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Motivation

Introduction

m Sampling distribution over high-dimensional state-space has recently

attracted a lot of research efforts in computational statistics and
machine learning community...

m Applications (non-exhaustive)
Bayesian inference for high-dimensional models,
Bayesian inverse problems (e.g., image restoration and deblurring),

Aggregation of estimators and experts,
A Bayesian non-parametrics.

m Most of the sampling techniques known so far do not scale to
high-dimension... Challenges are numerous in this area...
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Logistic and probit regression

m Likelihood: Binary regression set-up in which the binary observations
(responses) {Y;}"_, are conditionally independent Bernoulli random
variables with success probability {F (87 X;)}"_ |, where

X, is a d dimensional vector of known covariates,
B is a d dimensional vector of unknown regression coefficient
F'is the link function.
m Two important special cases:
probit regression: F'is the standard normal cumulative distribution
function,
logistic regression: F' is the standard logistic cumulative distribution

function:
F(t) = /(1+¢")
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Bayes 101

m Bayesian analysis requires a prior distribution for the unknown
regression parameter

w(ﬂ)uexp<§ﬂ'zﬂlﬂ) or (8) exp< me)

m The posterior of 3 is up to a proportionality constant given by

n

~(BI(Y, X)) o< [[ F**(8X:)(1 - F(8' X)) x(B)

1=1
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Motivation

New challenges

Problem the number of predictor variables d is large (10* and up).
Examples

- text categorization,
- genomics and proteomics (gene expression analysis), ,

- other data mining tasks (recommendations, longitudinal clinical
trials, ..).
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Motivation

A daunting problem 7

m For Gaussian prior (ridge regression), the potential U is smooth
strongly convex.

m For Laplace prior (Lasso our fused Lasso) regression, the potential U
is non-smooth but still convex...

m A wealth of efficient optimisation algorithms are now available to
solve this problem in very high-dimension...

m (long term) Objective:

- Contribute to fill the gap between optimization and simulation.
Good optimization methods are in general a good source of
inspiration to design efficient sampler.

- Develop algorithms converging to the target distribution
polynomially with the dimension (more precise statements below)
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Framework

Framework

m Denote by 7 a target density w.r.t. the Lebesgue measure on R?,
known up to a normalisation factor

x> m(x) Ze V@) e VW |
Rd

Implicitly, d > 1.
m Assumption: U is L-smooth : twice continuously differentiable and
there exists a constant L such that for all z,y € RY,

IVU(z) - VU)] < Lilz -yl -
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(Overdamped) Langevin diffusion

m Langevin SDE:
dY, = —VU(Y;)dt + v2dB; ,

where (B;);>0 is a d-dimensional Brownian Motion.

m Notation: (P;);>o the Markov semigroup associated to the Langevin
diffusion:

Pi(z,A) =P(X; € A|Xo=2), zcRYAcBRY.

m 7(z) o< exp(—U(x)) is the unique invariant probability measure.
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Discretized Langevin diffusion

m Idea: Sample the diffusion paths, using the Euler-Maruyama (EM)
scheme:

Xit1 = Xk — et VU (X)) + /2Vk41 2141

where

- (Zk’)chI is i.i.d. N(O,Id)
- (Yk)k>1 is a sequence of stepsizes, which can either be held constant
or be chosen to decrease to 0 at a certain rate.

m Closely related to the (stochastic) gradient descent algorithm.
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Framework

Discretized Langevin diffusion: constant stepsize

m When the stepsize is held constant, i.e. v, = 7, then (X});>1 is an
homogeneous Markov chain with Markov kernel R

m Under some appropriate conditions, this Markov chain is irreducible,

positive recurrent ~+ unique invariant distribution 7. which does not
coincide with the target distribution 7.

m Questions:
m For a given precision € > 0, how should | choose the stepsize v > 0
and the number of iterations n so that : ||0,R" — 7||Tv <€
m Is there a way to choose the starting point z cleverly 7
m Auxiliary question: quantify the distance between 7, and 7.
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Discretized Langevin diffusion: decreasing stepsize

m When (7;)x>1 is nonincreasing and non constant, (Xj)x>1 is an
inhomogeneous Markov chain associated with the kernels (R, )i>1.

m Notation: % is the composition of Markov kernels

Q2 =R, R,...R,
With this notation, E.[f(X,)] = 0,Q% f.
m Questions:

- Convergence : is there a way to choose the step sizes so that
|0:Q5 — m||rv — 0 and if yes, what is the optimal way of choosing
the stepsizes ?...

- Optimal choice of simulation parameters : What is the number of
iterations required to reach a neighborhood of the target:

[10.Q% — 7||vv < e starting from a given point z

- Should we use fixed or decreasing step sizes ?
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Strongly convex potential

m Assumption: U is L-smooth and m-strongly convex

IVU(z) = VU(y)|* < Lz —y|”
(VU(z) = VU(y),z —y) > m|z -yl .

m Outline of the proof

Control in Wasserstein distance of the laws of the Langevin diffusion
and its discretized version.
Relating Wassertein distance result to total variation.

m Key technique: (Synchronous and Reflection) coupling !

LMS Durham Symposium, E. Moulines



Strongly log-concave distribution

Wasserstein distance

For /i, v two probabilities measure on R?, define

W, (u,v)= inf EY2||X-Y|?,
& (M V) (X,Y)HEIH(/I,,V) |:H H } ’

where TI(u, v) is the set of coupling of p,v: (X,Y) € II(u, v) if and
only if X ~ pand Y ~v.
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Wasserstein distance convergence

Theorem

Assume that U is L-smooth and m-strongly convex. Then, for all
T,y € R? and t > 0,

W2 (600Pt: 6,1/Pt) < e ™M H.%' - yH

The contraction depends only on the strong convexity constant.
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Synchronous Coupling

dy, = —VU(Y,)dt 2dB ¥
{ f (Yy)dt +v2dB; where (Yp, Yo) = (z,y).

dy, = -VU(Y;)dt 4+ v2dB; ,
This SDE has a unique strong solution (Y7, Yt)tzo- Since
a{Y; — ¥i} = — {VU(¥)) - VU(¥3) } at

The product rule for semimartingales imply
Y~ Y,

2 - ~
d| = —2(VU(Y;) - VU(¥;), Y - i ) dt .
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Synchronous Coupling

2 _
Y, -Y; :HYO*YO

Since U is strongly convex (VU (y) — VU(y' ),y —y') = m|ly — y'||> which

. Q/t ((VU(Y.) = VU(F)). Y ~ ) ds

implies
- 112 - 112 t -2
v - 2| < [|vo - % —2m/ Yo - Vi ds.
0
Gromwall inequality:
= 1|2 =~ ||? —2mt
i < s -5
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Strongly log-concave distribution

Assume that U is L-smooth and m-strongly convex. Then, for any
xR andt >0

- - d .
Em |:||Y; — ZL’*HZ} < Hl o x*Hzef%nt 4 E(l o efzmt) )

where
z* = argminU () .
z€ER?

The stationary distribution 7 satisfies

/ |z — 2*||* w(dz) < d/m.
Rd

The constant depends only linearly in the dimension d.
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Elements of proof

m The generator </ associated with (P;),>¢ is given, for all
f e C?(RY) and = € R? by:

o f(a) = — (VU (2), Vf(2)) + Af (@)

m Set V(z) = ||z — 2*|°. Since VU(2*) = 0 and using the strong
convexity,

GV (x) =2(—(VU(x) = VU(x"),z —z*) +d) <2(—mV(z) +d) .
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Elements of proof
Key relation
AV (x) <2(—mV(x) +d) .

Denote for all t > 0 and = € R? by

v(t,z) = PV (x) =E, [||Y,'5 — x*||2}
We have

t,x
‘%(aé %) _ PV (z) < —2mPV(z) + 2d = —2mu(t,z) + 2d ,

Gronwall inequality

%12 *12 —2m d —2m
o(t,2) = Eq [|Y; — "] < flo —a*P e + S (1 - e72m).
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Elements of proof

Set V(x) = || — 2*||*. By Jensen's inequality and for all ¢ > 0 and
t >0, we get

(V/\(’)—WPf(V/\c ) < w(PV Ac)

2 72mt d —2mt
= [rtasen{lio—a e+ La- e
< 7T(V Ac)e ™ 4 (1—e?™)d/m .

Taking the limit as t — +o0, we get 7(V Ac¢) < d/m.
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Strongly log-concave distribution

Contraction property of the discretization

Assume that U is L-smooth and m-strongly convex. Then,
(i) Let (yx)r>1 be a nonincreasing sequence with v, < 2/(m + L). For
all x,y € R and ¢ >n > 1,

4

1/2
Wa(6,Q",5,Qm") < {Hu — kye) |z — J} :

k=n

where k = 2mL/(m + L).
(i) Forany~ € (0,2/(m + L)), for all z € R% and n > 1,

1/2
Wa(8: RS, ) < (1= k)2 {l|o — o*|I° + 267 2d}
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Strongly log-concave distribution

A coupling proof (1)

m Objective compute bound for W5(5,Q7, )

m Since 7P, = 7 for all ¢ > 0, it suffices to get bounds of the
Wasserstein distance
W, (8,Q", Pr, )

where

k=1

- 0,Q%: law of the discretized diffusion
- wP,, = m, where (P;):>¢ is the semi group of the diffusion

n
m Idea ! synchronous coupling between the diffusion and the
interpolation of the Euler discretization.
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A coupling proof (Il)

Foralln>0and ¢t € [l[',,[',41) by

Yi =Yr, — [f VU(Y)ds +v2(B; - Br,)
th = ?[‘n — flfn VU(YFn)dS + \/i(Bt — B[‘n) s

with Yy ~ 7 and Yy = =
For all n >0,

1% (6.Pp,,, 7QY) < E[|Yr, — Yp, 2]

)

LMS Durham Symposium, E. Moulines



Strongly log-concave distribution

Explicit bound in Wasserstein distance for the Euler
discretisation

Assume that U is m-strongly convex and L-smooth. Let (yi)r>1 be a
nonincreasing sequence with v1 < 1/(m + L). Then

W3 (6:Q5,m) < ul(y) {lle = "I + d/m } + w2 (),

where u) (7) = 2 H(l — kyk) with s =mL/(m + L) and
k=1

n

ud (y) = 2% > {%QC(W,L,%) IT a- fm»)] :

i=1 k=i+1

Can be sharpened if U is three times continuously differentiable and there
exists L such that for all z,y € R?, || V?U(z) — V2U(»)|| <L ||z — vl
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Results

m Fixed step size For any € > 0, one may choose  so that
W, (0., RE,m) < e inp=0O(Vde") iterations
where x, is the unique maximum of 7
m Decreasing step size with v, = v1k~%, a € (0, 1),

W2 ((SghQ:;ﬂ') = \/&O(n*a) )

m These results are tight (check with U(x) = 1/2[/z[|?).
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Strongly log-concave distribution

From the Wasserstein distance to the TV

If U is strongly convex, then for all x,y € R4,

Iz I
Pz, ) = Py, )||ltv <1—-2P < —
1P ) = Paly: iy < { (4/m)(62mt_1)}

Use reflection coupling (Lindvall and Rogers, 1986)

LMS Durham Symposium, E. Moulines



Strongly log-concave distribution

Hints of Proof |

X, =-VU(X,)dt++2dB{

X, VU(Xy)dt + v2dB; - ) where e; = e(X;—Y})
dY; = -VU(Y:)dt +v2(Id —2eiel)dB

with Xg =z, Yo =y, e(z) = z/||z]| for z # 0 and e(0) = 0 otherwise.

Define the coupling time T, = inf{s > 0 | X, # Y,}. By construction

Xt = Yt for ¢ Z TC-

ot
Bl = / (Id —2e,el)dBY
0

is a d-dimensional Brownian motion, therefore (X;);>¢ and (Y});>¢ are
weak solutions to Langevin diffusions started at = and y, respectively.
Then by Lindvall's inequality, for all ¢ > 0 we have

[1P:(x, ) = Pey, - )llrv < P(Xe # Yy)

LMS Durham Symposium, E. Moulines
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Hints of Proof Il

For t < T. (before the coupling time)

d{X, - Y,} = —{VU(X,;) — VU(Y,)} dt 4+ 2v/2¢,dB} .

Using It6's formula
ot
1Xe = Y| = [lo =yl — / (VU(X) = VU(Y,), ¢) ds + 2V2B;
0

t
<z -yl —m/ |Xs — Y| ds + 2V2B;} .
0

and Gronwall's inequality implies

t
Xy = Yl < e ||z — y|| +2V2B} — m2v2 / Ble—m(1=9)qs
0

LMS Durham Symposium, E. Moulines



Strongly log-concave distribution

Hint of Proof Il

Therefore by integration by part, || X; — Y[ < U; where (U;)ic0,7.) is
the one-dimensional Ornstein-Uhlenbeck process defined by

8t

t L

Ut _ e—mz‘, HT o yH+2\/§/ e’m,(s—t)dBi _ e—m,t H‘L o yH+/ enl(s_t)dB;
0 0

Therefore, for all 2,y € R? and ¢ > 0, we get

0<s

P(T,>t) <P < mingt > 0) .

Finally the proof follows from the tail of the hitting time of
(one-dimensional) OU (see Borodin and Salminen,2002).

LMS Durham Symposium, E. Moulines



Strongly log-concave dist:
Convex and Super-exponential densities
Non-smooth potentials

Conclusions

From the Wasserstein distance to the TV (II)

[l —yl

Pi(x,-) — Pi(y, <
1P(x,-) = Pi(y,)llrv < V(@r/m) (e — 1)

Consequences:

(P;)1>0 converges exponentially fast to 7 in total variation at a rate
Cme_

A For all f: R? — R, measurable and sup |f| < 1, then the function
2+ P.f(x) is Lipschitz with Lipshitz constant smaller than

1/y/@x/m)(e@m 1) .
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Strongly log-concave distribution

Explicit bound in total variation

m Assume U is L-smooth and strongly convex. Let (yx)i>1 be a
nonincreasing sequence with v; < 1/(m + L).

m (Optional assumption) U € C*(R?) and there exists L such that for
all z,y € R%: ||V?U(z) — V2U(y)|| < Lz — y]|-

Then there exist sequences {a&”(y), n € N} and {'&%1)(7), n € N} such
that for all x € R% and n > 1,

16,25 = wllry < @D () {Jlz = "I + d/m} + @ (7).
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Constant step sizes

m For any € > 0, the minimal number of iterations to achieve
H(S.’I?Qg - 'H-HTV <e is

p = O(Vdlog(d)e ™" [log(e)]) -

m For a given stepsize v, letting p — +00, we get:

|7y — ml|rv < Cv [log(7)] -

LMS Durham Symposium, E. Moulines
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Convergence of the Euler discretization

Assumption

m There exist @ > 1, p > 0 and M, > 0 such that for all y € R,
[yl > M,:

(VU®),y) = pliyl”

m U is convex.
Results!.

m Iflim,, 4007 =0, and >, 7 = 400 then

hm [6:Q% — llrv = 0.
p—

m |7, — 7|y < C/7 (instead of v)

1Durmus, Moulines, Annals of Applied Probability, 2016
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Convex and Super-exponential densities

Target precision €: the convex case

m Setting U is convex. Constant stepsize

m Optimal stepsize v and number of iterations p to achieve e-accuracy
in TV:
H(S:I:Qg - 7‘-HTV <e.

d L
| 7[00 (2/10g(€ D) [0
p| Od) [ OElog’(e™) | O(L%)

m In the strongly convex case, v/d !

LMS Durham Symposium, E. Moulines



Convex and Super-exponential densities

Strongly convex outside a ball potential

m U is convex everywhere and strongly convex outside a ball, i.e. there
exist R > 0 and m > 0, such that for all z,y € R, ||z — y|| > R,

(VU(z) = VU(y),z —y) = mlz —y|* .

m Eberle, 2015 established that the convergence in the Wasserstein
distance does not depends on the dimension.

m Durmus, M. 2016 established that the convergence of the
semi-group in TV to 7 does not depends on the dimension but just
on R ~» new bounds which scale nicely in the dimension.

LMS Durham Symposium, E. Moulines



Convex and Super-exponential densities

Dependence on the dimension

m Setting U is convex and strongly convex outside a ball. Constant
stepsize
m Optimal stepsize v and number of iterations p to achieve e-accuracy
in TV:
HCEIQ{: - 7THTV S €.

v OW™) | O /logleh)) | O(L™2) | O(m) | ORT)

p | O(dlog(d)) | O(c*log’(c ™)) [ O(L?) [ O(m~?) | O(R®)

LMS Durham Symposium, E. Moulines
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How it works ?

M [ Jquantile at 95% & @;U;f:]m;ifj%
]
r {
0.8r 08
0.6r 0
041 0
0.2r 0
04 06 08 1 1z 14 16 18 04 06 08 1 12 14 16 18

Figure: Empirical distribution comparison between the Polya-Gamma Gibbs
Sampler and ULA. Left panel: constant step size v, = 71 for all k > 1, right
panel: decreasing step size v, = fylk’l/Q forall k>1
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Convex and Super-exponential densities

Data set Observations p | Covariates d
German credit 1000 25
Heart disease 270 14

Australian credit 690 35
Musk 476 167

Table: Dimension of the data sets

LMS Durham Symposium, E. Moulines




Convex and Super-exponential densities

0.985] =3 0.9 — ]
—_— - 0.97 ; |
008 E— . 058 - '
: 0.95 :
0.975 : .
uta ALA ua WALA
0.97 : 0.96 El El
J— 0.94 i T
0.96 : !
= i
i 0.92
0.95] — -
A MALA ua WALA

Figure: Marginal accuracy across all the dimensions. Upper left: German credit
data set. Upper right: Australian credit data set. Lower left: Heart disease
data set. Lower right: Musk data set
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Non-smooth potentials

Non-smooth potentials

The target distribution has a density 7 with respect to the Lebesgue
measure on R? of the form z — e~ V@) / [ e~V dy where U = f + g,
with f:R?Y — R and g : R? — (—o0, +00] are two lower bounded,
convex functions satisfying:

f is continuously differentiable and gradient Lipschitz with Lipschitz
constant Ly, i.e. for all z,y € R?

IVf(z) =Vl < Lyplle—yl

B g is lower semi-continuous and [, e 9 dy € (0,400).

LMS Durham Symposium, E. Moulines



Non-smooth potentials

Moreau-Yosida regularization

m Let h: R? — (—00, +oc] be a l.s.c convex function and A > 0. The
A-Moreau-Yosida envelope h* : R? — R and the proximal operator
prox; : R? — R associated with h are defined for all 2 € R? by

h*(z) = inf {h(y) + 2Nz - y||2} <h(z).

yER?

m For every 2 € R?, the minimum is achieved at a unique point,
proxj (), which is characterized by the inclusion

x — proxp (z) € yoh(proxp (z)) .

m The Moreau-Yosida envelope is a regularized version of g, which
approximates g from below.

LMS Durham Symposium, E. Moulines



Non-smooth potentials

Properties of proximal operators

m As )\ | 0, converges h* converges pointwise h, i.e. for all 2 € R?,

h*(z) Th(z), asAlO.

m The function h* is convex and continuously differentiable

Vh*(z) = A~ (z — proxj (x)) .

m The proximal operator is a monotone operator, for all 2,y € RY,

<proxﬁ(;1:) — proxp (y), & — y) >0,

which implies that the Moreau-Yosida envelope is L-smooth:
[V () — VM y)|| < A7H @ — y]|, for all z,y € RY.

LMS Durham Symposium, E. Moulines



Non-smooth potentials

MY regularized potential

m If g is not differentiable, but the proximal operator associated with ¢
is available, its \-Moreau Yosida envelope ¢* can be considered.

m This leads to the approximation of the potential U* : R — R
defined for all 2 € R? by

UMNa) = f(z) + ™) -

Theorem (Durmus, M., Pereira, 2016, SIAM J. Imaging Sciences)
Under (H), for all A > 0, 0 < fRd e*UA(y)dy < +00.
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Non-smooth potentials

Some approximation results

Assume (H).
Then, limy_¢ || — 7||Tv = 0.

Assume in addition that g is Lipschitz. Then for all A > 0,

2
I7* = wllrv < Mgl -

LMS Durham Symposium, E. Moulines



Non-smooth potentials

The MYULA algorithm-I

Given a regularization parameter A > 0 and a sequence of stepsizes
{Yk, k € N*}, the algorithm produces the Markov chain { X}, k € N}:
for all £ > 0,

XM, = XM {(TFO + AL = proxh (X))} +y/ 23t Zis |

where {Z;,, k € N*} is a sequence of i.i.d. d-dimensional standard
Gaussian random variables.
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Non-smooth potentials

The MYULA algorithm-II

m The ULA target the smoothed distribution 7.

m To compute the expectation of a function & : R — R under 7 from
{XM 0 <k <n}, an importance sampling step is used to correct
the regularization.

m This step amounts to approximate [, h(x)7(z)dz by the weighted
sum

n n -1
. A yM A yM
S»},; = E wk‘,nh(Xk‘,) ) with Wen = { E ’\//keg (X )} Wk‘eg (X&) )
k=0 k=0

where for all 2 € R?

@) = g\ @) —g(w) = g(prox) (x))—g(z)+(22) " ||z — prox) ()|
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Non-smooth potentials

Image deconvolution

m Objective recover an original image € R™ from a blurred and noisy
observed image y € R" related to by the linear observation model
y = Hx + w, where H is a linear operator representing the blur
point spread function and w is a Gaussian vector with zero-mean
and covariance matrix o21I,,.

m This inverse problem is usually ill-posed or ill-conditioned: exploits
prior knowledge about .

m One of the most widely used image prior for deconvolution problems
is the improper total-variation norm prior, 7(x) x exp (—a||Vaz||1),
where V; denotes the discrete gradient operator that computes the
vertical and horizontal differences between neighbour pixels.

m(xly) o< exp [~|ly — He[* /20 — o Va]].
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(a)

Figure: (a) Original Boat image (256 x 256 pixels),

MAP estimate.

(b)

(c)
(b) Blurred image, (c)

[m] = =
LMS Durham Symposium, E. Moulines




Non-smooth potentials

Credibility intervals

150

(a) (b) (c)

Figure: (a) Pixel-wise 90% credibility intervals computed with proximal MALA
(computing time 35 hours), (b) Approximate intervals estimated with MYULA
using A = 0.01 (computing time 3.5 hours), (c) Approximate intervals
estimated with MYULA using A = 0.1 (computing time 20 minutes).
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Conclusions

Conclusion

m Our goal is to avoid a Metropolis-Hastings accept-reject step We
explore the efficiency and applicability of DMCMC to
high-dimensional problems arising in a Bayesian framework, without
performing the Metropolis-Hastings correction step.

m When classical (or adaptive) MCMC fails (for example, due to
computational time restrictions or inability to select good proposals),
we show that diffusion MCMC is a viable alternative which requires
little input from the user and can be computationally more efficient.

LMS Durham Symposium, E. Moulines



Conclusions
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Durmus, Alain; Moulines, Eric Quantitative bounds of convergence
for geometrically ergodic Markov chain in the Wasserstein distance
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Durmus, Alain; Moulines, Eric, Non-asymptotic convergence analysis
for the Unadjusted Langevin Algorithm Accepted for publication in
Ann. Appl. Prob. )

Durmus, Alain; Simsleki, Umut; Moulines, Eric; Badeau, Roland,
Stochastic Gradient Richardson-Romberg Markov Chain Monte
Carlo, NIPS, 2016

Sampling from a log-concave distribution with compact support with
proximal Langevin Monte Carlo Brosse, N., Durmus A., Moulines E.,
Pereyra, M., COLT 2017 Efficient Bayesian computation by proximal
Markov chain Monte Carlo: when Langevin meets Moreau, SIAM J.
Imaging Sciences.

-+ more recent preprints (see Arxiv)
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