
Linear time perfect simulation for Markov random
�elds

Mark Huber

Fletcher Jones Foundation Associate Professor of Mathematics and

Statistics and George R. Roberts Fellow

Chair of the Department of Mathematical Sciences

Claremont McKenna College

27 July, 2017



The goal

Exactly sample in linear expected time from

high dimensional distributions where

dimensions interact weakly and locally



Example: The Ising model
I Start with a graph G = (V,E)

I Each node labeled either ↑ or ↓
I Are endpoints of an edge labeled the same way?

I Give each edge with di�erent labels a weight factor exp(−β)

I Multiply weight factors to get the overall weight

↑ ↑ ↑

↑ ↑ ↑

↑ ↑ ↑

↓

↓ ↓

↓ ↓ ↓

w(x) = exp(−5β)



The Big Picture

I Coupling from the past is not the only perfect

simulation protocol

I One such is Partially Recursive Acceptance

Rejection

I Using Cluster PRAR, get a linear time algorithm

on nontrivial class of Markov random �elds



Acceptance Rejection



Example: The Ising model mathematically
De�ne weight function

w(x) =
∏

{i,j}∈E

exp(−β1(x(i) = x(j)))

It needs to be normalized to be a probability distribution

P(X = x) =
w(x)

Zβ
=

w(x)∑
y∈{0,1}V w(y)

Note that when β ≥ 0
w(x) ≤ 1



Using the red edges for AR
For given X, say that edge {i, j} is red if Xi 6= Xj

↑ ↑ ↑

↑ ↑ ↑

↑ ↑ ↑

↓

↓ ↓

↓ ↓ ↓

w(x) =
5∏
i=1

exp(−β)

For each red edge in a randomly drawn sample, have a exp(−β)
chance of accepting



AR in block form
Green blocks are recursive calls

For all nodes v, draw X(v)← Unif({0, 1})

Draw Ye for all edges from v to V \ {v}

Check if all red edges have Ye ≤ exp(−β)

Return X Draw X(V ) recursively

SUCCEED FAIL



Acceptance/Rejection

Edge_based_AR

1. Draw each node Xi iid Unif({0, 1})
{i, j} red if Xi 6= Xj

2. For each edge {i, j}
draw Yi ∼ Unif([0, 1])

3. If for all red edges Ye ≤ exp(−β),
then return X and quit

4. Else,
draw X ← Edge_based_AR
return X and quit

.23

.45 .33

.07

.83

.92

↑ ↑ ↑

↑ ↑ ↑

↑ ↑ ↑

↓

↓ ↓

↓ ↓ ↓



Acceptance/Rejection too slow

I On average, half the edges will be red

I Chance Yi works for all red edges ≈ exp(−β#(E)/2)

I Number of times Edge_based_AR calls itself on average
≈ exp(β#(E)/2)



Recursive AR



Recursive AR
Subdivide the problem

I Say {v} and V \ {v}
I Generate X({v}) and X(V \ {v}) separately

I For AR only have to worry about edges that cross the cut



Recursive AR
Subdivide the problem

I Say {v} and V \ {v}
I Generate X({v}) and X(V \ {v}) separately

I For AR only have to worry about edges that cross the cut

.92

↑ ↑ ↑

↑ ↑ ↑

↑ ↑ ↑

↓

↓ ↓

↓ ↓ ↓



In block form
Green blocks are recursive calls

Draw X(v)← Unif({0, 1})

Draw X(V \ {v}) recursively

Draw Ye for all edges from v to V \ {v}

Check if all red edges have Ye ≤ exp(−β)

Return X Draw X(V ) recursively

SUCCEED FAIL



First key insight

Remark
I If Y{v,w} ≤ exp(−β) for all w neighboring v, then we don't

need to know what X(V \ {v}) is!

I We can �x X(v), and then �nd X(V \ {v}) recursively.



In block form
Draw X(v)← Unif({0, 1})

Draw X(V \ {v}) recursively

Draw Ye for all edges from v to V \ {v}

Check if all edges leaving v have Ye ≤ exp(−β)

Check if any red edges leaving vReturn X

Return X

Draw X(V \ {v}) recursively

Draw X(V ) recursively

SUCCEED FAIL

FAILSUCCEED



How to make it even better

This is better than before

I If for all edges leaving v, Ye ≤ exp(−β), then node v is �xed
and never examined again

I Doing too much work on the FAIL side though

I Do not need entirely of X(V \ {v}) to determine next
SUCCEED/FAIL

I Only need values of X(w) where Y{v,w} > exp(−β)

I So only �nd those values recursively

I Ends up giving a cluster of values



Example: Ising model with exp(−β) = 2/3

Start by assigning X1, Y{1,2} and Y{1,4}

1 2 3

4 5 6

7 8 9

↑ 2

4

0.7

0.3

Only need to learn X2 to continue



Example: Ising model with exp(−β) = 2/3

Assign X2, Y{2,3}, Y{2,5}

1 2 3

4 5 6

7 8 9

↑ ↑

4

3

5

0.7

0.3

0.2

0.62

Accept X2 =↑, X1 =↑



Example: Ising model with exp(−β) = 2/3

Fix X1, X2, draw sample for rest of nodes recursively

1 2 3

4 5 6

7 8 9

↑ ↑

4

3

5

Accept X2 =↑, X1 =↑



Depth first search to resolve nodes
Assign X2, Y{2,3}, Y{2,5}

1 2 3

4 5 6

7 8 9

↑ ↑

4

3

5

0.7

0.3

0.8

0.67

Resolve X3 completely before resolving X5

If X3 =↓, then reject X2 =↑, do not need to resolve X5!



Principles of Cluster PRAR

1. Depth �rst search in resolving nodes

2. Always have directed cluster of nodes

3. If node rejects, remove entire subcluster



Example:

1 2 3

4 5 6

7 8 9

↑ ↑

4

3

↑ ↑

↓7 9

0.7

0.3 0.67

0.2

0.85

0.9

0.1 0.63

0.15

0.2

X8 causes X5 to reject, so X6 reset as well



Example after rejection

1 2 3

4 5 6

7 8 9

↑ ↑

4

3

7 9

0.7

0.3 0.67

0.2

X8 causes X5 to reject, so X6 reset as well



In block form
Input: (S, V ′) Output: X(T ) where S ⊂ T
and X(T ) and X(V \T ) can be drawn independently to form X ∼ π

Pick v ∈ S. Draw X(v)← Unif({0, 1})

Draw X(S \ {v}, V \ {v}) recursively

Draw Ye for all edges from v to V \ {v}

Let S′ = {w : Y{v,w} > exp(−β)} Check if S′ = ∅

Check w ∈ S′ have X(w) = X(v)Return X

Return X({v} ∪ T )

Draw X(S′, V \ {v}) recursively

Draw X(S, V ′) recursively

SUCCEED FAIL

FAILSUCCEED



Cluster PRAR
Cluster PRAR returns value of X on one or more nodes that
contain v:

CPRAR_Ising(v, V ) Output: T,X(T )

1: Let T ← {v}, and draw X(v) uniform over {↑, ↓}
2: For each neighbor w of v, draw Yw ← Unif([0, 1])
3: S ← {w : Yw > exp(−β)}
4: While (∃w ∈ S \ T )
5: Let w be any element of S \ T
6: (T ′, X(T ′))← CPRAR_Ising(w, V \ T )
7: T ← T ∪ T ′

8: If a neighbor w of v has X(w) 6= X(v) then T ← ∅, S ← ∅
9: If (T = ∅) then (T,X(T ))← CPRAR_Ising(v, V )



The Running time

Want a �nite expected time to decide to accept or reject X(v)

I What is expected change in number of nodes w where we need
to know X(w)?

I Always remove one such node

I If ∆ is maximum degree in graph, expect to add
exp(−β)(∆− 1) new nodes

−1 + exp(−β)(∆− 1) < 0⇔ exp(−β) ≤ 1

∆− 1



Running time result

Lemma
Let γ = exp(−β)(∆− 1)− 1. When γ < 0, CPRAR_Ising makes

an expected number of choices for X at nodes and Y at edges

bounded above by

∆ + 1 + ∆/(−γ)



Does it work?



The Fundamental Theorem of Perfect Simulation

Theorem (H. 2015, 2017)
(Intuitive version) As long as the algorithm terminates with

probability 1, then you can assume that any recursive calls to the

same algorithm are correct when proving that the original algorithm

is correct.



Popping



Popping algorithms

Generating random spanning trees more quickly than the cover time
D. B. Wilson
Proc. 28th ACM Sympos. on the Theory of Comp., 296�303, 1996

Generating a random sink-free orientation in quadratic time
H. Cohn, R. Pemantle, and J. Propp
Elec. J. Of Combinatorics, 9, #R10, 2001

Two popping algorithms

I Loop erased random walk for uniform random directed
spanning trees

I Sink-popping for sink-free orientations of a graph



Generalizing popping algorithms

Popping

Randomness Recycler

CPRAR

The Randomness Recycler: A New

Approach to Perfect Sampling

J. A. Fill and M. L. Huber

Proc. 41st Sympos. on Foundations
of Comp. Sci., 503�511, 2000



Random directed spanning tree
To generate uniformly over RDST's:

I For every node other than root, uniformly choose neighbor

I Repeat until there are no cycles

1 2 3

4 5 6

7 8 9
root

Reject

1 2 3

4 5 6

7 8 9
root

Accept



CPRAR gives loop-erased random walk
I For each node as we recurse, draw direction uniformly from

neighbors

1 2 3

4 5 6

7 8 9
root

First step

1 2 3

4 5 6

7 8 9
root

Second step





CPRAR gives loop-erased random walk

As recursion continues, might create a loop

1 2 3

4 5 6

7 8 9

Level 2

1 2 3

4 5 6

7 8 9

Level 3

1 2 3

4 5 6

7 8 9

Level 4

1 2 3

4 5 6

7 8 9

Level 5





CPRAR gives loop-erased random walk
As recursion continues, if reject, subcluster = loop

I For every node other than root, uniformly choose neighbor

I Repeat until there are no cycles

1 2 3

4 5 6

7 8 9
root

Accept (5, 2), (6, 5), and (3, 6)

Reject (2, 3)

1 2 3

4 5 6

7 8 9
root

Begin again at node 2



Similar result for sink-free orientations of a graph
I Cohn, Pemantle, Propp O(mn) expected running time

I CPRAR gives Θ(m) expected running time

1 2 3

4 5 6

7 8 9

sink

Reject

1 2 3

4 5 6

7 8 9

Accept



Markov random �elds



What is a Markov random field?
Definition
A clique is a subset of nodes such that each pair of nodes is
connected by an edge. A k-clique is a clique of size k.

[Note: a node is a 1-clique, an edge is a 2-clique]

Fact
A distribution over a �nite graph is a Markov random �eld (MRF)

if the probability of a state is the product of factors over the cliques

of the graph.

φ(X) =
∏

C a clique

φC(X(C))

[Note: the Ising model distribution factors into nodes and edges,
and so is a MRF]



When can we ignore a clique?
Let v be a node, C be a clique with v ∈ C, X(v) be a label for v

Then we always accept X(v) as a label for v wrt clique C if:

UC ≤
miny(V \{v}) φC((X(v), y(V \ {v})))
maxy(V \{v}) φC((X(v), y(V \ {v})))

= pC

Here UC ∼ Unif([0, 1])

Otherwise, resolve clique C recursively, and check if

UC ≤
φC(X(v), x(V \ {x})

maxy(V \{v}) φC((X(v), y(V \ {v})))
= pC(x)



Cluster PRAR over an MRF
Cluster PRAR returns value of X on one or more nodes that
contain v:

CPRAR(v, V ) Output: T,X(T )

1: Let T ← {v}, and draw X(v) using f{v}
2: For each clique C containing v, draw UC ← Unif([0, 1])
3: C ← {C : UC > pC}, S ← ∪C∈C C
4: While (∃w ∈ S \ T )
5: Let w be any element of S \ T
6: (T ′, X(T ′))← CPRAR(w, V \ T )
7: T ← T ∪ T ′

8: If there is a clique C with UC > pC(x) then T ← ∅, S ← ∅
9: If (T = ∅) then (T,X(T ))← CPRAR(v, V )



Running time bound
Notation
For a node v, let C(v) be the set of cliques of size larger than 1
that contain v.

Theorem
For a node v, let UC be iid Unif([0, 1]) for all C ∈ C(v) and X(v)
be chosen according to the MRF restricted to v. Let

nv = E

 ∑
C∈C(v):UC>pC

#(C)


If nv < 1 for all v, then the expected number of steps taken by the

algorithm is at most

[1 + 1/(1−max
w

nw)] max
w

#(C(v))



Example: hard core gas model



Hard core gas model
Each node either one (green) or o� (black)

I Each on node gives factor of λ to weight

I No two adjacent nodes can both be on

1 2 3

4 5 6

7 8 9

4

2

w(x) = λ2



Hard core gas model in CPRAR
Suppose that we choose �o�� for node 1

I Regardless of value for nodes 2 and 4, we always accept!

Now suppose that we choose �on� for node 1

I Then have to know value for both nodes 2 and 4 in order to
advance

So

nv ≤
1

1 + λ
· 0 +

λ

1 + λ
(∆− 1)

So linear time when

λ <
1

∆− 2



Hard core gas model better analysis
Add a 1 to tree of possibilities: add 1 to φ

Add a 0 to tree of possibilities: subtract 1/(∆− 2) from φ After
one step moving from φ to φ′, if no chance of retreating one level
of recursion:

E[φ′|φ] ≤ φ+
λ

1 + λ
− 1

∆− 2

1

1 + λ

After one step moving from φ to φ′, if chance of retreating one
level of recursion:

E[φ′|φ] ≤ φ+
λ

1 + λ
−
[
2− 2(∆− 2)

1

∆− 2

]
1

1 + λ



Example: autonormal model



Autonormal model
On the statistical analysis of dirty pictures
J. Besag
JRSS B, 48(3):259�302, 1986

Generalizes Ising model

Each node labeled with a number in [0, 1]

Weight given by edge {i, j} is exp(−β(x(i)− x(j))2)

1 2 3

4 5 6

7 8 9



Autonormal model

Good news!

I Despite being a continuous model, CPRAR works the same
way as for Ising model

I Minimum chance of accepting edge still exp(−β)

I Still runs in linear time for

exp(−β) ≤ 1

∆− 1



The in�nite lattice



What about finite window on infinite lattice?

Theory relies on

I Existance of densities for single node and rest of sample

I As long as a unique density exists for rest of sample, can use
CPRAR to obtain part of a sample



Conclusion

I When interactions between dimensions are weak and local
(Markov random �eld) then can sample a single dimension in
constant expected time

I Can be used to generate entire sample in linear time

I Gives popping algorithms automatically

I Can also use to get piece of an in�nite dimensional problem

I Works equally well on continuous and discrete spaces

I Comparable to CFTP, but without drawbacks such as memory
storage, extra work for continuous spaces


