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Problem

Big Data challenge?
Algorithmic ‘Scalability’

Target of interest:

π(x) ∝
N∏

i=0

fi(x).

Want to use [MCMC].

Approaches:
Single-Core
Multi-Core
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Single-Core

Single-Core
Problem: Metropolis move from θ → φ is accepted w.p.,

min
{

1,
π(φ)

π(θ)

}

Goal: Scalability of iterative cost.
Lots of work!: Pseudo-Marginal; Stochastic gradient schemes. . .

[1] The Scalable Langevin Exact Algorithm: Bayesian Inference for
Big Data available at: https://arxiv.org/abs/1609.03436
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Multi-Core

Multi-Core
Solution to Single-Core:

1 Break data into S ‘shards’ (of size N/S)
2 Separate inferences [MCMC]
3 ‘Recombine’ on ‘mother-core’

Problem: Recombining – How do you do it?
Lots of work!: Consensus; Averaging; Kernel methods. . .
Constraints / Assumptions

[2] Bayesian Fusion: An exact and parallelisable consensus approach
to unifying distributed analyses
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0 - Retrospective Trust / Tricks
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Brownian Motion
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Path-space Rejection Sampling

Path-space Rejection Sampling:

We want X ∼ Q where:

Q : dXt = α(Xt ) dt + Λ1/2 dBt , X0 = x ∈ Rd , t ∈ [0,T ]

Discretisation Free Approach!: Path-space Rejection Sampler (PRS)
(see arXiv 1302.6964 for details)

1 XT ∼ hT (X0)
2 Xfin ∼ P|XT * (egW orO)
3 (Accept / Reject)** / Assign Weight**
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Langevin Diffusion

Langevin Diffusion:

InQ set α(Xt ) :=
1
2

Λ∇ log ν(Xt )

Invariant distribution ν
Direct statistical exploitation. . . ν ≡ π (L)
Langevin + ν ≡ π + Discretisation + Correction =⇒ MALA

PRS Class (however [1] y := XT ∼ h ≡ ν1/2. . . )
limT→∞ pT (x, y) = wT (x, y) · ν1/2(y)︸                ︷︷                ︸

∝h

· P(X)︸︷︷︸
∈[0,1]

→ ν

ν ≡ π2 (DL)

If X0 ∼ ν, then ∀t > 0,Xt ∼ ν
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1 - Single Core: Quasi-Stationary Monte Carlo
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Quasi-Stationary Monte Carlo

Consider Brownian motion, killed at τ with intensity

κ(x) =
‖∇ log π(x)‖2 + ∆ log π(x)

2
− ` ∈ R≥0,

and the quasi-limiting distribution

lim
t→∞
L(Xt |τ > t).

Under weak regularity conditions has quasi-stationary distribution π.
Statistical Interpretation:

Big Data? → Subsampling
Implementation? → ScaLE
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1.2 - Subsampling
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Subsampling

QSMC ≡ Simulating BM + inhomogeneous Poisson Process κ

Evaluating κ is O(N).
* If ∀x, κ(x) ≤ K (requires localisation argument) then:

Simulating PP(κ(x)) ≡ Simulating PP(K) and accepting w.p. κ(Xt )/K .

We can make our algorithm worse (!) by choosing K̃ ≥ K . . .

Remark on coins
Suppose ∃A ∼ A, κ̃A (·) ∈ [0, K̃ ] such that EA[κ̃A (x)/K̃ ] = κ(x)/K̃
then:

Simulating A ∼ A PP(K̃) and accepting w.p. κ̃A (Xt )/K̃ ≡ *.
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Subsampling

Scalability ≡ Finding A ∼ A and κ̃A (·) which are O(1) (trivial), such
that K̃/K ≥ 1 scales well. . .

Intuition is the diffusion drift is a sum:

∇ log π(x) =
N∑

i=0

∇ log fi(x)

We require control variates for good scaling of K̃/K . . . (omitted)
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1.3 - Single-Core: ScaLE
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ScaLE

Implementational Problem: Trajectory death!
First Approach: Scalable Langevin Exact Algorithm (ScaLE)

Continuous time multi-level splitting / Importance sampling QSMC +
SMC + Resampling

Murray Pollock (Warwick) Durham Symposium July 31st, 2017 20 / 35



ScaLE

Implementational Problem: Trajectory death!
First Approach: Scalable Langevin Exact Algorithm (ScaLE)

Continuous time multi-level splitting / Importance sampling QSMC +
SMC + Resampling

Murray Pollock (Warwick) Durham Symposium July 31st, 2017 20 / 35



ScaLE

Implementational Problem: Trajectory death!
First Approach: Scalable Langevin Exact Algorithm (ScaLE)

Continuous time multi-level splitting / Importance sampling QSMC +
SMC + Resampling

Murray Pollock (Warwick) Durham Symposium July 31st, 2017 20 / 35



ScaLE
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1.4 - Summary
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Summary

Summary. . . :
QSMC: ‘Exact’ Bayesian Inference
No intrinsic cost for exactness.
ScaLE’s well!

Missing Bits. . . :
Localisation
Theory: QSMC; (SMC-) ScaLE; Re-ScaLE.
Scaling: Dimensionality; Control-Variate. . .
Implementational Details
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Example

227 dataset, contaminated regression model
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2 - Multi-Core: Bayesian Fusion
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Problem

Recall Target:

π(x) ∝
C∏

c=1

fc(x).

C - Number of cores / experts / ‘views’ . . . ; fc - Sub-posterior.

Simple Approach. . . [Think (A)BC]
1 Simulate X (1) ∼ f1, X (2) ∼ f2,. . . , X (C) ∼ fC .
2 Accept if X (1) = X (2) =. . . = X (C), else go to 1/.
3 Return X := X (1) (∼

∏C
i=0 fi ∝ π).

Recall Langevin: If X0 ∼ ν, then ∀t > 0,Xt ∼ ν:
L1,. . . ,LC ,DL1,. . . ,DLC . . .
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Fusion Idea

Time

X

s t
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Fusion Actual

Time

X

s t
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Some Details

Fusion Measure (X ∈ Ω0)

dF(X) ∝ d
(
×C

c=1DL
X (c)

0 ,yT
c

)
(X) ·

C∏
c=1

[
f2
c

(
X (c)

0

)
pdl

T ,c

(
yT

∣∣∣∣ X (c)
0

)
·

1
fc(yT )

]
,

Key Idea: If X ∼ F, then XT ∼
∏C

c=1 fc ∝ π (!)
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Some Details

Time

X

s t
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Some Details

‘Standard’ Multi-Core Problem ‘≡’ X ∼ F (with practical constraints)
Rejection Sampling! Possible proposals X ∼ P., w.p. P(X):
‘Brownian’:

dPbm (X) ∝ d
(
×C

c=1W
X (c)

0 ,yT
c

)
(X) · hbm

T

(
X (1:C)

0 , yT

)
, X ∈ Ω0
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Some Details

Simple ‘Brownian’ Case:
‘Optimal’ hbm

T (·, ·):

hbm
T

(
X (1:C)

0 , yT

)
∝

 C∏
c=1

fc
(
X (c)

0

)︸          ︷︷          ︸
initial core draws

exp
(
−

C · ||yT − X̄0||
2

2T

)
· exp

(
−

Cσ2

2T

)
︸                                            ︷︷                                            ︸

end point draw

Need RS for hbm
T (·, ·) end point.

Accept with probability

P(X) := exp

− C∑
c=1

∫ T

0
κc(X (c)

t ) dt

 ∈ [0, 1]

Exact (‘Talking’) vs. Approximate (‘Silent’ / ‘Lecture’) Fusion

Remark: ‘Ornstein-Uhlenbeck’ special case
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Example
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Questions?
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