Km for 5 days

Process Studies: 10's m for 100's Seconds

Met Office Approach: Unified Model (UM)

Forecast Constraints

Need to produce a forecast in a timely manner:

- Produce a forecast out to 7 days
- Global 10 km model, 70 vertical levels
- 4 Minute timestep \implies 2520 timesteps
- Resolution = 2560 x 1920 x 70 = 344 million grid points per variable
- Fixed 1 Hour time window (Including data assimilation, model run and i/o)
- Algortihmic and code efficiency is critical

All Scales Problem

Phenomena occur across all time and space scales: No spectral gap

All Scales Problem

Phenomena occur across all time and space scales: No spectral gap

Dynamical Modelling: Equation Sets

Deep Atmosphere, nonhydrostatic equations: In spherical coordinates, this is the set that the Unified model uses. Only the spherical geoid approximation has been made.

$$\frac{D_{r}u}{Dt} - \frac{uv\tan\phi}{r} - 2\Omega\sin\phi v + \frac{c_{pd}\theta}{r\cos\phi}\frac{\partial\Pi}{\partial\lambda} = -\left(\frac{uw}{r} + 2\Omega\cos\phi w\right) + S^{u}$$
$$\frac{D_{r}v}{Dt} - \frac{u^{2}\tan\phi}{r} + 2\Omega\sin\phi u + \frac{c_{pd}\theta}{r\cos\phi}\frac{\partial\Pi}{\partial\phi} = -\left(\frac{vw}{r}\right) + S^{v}$$
$$\frac{D_{r}w}{Dt} + c_{pd}\theta\frac{\partial\Pi}{\partial r} + \frac{\partial\Phi}{\partial r} = \frac{(u^{2} + v^{2})}{r} + 2\Omega\cos\phi u + S^{w}$$
$$\frac{D_{r}}{Dt}\left(\rho r^{2}\cos\phi\right) + \rho r^{2}\cos\phi\left(\frac{\partial}{\partial\lambda}\left[\frac{u}{r\cos\phi}\right] + \frac{\partial}{\partial\phi}\left[\frac{v}{r}\right] + \frac{\partial w}{\partial r}\right) = 0$$
$$\frac{D_{r}\theta}{Dt} = S^{\theta}$$

Shallow Atmosphere: Assume the atmosphere is a shallow shell. Replace height factors r with earths radius a and neglect certain parts of the coriolis terms. Valid when $(r - a) \ll a$.

$$\begin{aligned} \frac{D_a u}{Dt} &- \frac{uv \tan \phi}{a} - 2\Omega \sin \phi v + \frac{c_{pd}\theta}{a \cos \phi} \frac{\partial \Pi}{\partial \lambda} = -\left(\frac{uw}{r} + 2\Omega \cos \phi w\right) + S^u \\ \frac{D_a v}{Dt} &- \frac{u^2 \tan \phi}{a} + 2\Omega \sin \phi u + \frac{c_{pd}\theta}{a \cos \phi} \frac{\partial \Pi}{\partial \phi} = -\left(\frac{vw}{r}\right) + S^v \\ \frac{D_a w}{Dt} &+ c_{pd}\theta \frac{\partial \Pi}{\partial r} + \frac{\partial \Phi}{\partial r} = \frac{(u^2 + v^2)}{r} + 2\Omega \cos \phi u + S^w \\ \frac{D_a}{Dt} \left(\rho a^2 \cos \phi\right) + \rho a^2 \cos \phi \left(\frac{\partial}{\partial \lambda} \left[\frac{u}{a \cos \phi}\right] + \frac{\partial}{\partial \phi} \left[\frac{v}{a}\right] + \frac{\partial w}{\partial r}\right) = 0 \\ \frac{D_a \theta}{Dt} = S^\theta \end{aligned}$$

Quasi-Hydrostatic: Neglect the vertical acceleration term Dw/Dt. This is a good approximation for horizontal scales greater than about 10km. Filters out vertical acoustic waves

$$\frac{D_{r}u}{Dt} - \frac{uv\tan\phi}{r} - 2\Omega\sin\phi v + \frac{c_{pd}\theta}{r\cos\phi}\frac{\partial\Pi}{\partial\lambda} = -\left(\frac{uw}{r} + 2\Omega\cos\phi w\right) + S^{u}$$
$$\frac{D_{r}v}{Dt} - \frac{u^{2}\tan\phi}{r} + 2\Omega\sin\phi u + \frac{c_{pd}\theta}{r\cos\phi}\frac{\partial\Pi}{\partial\phi} = -\left(\frac{vw}{r}\right) + S^{v}$$
$$\frac{D_{r}w}{Dt} + c_{pd}\theta\frac{\partial\Pi}{\partial r} + \frac{\partial\Phi}{\partial r} = \frac{(u^{2} + v^{2})}{r} + 2\Omega\cos\phi u + S^{w}$$
$$\frac{D_{r}}{Dt}\left(\rho r^{2}\cos\phi\right) + \rho r^{2}\cos\phi\left(\frac{\partial}{\partial\lambda}\left[\frac{u}{r\cos\phi}\right] + \frac{\partial}{\partial\phi}\left[\frac{v}{r}\right] + \frac{\partial w}{\partial r}\right) = 0$$
$$\frac{D_{r}\theta}{Dt} = S^{\theta}$$

Hydrostatic Shallow Atmosphere: Make the shallow atmosphere and hydrostatic approximations: Hydrostatic primitive equations. Historically popular for climate modelling

$$\begin{aligned} \frac{D_a u}{Dt} &- \frac{uv \tan \phi}{a} - 2\Omega \sin \phi v + \frac{c_{pd}\theta}{a \cos \phi} \frac{\partial \Pi}{\partial \lambda} = -\left(\frac{uw}{r} + 2\Omega \cos \phi w\right) + S^u \\ \frac{D_r v}{Dt} &- \frac{u^2 \tan \phi}{a} + 2\Omega \sin \phi u + \frac{c_{pd}\theta}{a \cos \phi} \frac{\partial \Pi}{\partial \phi} = -\left(\frac{vw}{r}\right) + S^v \\ \frac{D_a w}{Dt} &+ c_{pd}\theta \frac{\partial \Pi}{\partial r} + \frac{\partial \Phi}{\partial r} = \frac{(u^2 + v^2)}{r} + 2\Omega \cos \phi u + S^w \\ \frac{D_a}{Dt} \left(\rho a^2 \cos \phi\right) + \rho a^2 \cos \phi \left(\frac{\partial}{\partial \lambda} \left[\frac{u}{a \cos \phi}\right] + \frac{\partial}{\partial \phi} \left[\frac{v}{a}\right] + \frac{\partial w}{\partial r}\right) = 0 \\ \frac{D_a \theta}{Dt} = S^\theta \end{aligned}$$

Dynamical Core Modelling: Scaling

• Vertical momentum equation scalings:

w-equation	$rac{Dw}{Dt}$	$-\frac{u^2+v^2}{r}$	$-2\Omega u\cos\phi$	$rac{\partial \Phi}{\partial r}$	$\frac{1}{ ho} \frac{\partial p}{\partial r}$
Scales	UW/L	U^2/a	$f_0 U$	g	$P_0/\rho H$
Values (m/s)	10^{-7}	10^{-5}	10^{-3}	10	10

Horizontal momentum equation scalings:

<i>u</i> -equation	$\frac{Du}{Dt}$	$-\frac{uv\tan\phi}{r}$	$\frac{uw}{r}$	$-2\Omega v\sin\phi$	$2\Omega w\cos\phi$	$\frac{1}{\rho r \cos \phi} \frac{\partial p}{\partial \lambda}$
v-equation	$\frac{Dv}{Dt}$	$-\frac{u^2 \tan \phi}{r}$	$\frac{vw}{r}$	$-2\Omega u\sin\phi$		$rac{1}{ ho r}rac{\partial p}{\partial \phi}$
Scales	U^2/L	U^2/a	UW/a	$f_0 U$	$f_0 W$	$\delta P/ ho L$
Values (m/s)	10^{-4}	10^{-5}	10^{-8}	10^{-3}	10^{-6}	10^{-3}

Dynamical Core Modelling: Geostrophic approximations

Geostrophic: Coriolis force (f) balances the pressure gradient (∇p)

$$\mathbf{v}_G = \frac{1}{\rho f} \mathbf{k} \times \nabla_h p$$

Valid for small Rossby numbers $R_0 \equiv \frac{V}{fL} << 1$

Dynamical Core Modelling: Geostrophic approximations

Geostrophic: Coriolis force (f) balances the pressure gradient (∇p)

$$\mathbf{v}_G = \frac{1}{\rho f} \mathbf{k} \times \nabla_h p$$

Valid for small Rossby numbers $R_0 \equiv \frac{V}{fL} << 1$

Quasi-geostrophic: Assume Cartesian geometry with a constant Coriolis force f_0 in geostrophic wind and include ageostrophic compontent: $\mathbf{v} = \mathbf{v}_a + \mathbf{v}_G$, $\mathbf{v}_a \ll \mathbf{v}_G$. Valid for flows with $L \ll a$ and small perturbations around reference depth

Dynamical Core Modelling: Geostrophic approximations

Geostrophic: Coriolis force (f) balances the pressure gradient (∇p)

$$\mathbf{v}_G = \frac{1}{\rho f} \mathbf{k} \times \nabla_h p$$

Valid for small Rossby numbers $R_0 \equiv \frac{V}{fL} << 1$

Quasi-geostrophic: Assume Cartesian geometry with a constant Coriolis force f_0 in geostrophic wind and include ageostrophic compontent: $\mathbf{v} = \mathbf{v}_a + \mathbf{v}_G$, $\mathbf{v}_a \ll \mathbf{v}_G$. Valid for flows with $L \ll a$ and small perturbations around reference depth

Plantary geostrophic: Retain the spherical geometry, valid for $L \approx a$

Dynamical Core Modelling: Geostrophic approximations

Geostrophic: Coriolis force (f) balances the pressure gradient (∇p)

$$\mathbf{v}_G = \frac{1}{\rho f} \mathbf{k} \times \nabla_h p$$

Valid for small Rossby numbers $R_0 \equiv \frac{V}{fL} << 1$

Quasi-geostrophic: Assume Cartesian geometry with a constant Coriolis force f_0 in geostrophic wind and include ageostrophic compontent: $\mathbf{v} = \mathbf{v}_a + \mathbf{v}_G$, $\mathbf{v}_a \ll \mathbf{v}_G$. Valid for flows with $L \ll a$ and small perturbations around reference depth Plantary geostrophic: Retain the spherical geometry, valid for $L \approx a$ Semi-geostrophic: Assume Cartesian geometry. Use the full wind in the advection terms. Only drop the advection of the ageostropic

component: $D\mathbf{v}_a/Dt = 0$

Dynamical Core Modelling: Shallow water approximations

Shallow Water Equations: Neglect variations with height, assume the fluid is a single layer and the wavelength λ of surface waves is much smaller than fluid depth $\lambda \ll d$.

$$\frac{D\mathbf{u}}{Dt} = -2\Omega \times \mathbf{u} - \nabla \left(\Phi + \Phi_0\right) = 0,$$
$$\frac{\partial \Phi}{\partial t} + \nabla \left(\Phi \mathbf{u}\right) = 0.$$

useful for testing numerical approximations in a simplified environment.

Dynamical Core Modelling: Shallow water approximations

Shallow Water Equations: Neglect variations with height, assume the fluid is a single layer and the wavelength λ of surface waves is much smaller than fluid depth $\lambda \ll d$.

$$\frac{D\mathbf{u}}{Dt} = -2\Omega \times \mathbf{u} - \nabla \left(\Phi + \Phi_0\right) = 0,$$
$$\frac{\partial \Phi}{\partial t} + \nabla \cdot \left(\Phi \mathbf{u}\right) = 0.$$

useful for testing numerical approximations in a simplified environment. Barotropic vorticity: Describes incompressible 2D flow,

$$\frac{D\xi}{Dt} = 0,$$
$$\mathbf{u} = \nabla^{\perp}\psi, \qquad \nabla^{2}\psi = \xi.$$

Dynamical Core Modelling: Effects of approximations

Baroclinic wave test case. Standard test for development of mid latitude weather systems

Unapproximated model

Hydrostatic approximation

Dynamical Modelling: Design Factors

Staniforth & Thuburn (QJRMS **138**, 2012) identified ten *Essential and desirable properties of a dynamical core*

- **1** Mass conservation
- 2 Accurate representation of balance and adjustment
- **3** Absence of, or well controlled, computational modes *Requires, at least, #velocity = 2x#pressure points*

Dynamical Modelling: Design Factors

Staniforth & Thuburn (QJRMS **138**, 2012) identified ten *Essential and desirable properties of a dynamical core*

- 4 Geopotential and pressure gradient should not produce unphysical vorticity $\nabla \times (\nabla p) = 0$
- 5 Energy conserving pressure terms $\mathbf{u}.\nabla p + p\nabla.\mathbf{u} = \nabla.(\mathbf{u}p)$
- 6 Energy conserving Coriolis terms

$$\mathbf{u}.\left(\mathbf{\Omega}\times\mathbf{u}\right)=0$$

- 7 No spurious fast propagation of Rossby modes
- 8 Axial angular momentum should be conserved *These all relate to the mimetic (compatible) properties of the numerics*

Dynamical Modelling: Design Factors

Staniforth & Thuburn (QJRMS **138**, 2012) identified ten *Essential and desirable properties of a dynamical core*

- 9 Accuracy at least approaching second order
- **10** Minimal grid imprinting

These are challenging for grids with special pointsgenerally require higher order schemes

Representation of fast waves

Linear shallow water model in a Cartesian domain

Mixed finite element model

Developing a new model based suitable for future supercomputers

- Using mixed finite-element method
- Choose finite element function space to give discrete De-Rahm complex

H_1	H_{curl}	${H}_{div}$	L_2	
\mathbb{W}_0	$\begin{array}{c} \nabla \\ \longrightarrow & \mathbb{W}_1 \end{array}$	$\begin{array}{c} \nabla\times\\ \longrightarrow & \mathbb{W}_2 \end{array}$	$\begin{array}{c} \nabla. \\ \longrightarrow & \mathbb{W}_3 \end{array}$	

Mixed finite element model

Developing a new model based suitable for future supercomputers

- Using mixed finite-element method
- Choose finite element function space to give discrete De-Rahm complex

H_1		H_{curl}		H_{div}		L_2	
	∇		abla imes		abla.		
\mathbb{W}_0	\longrightarrow	\mathbb{W}_1	\longrightarrow	\mathbb{W}_2	\longrightarrow	\mathbb{W}_3	
Q_{k+1}		${N}_k$		RT_k		Q_k^{DG}	

Mixed finite element model

Developing a new model based suitable for future supercomputers

- Using mixed finite-element method
- Choose finite element function space to give discrete De-Rahm complex

H_1	${H}_{cu}$	$_{rl}$ H_{div}	v L_2	
\mathbb{W}_0	$\begin{array}{c} \nabla \\ \longrightarrow \end{array} \hspace{1.5cm} \mathbb{W}_1 \end{array}$	$\begin{array}{ccc} \nabla\times \\ \longrightarrow & \mathbb{W}_2 \end{array}$	$ abla \cdot \cdot$	

- Accurate for arbritrary grids, (no orthogonality constraint)
- Flexibility to increase formal order of accuracy
- Builds in mimetic and conservation properties
- Generalises staggered grid finite-volume methods

Timestepping

Two main approaches used:

- Explicit
- Semi-Implicit

Timestepping

Explicit timestepping (e.g. Runge-Kutta) is simple and cheap per step but restricted by speed of fast (acoustic & inertia-gravity waves

- Explicit in the vertical: $U \approx 340 m/s$, $\Delta z \approx 10 m$ leads to $\Delta t < 1/4s$
- Only explicit in the horizontal: $U \approx 340 m/s$, $\Delta x \approx 10 Km$ leads to $\Delta t < 30s$
- Alternatively try to filter fast waves (hydrostatic, anelsatic approximations)

Timestepping

Implicit timstepping is more complex and expensive per step but much longer timestep can be taken

- UM uses ≈ 5 minutes for $\Delta x = 10Km$
- Forming full Jacobian for Newton method is expensive
- More common to use Quasi-Newton (semi-implicit) method

- Only the terms for fast waves are retained
- Usually use Schur complement to reduce this to a single (Helmholtz) equation

 $H(\Pi') \equiv \alpha_1 \Pi' + \alpha_2 \nabla . (\alpha_3 \nabla [\alpha_4 \Pi']) = RHS$

Any Questions?

Crown Copyright 2017 - p. 19/21

1024

Atmospheric model is split into two main parts

- Dynamical Core: Models all motions that are resolved on the mesh
- Physical Parameterisations: Models subgrid processes that are not resolved

Dynamical Core:

- Solves equations of motion
- Transport of fields
- Resolves large scale balances

Atmospheric model is split into two main parts

- Dynamical Core: Models all motions that are resolved on the mesh
- Physical Parameterisations: Models subgrid processes that are not resolved

Physical Parameterisations:

- Deep & shallow convection
- Microphysics
- Radiation
- Boundary layer
- Gravity wave drag

Atmospheric model is split into two main parts

- Dynamical Core: Models all motions that are resolved on the mesh
- Physical Parameterisations: Models subgrid processes that are not resolved

Dynamical Core:

- Solves equations of motion
- Transport of fields
- Resolves large scale balances

Atmospheric model is split into two main parts

- Dynamical Core: Models all motions that are resolved on the mesh
- Physical Parameterisations: Models subgrid processes that are not resolved

Physical Parameterisations:

- Deep & shallow convection
- Microphysics
- Radiation
- Boundary layer
- Gravity wave drag

