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Physical motivation

DLA aggregate formed on electrode in copper sulphate
solution

Photo by Kevin R Johnson
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Physical motivation

Eden cluster formed by lichen growth

Photo by James Wearn
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Physical motivation

Electrical “tattoo” on survivor of lightning strike

From “Lichtenberg Figures Due to a Lightning Strike” by Yves Domart, MD, and Emmanuel Garet, MD
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Conformal models for planar random growth

Conformal mapping representation of single particle

Let Dy denote the exterior unit disk in the complex plane C and P
denote a particle of size d attached at the point 1.

We typically take P to be the “slit” (1, d] and use the unique
conformal mapping fp : Dy — Dp \ (1, d] that fixes oo as a
mathematical description of the particle.

(Usually talk in terms of logarithmic capacity c = log f5(00),
instead of size d. For slit maps, e¢ =1+ (1+d) so c < d?/4.)
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Conformal models for planar random growth

Conformal mapping representation of a cluster

m Suppose Pi, Py, ... is a sequence of particles, where P, has
capacity ¢, and attachment angle 0,, n=1,2,....

m Set $p(z) = z.
m Recursively define ®,(z) = ®,_1 0 fp,(2), for n=1,2,....

m This generates a sequence of conformal maps @, : Dy — K,
where K,—_1 C K}, are growing compact sets, which we call
clusters.

m By varying the sequences {0,} and {c,}, it is possible to
describe a wide class of growth models.
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Conformal models for planar random growth

Cluster formed by iteratively composing slit mappings
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Conformal models for planar random growth

Examples of models within this framework

m Hastings-Levitov family, HL(«) [1998]:
m 0, are i.i.d. U(—m,7) random variables;
mc,=c|d (el)|e.
m Dielectric-breakdown models, DBM(7) [due to
Mathiesen-Jensen, 2002]:
m 0, distributed o [® _,(e?)[*"d0);
mc,=c|P ()2
m Quantum Loewner Evolution, QLE(~,7n) [due to
Miller-Sheffield, 2013]:

m 0, “distributed” o edMho®u-1(e”)|p! (i) [E(M)-1-nqp.
m ¢, = c for all n, P, a SLE,, conditionally independent of the
GFF h, given 6, (a, b, functions depending on k).
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Conformal models for planar random growth

Aggregate Loewner Evolution, ALE(«, 1)

m 0, distributed oc |® ()| ~"db);

Cp = cld], 4 ()|~
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Conformal models for planar random growth

Previous results

m Primary interest has been in asymptotic behaviour of large
clusters.
m Almost all previous work relates to HL(0) as particle maps are
i.i.d. so the model is mathematically the most tractable.
m Norris and T. (2012) showed scaling limit of HL(0) is a growing
disk with a branching structure related to the Brownian web.
m Silvestri (2015) showed fluctuations form a Gaussian field.
m Results for HL(«) with a # 0 have only been shown for
regularized versions of the model.
m Rohde and Zinsmeister (2005) analysed the dimension of
scaling limits for HL(0) and for a regularized version of HL(«)
when o > 0.
m Sola, T., Viklund (2015) showed scaling limit of regularized
HL(«) is a growing disk for all « provided regularization is
strong enough.

Amanda Turner Department of Mathematics and Statistics Lancaster University UK

Scaling limits of planar random growth models



Phase transitions

Open problems

m Does ALE(«, n7) have phase transitions from disks to non-disks
along the line & + n =1 (within some compact region)?
Longstanding conjectures:

m HL(«) has a phase transition at a = 1.
m DBM(n) has a phase transition at n = 0.

m Does ALE(«,n) have phase transitions to simple paths when
n or « are large?
Longstanding conjectures:
m There exists some 7)o such that DBM(7) converges to a simple
path for > nqg.
m There exists some o such that HL(«) converges to a simple
path for a > ayp.

m What other limit shapes are possible?

Amanda Turner Department of Mathematics and Statistics Lancaster University UK

Scaling limits of planar random growth models



Phase transitions

Scaling limits for ALE(0,7)

m Natural to consider particle sizes that are very small compared
to the overall size of the cluster and scaling limits where
n — oo while ¢ — 0.

m Models are difficult to analyse mathematically as all models
(except HL(0)) exhibit long-range dependencies.

m Additional difficulty, when « # 0, is total capacity of cluster is
random and cannot, a priori, be bounded above or below, so
unclear at what rate to let n — oc.

m When o = 0, K,, has capacity cn, so natural to look for
scaling limits when n= [T /c|.
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Phase transitions

ALE(0,-1) cluster with 10,000 particles for d = 0.02
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Phase transitions

ALE(0,0) cluster with 10,000 particles for d = 0.02
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Phase transitions

ALE(0,1) cluster with 10,000 particles for d = 0.02
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Phase transitions

ALE(0,1.5) cluster with 10,000 particles for d = 0.02
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Phase transitions

ALE(0,2) cluster with 10,000 particles for d = 0.02
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Phase transitions

ALE(0,4) cluster with 10,000 particles for d = 0.02
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Phase transitions

Regularization for ALE(0,7)

m Even after the arrival of a single slit particle, the map
0 > | (e')| is badly behaved and takes the values 0 and oo.

m For some values of 7,

/ 1 ()] 71d6 = oo,

so regularization is necessary to even define the measure.

m A solution is to let 6, have distribution
o [ @), _1(e” )" db

for o > 0 and take the limit 0 — 0.
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Sequences {6,} in ALE(0,4) for varying ~v where ¢ = ¢”
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Sequences {6,} in ALE(0,4) for varying ~v where ¢ = ¢”
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Results for ALE(0,7)

Suppose n = | T /c], and ALE(0,n) is regularized by o.
m Stick Theorem:
There exist 19 and =g such that for all B > 1y and all ¢ < ¢,

®,(z) — e1fr(e12) in probability as ¢ — 0,

where f; is the map corresponding to a slit of capacity t at 1.
m Ball Theorem:
For every n € R, there exists a 1 such that for all 0 > c™

O, (z) = el

z in probability as ¢ — 0.
(Refining the values of 79 and ~; is work in progress.)
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Fluctuations about disk (7 < 1)

Set
Fo(z) = ¢ V2(dp(2) — e2).

Then Fp(z) — We(z) where
Wilz) = (1 —m)2Wi(2) + V2éi(2)

where &:(z) is complex space-time white noise on the circle,
analytically continued to the exterior unit disk.

(Note that if 7 > 1 would need |z| > e("=1* for this SPDE to
make sense — beginnings of a phase transition at |n| = 17)
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Conclusion

Implication of results

m Have family of random growth process for which we are able
to prove that, by varying a single parameter, scaling limits
transition from being:

m Deterministic to random:;
m Absolutely continuous to singular.

m Specifically, have shown:

m Existence of transition from disks to simple paths in ALE(0,7)
for fixed 7 as o varies.

m Existence of transition from disks to simple paths in ALE(0,7)
as 7 varies?

m Existence of phase transition in fluctuations in ALE(0,7) at
n=17
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