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Introduction

Sampling distribution over high-dimensional state-space has recently
attracted a lot of research efforts in computational statistics and
machine learning community...

Applications (non-exhaustive)

1 Bayesian inference for high-dimensional models,
2 Bayesian inverse problems (e.g., image restoration and deblurring),
3 Aggregation of estimators and experts,
4 Bayesian non-parametrics.

Most of the sampling techniques known so far do not scale to
high-dimension... Challenges are numerous in this area...
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Logistic and probit regression

Likelihood: Binary regression set-up in which the binary observations
(responses) {Yi}ni=1 are conditionally independent Bernoulli random
variables with success probability {F (βββTXi)}ni=1, where

1 Xi is a d dimensional vector of known covariates,
2 βββ is a d dimensional vector of unknown regression coefficient
3 F is the link function.

Two important special cases:

1 probit regression: F is the standard normal cumulative distribution
function,

2 logistic regression: F is the standard logistic cumulative distribution
function:

F (t) = et/(1 + et)
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Bayes 101

Bayesian analysis requires a prior distribution for the unknown
regression parameter

π(βββ) ∝ exp

(
−1

2
βββ′Σ−1

βββ βββ

)
or π(βββ) = exp

(
−

d∑
i=1

αi|βi|

)
.

The posterior of βββ is up to a proportionality constant given by

π(βββ|(Y,X)) ∝
n∏
i=1

FYi(β′Xi)(1− F (β′Xi))
1−Yiπ(βββ)

LMS Durham Symposium, E. Moulines



Motivation
Framework

Strongly log-concave distribution
Convex and Super-exponential densities

Non-smooth potentials
Conclusions

New challenges

Problem the number of predictor variables d is large (104 and up).
Examples

- text categorization,

- genomics and proteomics (gene expression analysis), ,

- other data mining tasks (recommendations, longitudinal clinical
trials, ..).
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A daunting problem ?

For Gaussian prior (ridge regression), the potential U is smooth
strongly convex.

For Laplace prior (Lasso our fused Lasso) regression, the potential U
is non-smooth but still convex...

A wealth of efficient optimisation algorithms are now available to
solve this problem in very high-dimension...

(long term) Objective:

- Contribute to fill the gap between optimization and simulation.
Good optimization methods are in general a good source of
inspiration to design efficient sampler.

- Develop algorithms converging to the target distribution
polynomially with the dimension (more precise statements below)
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Framework

Denote by π a target density w.r.t. the Lebesgue measure on Rd,
known up to a normalisation factor

x 7→ π(x)
def
= e−U(x)/

∫
Rd

e−U(y)dy ,

Implicitly, d� 1.

Assumption: U is L-smooth : twice continuously differentiable and
there exists a constant L such that for all x, y ∈ Rd,

‖∇U(x)−∇U(y)‖ ≤ L‖x− y‖ .

LMS Durham Symposium, E. Moulines
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(Overdamped) Langevin diffusion

Langevin SDE:

dYt = −∇U(Yt)dt+
√

2dBt ,

where (Bt)t≥0 is a d-dimensional Brownian Motion.

Notation: (Pt)t≥0 the Markov semigroup associated to the Langevin
diffusion:

Pt(x,A) = P(Xt ∈ A|X0 = x) , x ∈ Rd, A ∈ B(Rd) .

π(x) ∝ exp(−U(x)) is the unique invariant probability measure.
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Discretized Langevin diffusion

Idea: Sample the diffusion paths, using the Euler-Maruyama (EM)
scheme:

Xk+1 = Xk − γk+1∇U(Xk) +
√

2γk+1Zk+1

where

- (Zk)k≥1 is i.i.d. N (0, Id)
- (γk)k≥1 is a sequence of stepsizes, which can either be held constant

or be chosen to decrease to 0 at a certain rate.

Closely related to the (stochastic) gradient descent algorithm.
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Discretized Langevin diffusion: constant stepsize

When the stepsize is held constant, i.e. γk = γ, then (Xk)k≥1 is an
homogeneous Markov chain with Markov kernel Rγ

Under some appropriate conditions, this Markov chain is irreducible,
positive recurrent ; unique invariant distribution πγ which does not
coincide with the target distribution π.

Questions:

For a given precision ε > 0, how should I choose the stepsize γ > 0
and the number of iterations n so that : ‖δxRnγ − π‖TV ≤ ε
Is there a way to choose the starting point x cleverly ?
Auxiliary question: quantify the distance between πγ and π.

LMS Durham Symposium, E. Moulines
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Discretized Langevin diffusion: decreasing stepsize

When (γk)k≥1 is nonincreasing and non constant, (Xk)k≥1 is an
inhomogeneous Markov chain associated with the kernels (Rγk)k≥1.

Notation: Qpγ is the composition of Markov kernels

Qpγ = Rγ1Rγ2 . . . Rγp

With this notation, Ex[f(Xp)] = δxQ
p
γf .

Questions:

- Convergence : is there a way to choose the step sizes so that
‖δxQpγ − π‖TV → 0 and if yes, what is the optimal way of choosing
the stepsizes ?...

- Optimal choice of simulation parameters : What is the number of
iterations required to reach a neighborhood of the target:
‖δxQpγ − π‖TV ≤ ε starting from a given point x

- Should we use fixed or decreasing step sizes ?
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Strongly convex potential

Assumption: U is L-smooth and m-strongly convex

‖∇U(x)−∇U(y)‖2 ≤ L ‖x− y‖2

〈∇U(x)−∇U(y), x− y〉 ≥ m ‖x− y‖2 .

Outline of the proof

1 Control in Wasserstein distance of the laws of the Langevin diffusion
and its discretized version.

2 Relating Wassertein distance result to total variation.

Key technique: (Synchronous and Reflection) coupling !

LMS Durham Symposium, E. Moulines
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Wasserstein distance

Definition

For µ, ν two probabilities measure on Rd, define

W2 (µ, ν) = inf
(X,Y )∈Π(µ,ν)

E1/2
[
‖X − Y ‖2

]
,

where Π(µ, ν) is the set of coupling of µ, ν: (X,Y ) ∈ Π(µ, ν) if and
only if X ∼ µ and Y ∼ ν.

LMS Durham Symposium, E. Moulines
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Wasserstein distance convergence

Theorem

Assume that U is L-smooth and m-strongly convex. Then, for all
x, y ∈ Rd and t ≥ 0,

W2 (δxPt, δyPt) ≤ e−mt ‖x− y‖

The contraction depends only on the strong convexity constant.

LMS Durham Symposium, E. Moulines
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Synchronous Coupling

{
dYt = −∇U(Yt)dt+

√
2dBt ,

dỸt = −∇U(Ỹt)dt+
√

2dBt ,
where (Y0, Ỹ0) = (x, y).

This SDE has a unique strong solution (Yt, Ỹt)t≥0. Since

d{Yt − Ỹt} = −
{
∇U(Yt)−∇U(Ỹt)

}
dt

The product rule for semimartingales imply

d
∥∥∥Yt − Ỹt∥∥∥2

= −2
〈
∇U(Yt)−∇U(Ỹt), Yt − Ỹt

〉
dt .

LMS Durham Symposium, E. Moulines
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Synchronous Coupling

∥∥∥Yt − Ỹt∥∥∥2 =
∥∥∥Y0 − Ỹ0

∥∥∥2 − 2

∫ t

0

〈
(∇U(Ys)−∇U(Ỹs)), Ys − Ỹs

〉
ds ,

Since U is strongly convex 〈∇U(y)−∇U(y′), y − y′〉 ≥ m ‖y − y′‖2 which
implies ∥∥∥Yt − Ỹt∥∥∥2 ≤ ∥∥∥Y0 − Ỹ0

∥∥∥2 − 2m

∫ t

0

∥∥∥Ys − Ỹs∥∥∥2 ds .
Grömwall inequality: ∥∥∥Yt − Ỹt∥∥∥2 ≤ ∥∥∥Y0 − Ỹ0

∥∥∥2 e−2mt

LMS Durham Symposium, E. Moulines
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Theorem

Assume that U is L-smooth and m-strongly convex. Then, for any
x ∈ Rd and t ≥ 0

Ex
[
‖Yt − x?‖

2
]
≤ ‖x− x?‖2 e−2mt +

d

m
(1− e−2mt) .

where
x? = arg min

x∈Rd
U(x) .

The stationary distribution π satisfies∫
Rd
‖x− x?‖2 π(dx) ≤ d/m.

The constant depends only linearly in the dimension d.

LMS Durham Symposium, E. Moulines
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Elements of proof

The generator A associated with (Pt)t≥0 is given, for all
f ∈ C2(Rd) and x ∈ Rd by:

A f(x) = −〈∇U(x),∇f(x)〉+ ∆f(x) .

Set V (x) = ‖x− x?‖2. Since ∇U(x?) = 0 and using the strong
convexity,

A V (x) = 2 (−〈∇U(x)−∇U(x?), x− x?〉+ d) ≤ 2 (−mV (x) + d) .

LMS Durham Symposium, E. Moulines
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Elements of proof

Key relation
A V (x) ≤ 2 (−mV (x) + d) .

Denote for all t ≥ 0 and x ∈ Rd by

v(t, x) = PtV (x) = Ex
[
‖Yt − x?‖

2
]

We have

∂v(t, x)

∂t
= PtA V (x) ≤ −2mPtV (x) + 2d = −2mv(t, x) + 2d ,

Grönwall inequality

v(t, x) = Ex
[
‖Yt − x?‖

2
]
≤ ‖x− x?‖2 e−2mt +

d

m
(1− e−2mt) .
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Elements of proof

Set V (x) = ‖x− x?‖2. By Jensen’s inequality and for all c > 0 and
t > 0, we get

π(V ∧ c) = πPt(V ∧ c) ≤ π(PtV ∧ c)

=

∫
π(dx) c ∧

{
‖x− x∗‖2e−2mt +

d

m
(1− e−2mt)

}
≤ π(V ∧ c)e−2mt + (1− e−2mt)d/m .

Taking the limit as t→ +∞, we get π(V ∧ c) ≤ d/m.

LMS Durham Symposium, E. Moulines



Motivation
Framework

Strongly log-concave distribution
Convex and Super-exponential densities

Non-smooth potentials
Conclusions

Contraction property of the discretization

Theorem

Assume that U is L-smooth and m-strongly convex. Then,

(i) Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2/(m+ L). For
all x, y ∈ Rd and ` ≥ n ≥ 1,

W2(δxQ
n,`
γ , δyQ

n,`
γ ) ≤

{∏̀
k=n

(1− κγk) ‖x− y‖2
}1/2

.

where κ = 2mL/(m+ L).

(ii) For any γ ∈ (0, 2/(m+ L)), for all x ∈ Rd and n ≥ 1,

W2(δxR
n
γ , πγ) ≤ (1− κγ)n/2

{
‖x− x?‖2 + 2κ−1d

}1/2

.
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A coupling proof (I)

Objective compute bound for W2(δxQ
n
γ , π)

Since πPt = π for all t ≥ 0, it suffices to get bounds of the
Wasserstein distance

W2

(
δxQ

n
γ , πPΓn

)
where

Γn =

n∑
k=1

γk .

- δxQ
n
γ : law of the discretized diffusion

- πPγn = π, where (Pt)t≥0 is the semi group of the diffusion

Idea ! synchronous coupling between the diffusion and the
interpolation of the Euler discretization.

LMS Durham Symposium, E. Moulines
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A coupling proof (II)

For all n ≥ 0 and t ∈ [Γn,Γn+1) by{
Yt = YΓn −

∫ t
Γn
∇U(Ys)ds+

√
2(Bt −BΓn)

Ȳt = ȲΓn −
∫ t

Γn
∇U(ȲΓn)ds+

√
2(Bt −BΓn) ,

with Y0 ∼ π and Ȳ0 = x
For all n ≥ 0,

W 2
2

(
δxPΓn , πQ

n
γ

)
≤ E[‖YΓn − ȲΓn‖2] ,

LMS Durham Symposium, E. Moulines
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Explicit bound in Wasserstein distance for the Euler
discretisation

Theorem

Assume that U is m-strongly convex and L-smooth. Let (γk)k≥1 be a
nonincreasing sequence with γ1 ≤ 1/(m+ L). Then

W 2
2 (δxQ

n
γ , π) ≤ u(1)

n (γ)
{
‖x− x?‖2 + d/m

}
+ u(2)

n (γ) ,

where u(1)
n (γ) = 2

n∏
k=1

(1− κγk) with κ = mL/(m+ L) and

u(2)
n (γ) = 2

dL2

m

n∑
i=1

[
γ2
i c(m,L, γi)

n∏
k=i+1

(1− κγk)

]
.

Can be sharpened if U is three times continuously differentiable and there
exists L̃ such that for all x, y ∈ Rd,

∥∥∇2U(x)−∇2U(y)
∥∥ ≤ L̃ ‖x− y‖.

LMS Durham Symposium, E. Moulines
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Results

Fixed step size For any ε > 0, one may choose γ so that

W2

(
δx∗R

p
γ , π
)
≤ ε in p = O(

√
dε−1) iterations

where x∗ is the unique maximum of π

Decreasing step size with γk = γ1k
−α, α ∈ (0, 1),

W2

(
δx∗Q

n
γ , π

)
=
√
dO(n−α) .

These results are tight (check with U(x) = 1/2‖x‖2).

LMS Durham Symposium, E. Moulines
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From the Wasserstein distance to the TV

Theorem

If U is strongly convex, then for all x, y ∈ Rd,

‖Pt(x, ·)− Pt(y, ·)‖TV ≤ 1− 2Φ

{
− ‖x− y‖√

(4/m)(e2mt − 1)

}

Use reflection coupling (Lindvall and Rogers, 1986)

LMS Durham Symposium, E. Moulines
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Hints of Proof I

{
dXt = −∇U(Xt)dt+

√
2dBdt

dYt = −∇U(Yt)dt+
√

2(Id−2ete
T
t )dBdt ,

where et = e(Xt−Yt)

with X0 = x, Y0 = y, e(z) = z/ ‖z‖ for z 6= 0 and e(0) = 0 otherwise.
Define the coupling time Tc = inf{s ≥ 0 | Xs 6= Ys}. By construction
Xt = Yt for t ≥ Tc.

B̃dt =

∫ t

0

(Id−2ese
T
s )dBds

is a d-dimensional Brownian motion, therefore (Xt)t≥0 and (Yt)t≥0 are
weak solutions to Langevin diffusions started at x and y, respectively.
Then by Lindvall’s inequality, for all t > 0 we have

‖Pt(x, ·)− Pt(y, ·)‖TV ≤ P (Xt 6= Yt) .

LMS Durham Symposium, E. Moulines
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Hints of Proof II

For t < Tc (before the coupling time)

d{Xt −Yt} = −{∇U(Xt)−∇U(Yt)}dt+ 2
√

2etdB1
t .

Using Itô’s formula

‖Xt −Yt‖ = ‖x− y‖ −
∫ t

0

〈∇U(Xs)−∇U(Ys), es〉ds+ 2
√

2B1
t

≤ ‖x− y‖ −m
∫ t

0

‖Xs −Ys‖ ds+ 2
√

2B1
t .

and Grönwall’s inequality implies

‖Xt −Yt‖ ≤ e−mt ‖x− y‖+ 2
√

2B1
t −m2

√
2

∫ t

0

B1
se
−m(t−s)ds .

LMS Durham Symposium, E. Moulines
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Hint of Proof III

Therefore by integration by part, ‖Xt −Yt‖ ≤ Ut where (Ut)t∈(0,Tc) is
the one-dimensional Ornstein-Uhlenbeck process defined by

Ut = e−mt ‖x− y‖+2
√

2

∫ t

0

em(s−t)dB1
s = e−mt ‖x− y‖+

∫ 8t

0

em(s−t)dB̃1
s

Therefore, for all x, y ∈ Rd and t ≥ 0, we get

P(Tc > t) ≤ P
(

min
0≤s≤t

Ut > 0

)
.

Finally the proof follows from the tail of the hitting time of
(one-dimensional) OU (see Borodin and Salminen,2002).

LMS Durham Symposium, E. Moulines
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From the Wasserstein distance to the TV (II)

‖Pt(x, ·)− Pt(y, ·)‖TV ≤
‖x− y‖√

(2π/m)(e2mt − 1)

Consequences:

1 (Pt)t≥0 converges exponentially fast to π in total variation at a rate
e−mt.

2 For all f : Rd → R, measurable and sup |f | ≤ 1, then the function
x 7→ Ptf(x) is Lipschitz with Lipshitz constant smaller than

1/
√

(2π/m)(e2mt − 1) .

LMS Durham Symposium, E. Moulines
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Explicit bound in total variation

Theorem

Assume U is L-smooth and strongly convex. Let (γk)k≥1 be a
nonincreasing sequence with γ1 ≤ 1/(m+ L).

(Optional assumption) U ∈ C3(Rd) and there exists L̃ such that for
all x, y ∈ Rd:

∥∥∇2U(x)−∇2U(y)
∥∥ ≤ L̃ ‖x− y‖.

Then there exist sequences {ũ(1)
n (γ), n ∈ N} and {ũ(1)

n (γ), n ∈ N} such
that for all x ∈ Rd and n ≥ 1,

‖δxQnγ − π‖TV ≤ ũ(1)
n (γ)

{
‖x− x?‖2 + d/m

}
+ ũ(2)

n (γ) .
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Constant step sizes

For any ε > 0, the minimal number of iterations to achieve
‖δxQpγ − π‖TV ≤ ε is

p = O(
√
d log(d)ε−1 |log(ε)|) .

For a given stepsize γ, letting p→ +∞, we get:

‖πγ − π‖TV ≤ Cγ |log(γ)| .

LMS Durham Symposium, E. Moulines
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Convergence of the Euler discretization

Assumption

There exist α > 1, ρ > 0 and Mρ ≥ 0 such that for all y ∈ Rd,
‖y‖ ≥Mρ:

〈∇U(y), y〉 ≥ ρ ‖y‖α .

U is convex.

Results1.

If limγk→+∞ γk = 0, and
∑
k γk = +∞ then

lim
p→+∞

‖δxQpγ − π‖TV = 0 .

‖πγ − π‖TV ≤ C
√
γ (instead of γ)

1Durmus, Moulines, Annals of Applied Probability, 2016
LMS Durham Symposium, E. Moulines
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Target precision ε: the convex case

Setting U is convex. Constant stepsize

Optimal stepsize γ and number of iterations p to achieve ε-accuracy
in TV:

‖δxQpγ − π‖TV ≤ ε .

d ε L
γ O(d−3) O(ε2/ log(ε−1)) O(L−2)

p O(d5) O(ε−2 log2(ε−1)) O(L2)

In the strongly convex case,
√
d !

LMS Durham Symposium, E. Moulines
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Strongly convex outside a ball potential

U is convex everywhere and strongly convex outside a ball, i.e. there
exist R ≥ 0 and m > 0, such that for all x, y ∈ Rd, ‖x− y‖ ≥ R,

〈∇U(x)−∇U(y), x− y〉 ≥ m ‖x− y‖2 .

Eberle, 2015 established that the convergence in the Wasserstein
distance does not depends on the dimension.

Durmus, M. 2016 established that the convergence of the
semi-group in TV to π does not depends on the dimension but just
on R ; new bounds which scale nicely in the dimension.
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Dependence on the dimension

Setting U is convex and strongly convex outside a ball. Constant
stepsize

Optimal stepsize γ and number of iterations p to achieve ε-accuracy
in TV:

‖δxQpγ − π‖TV ≤ ε .

d ε L m R
γ O(d−1) O(ε2/ log(ε−1)) O(L−2) O(m) O(R−4)

p O(d log(d)) O(ε−2 log2(ε−1)) O(L2) O(m−2) O(R8)

LMS Durham Symposium, E. Moulines
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How it works ?
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Figure: Empirical distribution comparison between the Polya-Gamma Gibbs
Sampler and ULA. Left panel: constant step size γk = γ1 for all k ≥ 1; right
panel: decreasing step size γk = γ1k

−1/2 for all k ≥ 1
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Data set Observations p Covariates d
German credit 1000 25
Heart disease 270 14

Australian credit 690 35
Musk 476 167

Table: Dimension of the data sets
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Figure: Marginal accuracy across all the dimensions. Upper left: German credit
data set. Upper right: Australian credit data set. Lower left: Heart disease
data set. Lower right: Musk data set
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Non-smooth potentials

The target distribution has a density π with respect to the Lebesgue
measure on Rd of the form x 7→ e−U(x)/

∫
Rd e−U(y)dy where U = f + g,

with f : Rd → R and g : Rd → (−∞,+∞] are two lower bounded,
convex functions satisfying:

1 f is continuously differentiable and gradient Lipschitz with Lipschitz
constant Lf , i.e. for all x, y ∈ Rd

‖∇f(x)−∇f(y)‖ ≤ Lf ‖x− y‖ .

2 g is lower semi-continuous and
∫
Rd e−g(y)dy ∈ (0,+∞).
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Moreau-Yosida regularization

Let h : Rd → (−∞,+∞] be a l.s.c convex function and λ > 0. The
λ-Moreau-Yosida envelope hλ : Rd → R and the proximal operator
proxλh : Rd → Rd associated with h are defined for all x ∈ Rd by

hλ(x) = inf
y∈Rd

{
h(y) + (2λ)−1 ‖x− y‖2

}
≤ h(x) .

For every x ∈ Rd, the minimum is achieved at a unique point,
proxλh(x), which is characterized by the inclusion

x− proxλh(x) ∈ γ∂h(proxλh(x)) .

The Moreau-Yosida envelope is a regularized version of g, which
approximates g from below.
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Properties of proximal operators

As λ ↓ 0, converges hλ converges pointwise h, i.e. for all x ∈ Rd,

hλ(x) ↑ h(x) , as λ ↓ 0 .

The function hλ is convex and continuously differentiable

∇hλ(x) = λ−1(x− proxλh(x)) .

The proximal operator is a monotone operator, for all x, y ∈ Rd,〈
proxλh(x)− proxλh(y), x− y

〉
≥ 0 ,

which implies that the Moreau-Yosida envelope is L-smooth:∥∥∇hλ(x)−∇hλ(y)
∥∥ ≤ λ−1 ‖x− y‖, for all x, y ∈ Rd.
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MY regularized potential

If g is not differentiable, but the proximal operator associated with g
is available, its λ-Moreau Yosida envelope gλ can be considered.

This leads to the approximation of the potential Uλ : Rd → R
defined for all x ∈ Rd by

Uλ(x) = f(x) + gλ(x) .

Theorem (Durmus, M., Pereira, 2016, SIAM J. Imaging Sciences)

Under (H), for all λ > 0, 0 <
∫
Rd e−U

λ(y)dy < +∞.
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Some approximation results

Theorem

Assume (H).

1 Then, limλ→0 ‖πλ − π‖TV = 0.

2 Assume in addition that g is Lipschitz. Then for all λ > 0,

‖πλ − π‖TV ≤ λ ‖g‖2Lip .
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The MYULA algorithm-I

Given a regularization parameter λ > 0 and a sequence of stepsizes
{γk, k ∈ N∗}, the algorithm produces the Markov chain {XM

k , k ∈ N}:
for all k ≥ 0,

XM
k+1 = XM

k −γk+1

{
∇f(XM

k ) + λ−1(XM
k − proxλg (XM

k ))
}

+
√

2γk+1Zk+1 ,

where {Zk, k ∈ N∗} is a sequence of i.i.d. d-dimensional standard
Gaussian random variables.
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The MYULA algorithm-II

The ULA target the smoothed distribution πλ.

To compute the expectation of a function h : Rd → R under π from
{XM

k ; 0 ≤ k ≤ n}, an importance sampling step is used to correct
the regularization.

This step amounts to approximate
∫
Rd h(x)π(x)dx by the weighted

sum

Shn =

n∑
k=0

ωk,nh(Xk) , with ωk,n =

{
n∑
k=0

γkeḡ
λ(XM

k )

}−1

γkeḡ
λ(XM

k ) ,

where for all x ∈ Rd

ḡλ(x) = gλ(x)−g(x) = g(proxλg (x))−g(x)+(2λ)−1
∥∥x− proxλg (x)

∥∥2
.
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Image deconvolution

Objective recover an original image x ∈ Rn from a blurred and noisy
observed image y ∈ Rn related to x by the linear observation model
y = Hx + w, where H is a linear operator representing the blur
point spread function and w is a Gaussian vector with zero-mean
and covariance matrix σ2In.

This inverse problem is usually ill-posed or ill-conditioned: exploits
prior knowledge about x.

One of the most widely used image prior for deconvolution problems
is the improper total-variation norm prior, π(x) ∝ exp (−α‖∇dx‖1),
where ∇d denotes the discrete gradient operator that computes the
vertical and horizontal differences between neighbour pixels.

π(x|y) ∝ exp
[
−‖y −Hx‖2/2σ2 − α‖∇dx‖1

]
.
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(a) (b) (c)

Figure: (a) Original Boat image (256× 256 pixels), (b) Blurred image, (c)
MAP estimate.
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Credibility intervals

(a) (b) (c)

Figure: (a) Pixel-wise 90% credibility intervals computed with proximal MALA
(computing time 35 hours), (b) Approximate intervals estimated with MYULA
using λ = 0.01 (computing time 3.5 hours), (c) Approximate intervals
estimated with MYULA using λ = 0.1 (computing time 20 minutes).
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Conclusion

Our goal is to avoid a Metropolis-Hastings accept-reject step We
explore the efficiency and applicability of DMCMC to
high-dimensional problems arising in a Bayesian framework, without
performing the Metropolis-Hastings correction step.

When classical (or adaptive) MCMC fails (for example, due to
computational time restrictions or inability to select good proposals),
we show that diffusion MCMC is a viable alternative which requires
little input from the user and can be computationally more efficient.
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