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LET'S SOLVE THIS PROBLEM BY
USING THE BIG DATA NONE
OF US HAVE THE SLIGHTEST
IDEA WHAT TO DO WITH
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Single-Core

m Single-Core
m Problem: Metropolis move from 6§ — ¢ is accepted w.p.,

min {1%}

m Goal: Scalability of iterative cost.
m Lots of work!: Pseudo-Marginal; Stochastic gradient schemes. ..

m [1] The Scalable Langevin Exact Algorithm: Bayesian Inference for
Big Data available at: https://arxiv.org/abs/1609.03436
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m Multi-Core
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m Multi-Core
m Solution to Single-Core:

Break data into S ‘shards’ (of size N/S)
Separate inferences [MCMC]
‘Recombine’ on ‘mother-core’
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m Multi-Core
m Solution to Single-Core:

Break data into S ‘shards’ (of size N/S)
Separate inferences [MCMC]
‘Recombine’ on ‘mother-core’

m Problem: Recombining — How do you do it?
m Lots of work!: Consensus; Averaging; Kernel methods. ..
m Constraints / Assumptions
m [2] Bayesian Fusion: An exact and parallelisable consensus approach
to unifying distributed analyses
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0 - Retrospective Trust / Tricks

Murray Pollock (Warwick) Durham Symposium July 31st, 2017 6/35



Brownian Motion
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Brownian Motion

Time
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Path-space Rejection Sampling

Path-space Rejection Sampling:

m We want X ~ (Q where:

Q: dX; = a(X;)dt + AY2dB;, Xo=xeR9 te[0,T]
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Path-space Rejection Sampling

Path-space Rejection Sampling:

m We want X ~ (Q where:

Q: dX; = a(X;)dt + AY2dB;, Xo=xeR9 te[0,T]

m Discretisation Free Approach!: Path-space Rejection Sampler (PRS)
(see arXiv 1302.6964 for details)
X1 ~ hr(Xo)
X ~ PIX7* (eg W or ©)
(Accept / Reject)** / Assign Weight**
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Path-space Rejection Sampling
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Path-space Rejection Sampling
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Langevin Diffusion:

1
m InQsete(X;) = EAV log v(Xt)

m Invariant distribution v

m Direct statistical exploitation... v = x (IL)
m Langevin + v = 7 + Discretisation + Correction =— MALA

m PRS Class (however [1] y := X7 ~ h=v"/2..))
B lim7_. pr(x,y) = wr(x,y) - v'2(y) - P(X) = v
—_— ~— —

och €[0,1]
m v =% (DL)

mlf Xog ~v,thenVt>0,X; ~v
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1 - Single Core: Quasi-Stationary Monte Carlo
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Quasi-Stationary Monte Carlo

m Consider Brownian motion, killed at T with intensity

Vi 2+ Al
K(x) = [Viogr(x)I 2+ 09(x) _ t € Rxo,

and the quasi-limiting distribution

lim £(Xilr > 1).
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1.2 - Subsampling
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Subsampling

QSMC = Simulating BM + inhomogeneous Poisson Process «

Evaluating « is O(N).
“If Vx, k(x) < K (requires localisation argument) then:

m Simulating PP(«(x)) = Simulating PP(K) and accepting w.p. «(X;)/K.
We can make our algorithm worse (1) by choosing K > K. ..

Remark on coins
Suppose JA ~ A, ka(-) € [0, K] such that E.4[«a(x)/K] = «(x)/K
then:

m Simulating A ~ A PP(K) and accepting w.p. a(X;)/K = *.
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Subsampling

m Scalability = Finding A ~ A and ka(-) which are O(1) (trivial), such
that K/K > 1 scales well. ..
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Subsampling

m Scalability = Finding A ~ A and ka(-) which are O(1) (trivial), such
that K/K > 1 scales well. ..

m Intuition is the diffusion drift is a sum:

Vlogn(x) = i Vlog fi(x)
i=0

m We require control variates for good scaling of K/K. .. (omitted)
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1.3 - Single-Core: ScalLE
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m Implementational Problem: Trajectory death!
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m Implementational Problem: Trajectory death!
m First Approach: Scalable Langevin Exact Algorithm (ScalLE)

m Continuous time multi-level splitting / Importance sampling QSMC +
SMC + Resampling
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Summary
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m Summary...:
m QSMC: ‘Exact’ Bayesian Inference
m No intrinsic cost for exactness.
m ScalE’s well!
m Missing Bits. . .:
m Localisation
m Theory: QSMC; (SMC-) ScalLE; Re-ScalLE.
m Scaling: Dimensionality; Control-Variate. . .
m Implementational Details
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Example

227 dataset, contaminated regression model
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2 - Multi-Core: Bayesian Fusion
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m Recall Target:

C
a(x) o< [ ] fo(x).

c=1
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m Recall Target:
c
a(x) o< [ ] fo(x).
c=1

m C - Number of cores / experts / ‘views’ ... ; f, - Sub-posterior.

m Simple Approach. .. [Think (A)BC]
Simulate X(W ~ f;, X®@) ~ £,,..., X(©) ~ f5.
Accept if X() = X(@) = . = X(©) else go to 1/.
Return X := X() (~ TTC, f: o« 7).

m Recall Langevin: If Xo ~ v, then ¥Vt > 0, X; ~ v:
m L. .. L;DLy, .. DLc...
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Fusion ldea

Time
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Fusion Actual

Time
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Some Details

m Fusion Measure (X € Qg)

‘ X©, c 1
oty ox2.on2 ) o[l ) 5

c=1
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Some Details

m Fusion Measure (X € Qg)

‘ X©, c 1
oty ox2.on2 ) o[l ) 5

c=1

m Key Idea: If X ~ F, then X7 ~ [1S_, fo o 7 (1)
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Some Details

Time
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Some Details

m ‘Standard’ Multi-Core Problem ‘=’ X ~ F (with practical constraints)
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Some Details

m ‘Standard’ Multi-Core Problem ‘=’ X ~ F (with practical constraints)
m Rejection Sampling! Possible proposals X ~ P, w.p. P(X):
m ‘Brownian’:

(c)
dPP™ (%) o d(xf_1Wf° ’VT)( ) hm(X)yr). xeqq
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Some Details

m Simple ‘Brownian’ Case:
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Some Details

m Simple ‘Brownian’ Case:
m ‘Optimal’ h2™(-,-):

Cc

hbm ,yT ocll—[ fC
c=1

———
initial core draws

_Clyr = XolP\ [ Co?
2T P\7 2T

end point draw
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c=1

———
initial core draws

_Clyr = XolP\ [ Co?
2T P\7 2T

end point draw

m Need RS for h™(-, ) end point.
m Accept with probability
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Some Details

m Simple ‘Brownian’ Case:
m ‘Optimal’ h2™(-,-):

Cc

hbm ,yT ocll—[ fC
c=1

———
initial core draws

_Clyr = XolP\ [ Co?
2T P\7 2T

end point draw

m Need RS for h™(-, ) end point.
m Accept with probability

Cc

> fT KC(XEC))dt] e [0,1]

c=1

P(X) :=exp {—

m Exact (‘Talking’) vs. Approximate (‘Silent’ / ‘Lecture’) Fusion
m Remark: ‘Ornstein-Uhlenbeck’ special case
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Some Details

Time
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Questions?
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