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Stationary Distributions 
(finite state space)

Finite-state Markov processes converge to 
stationary distributions.


Generator Q: Qij=rate of jumping to j from i.


For positive t,

By Perron-Frobenius, top eigenvalue (which is 0) is 
simple, with a positive left-eigenvector π.  Then
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Example: Q12=1, Q21=2.
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Converges to 2/3 state 1, 1/3 state 2.



Quasistationary Distributions
Finite-state sub-Markov processes conditioned 
on long-time survival converge to 
quasistationary distributions.

Generator Q: Qij=rate of jumping to j from i.


For positive t,

By Perron-Frobenius, top eigenvalue -λ (which is 
negative) is simple, with a positive left-eigenvector 
π, and positive right-eigenvector v. Then
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Let τ∂ be the time when the process is 
killed.  Then

Conditional Convergence
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Example redux: State 1 healthy, 

state 2 death rate 1.
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Example redux: State 1 healthy, 

state 2 death rate 1.

Q =
✓
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lim
t�⇥

e.268tetQ =
�

0.789 0.289
0.577 0.211

⇥

lim
t�⇥

P
�
sick

⇤⇤ survive to time t
⇥

=
.289

.289 + .789
=

.211
.211 + .577

= 0.268.
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One-dimensional diffusions

If f is the starting density, the density of Xt is e-t!* f .

Diffusion rate σ(Xt) 
(assume σ=1).

Drift b(Xt).
Killing rate 
κ(Xt).

assume locally bounded

assume continuous on (0,∞), 
integrable at 0.

Generator

L⇤f = �1

2
f 00 + (b · f)0 +  · f.

Adjoint Generator

L� = �1

2
�00 � b · �0 +  · �.



Crucial fact: The operator can be made self-adjoint.

�(x) = e

2
R

x

0 b(s)ds

Γ is a measure with density

In the space L2((0,∞),Γ) the generator is

self-adjoint. That is, with

hf, gi =
Z 1

0
f(x)g(x)�(x)dx

hLf, gi = hf,Lgi



Goal: General conditions for convergence to 
a quasistationary distribution with density ϕ, 
the top eigenfunction of the adjoint?
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“Yaglom convergence” from Yaglom 1947 on

limits of branching processes conditioned on survival.
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Also “asymptotic killing rate”:
lim

t→∞

P
{

τ∂ > t + s
∣

∣ τ∂ > t
}

= e−λs,

where -λ is the top eigenvalue.

“Yaglom convergence” from Yaglom 1947 on
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Main Results

Dichotomy: On (0,∞), with ∞ inaccessible, if
then eitherlim

z�⇥
�(z) �= ⇥

(S.—Evans 2006; Kolb — S. 2012)
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Main Results
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Main Results
Yaglom convergence with low killing at infinity: 

On (0,∞), with ∞ inaccessible, assume

(This is equivalent to saying the unkilled process is recurrent.)

K := lim
z!1

�(z) < ⇥

if and only if
Z 1

0
�(x)�1dx = 1.

Z 1

0
��(x)�(x)dx < 1 and

lim
t!1

P
�
Xt 2 A

��
⌧@ > t

 
=

R
A ��(x)�(x)dxR1
0 ��(x)�(x)dx

In this case λ is in the essential spectrum, and there is no

spectral gap



Other results
For diffusions, only the case κ=0 with killing at 
0 had been considered.  (Mandl 1961; Collett, 
Martínez, San Martín 1994; Champagnat, 
Villemonais 2016)


In this case, escape to infinity can be blocked 
only by inward drift.


Champagnat, Villemonais 2017 showed 
Yaglom convergence for a class of 
multidimensional Lotka—Volterra models.



Other results
Seneta & Vere-Jones (1966), van Doorn 
(1991): Partial results for birth-death chains 
killed only at 0.

Gosselin (AoP 2001): Discrete chains with 
general killing.  Lyapunov-like condition for 
quasicompactness.

⇒ Quasistationary convergence.
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Weyl’s eigenfunction expansion

f(L)u =
Z

�(L)
f(�)dE(�)u for continuous f.

Borel functional calculus

e�tLu =

Z 1

�
e��tdE(�)u.

Note: The φλ here are 

solutions to the appropriate

ODE, but may not be

eigenfunctions; but ρ is 
supported on the spectrum.e
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We also have the strong ratio theorem

where p is the transition kernel with respect to Γ.

If u is an L2 function and f is an L2 density,

In particular, we have Yaglom convergence on compacta:

If A⊂B are bounded measurable sets,

lim
t!1

P{Xt 2 A |Xt 2 B, ⌧ > t} =

R
A ��(x)�(x)dxR
B ��(x)�(x)dx

lim
s!1

p(t+ s, x, y)

p(s, a, a)
= e

��t��(x)��(y)

��(a)��(a)
,

Ef

⇥
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⇤
= hf, e�tLui =

Z 1

�
e�t�hf,��ihu,��i d⇢(�)
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We need to turn local convergence into global 
convergence.
Key analytic fact (Simon 1993):

If λ is an eigenvalue (i.e., if φλ is L2) then

lim
t!1

e

�t
p(t, x, y) = c��(x)��(y).

Easy consequence: If the top eigenfunction is 
L2 and L1 then we have Yaglom convergence.
When λ<K it is an isolated eigenvalue, so L2. 

Probabilistic proof required to show L1.

When K<λ and 
Z 1

0
�(x)�1

dx = 1 then we show that the
asymptotic killing rate is λ, implying the process can’t

escape to infinity.



Application: 
Mortality plateaux
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Plateaux and beyond...

(Carey et al., Science 1992)
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Start at senescence state X0=1.

Rate of jumping to next higher state λXt.

Rate of killing μXt.
Le Bras (1976) pointed out that when 
λ>>μ, the mortality rate is about μeλt for 
small t.

Not surprising: Acts like dXt/dt=λXt.

“Cascading failures” model



Weitz-Fraser Diffusion Model
“Vitality” at age t is a Brownian motion 
(continuous random walk) with constant 
downward drift.

“Death” is the time when vitality reaches 0.

Time of death has “inverse Gaussian” 
distribution.
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Example -- Continuous version of the 
Le Bras model: σ(x)=σx, 


b(x)=bx, 

κ(x)=κx. 

Reflected at 1.

Example -- Weitz-Fraser model:
σ(x)=1, 

b(x)=b, 
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Killed at 0.



Example: Continuous version of the Le 
Bras model

σ(x)=σx, 

b(x)=bx, 

κ(x)=κx. 

Reflected at 1.

κ(x)→∞, so convergence to quasistationary 
distribution is immediate from Result 2.

(In this case, eigenfunctions 
are computable.)



What does this mean?
Traditional explanations:

population heterogeneity


temporal heterogeneity


New idea “Evolving heterogeneity”: Late-life 
mortality flattens out because of an equilibrium 
between the drift toward lower vitality, and the 
pruning of mortality

Explanatory link between abstract models and 
the real phenomenon.  Possibly testable.



Le Bras 
evolution

Reaches 
equilibrium 
between spread 
and killing.

VitalitySenescence state

De
ns

ity
De

ns
ity

De
ns

ity



Application: 
Superprocesses with 

“damage accumulation”



Diagrams from Stewart, Madden, Paul, Taddei 
(2005).



Senescence in E. coli

Stewart, Madden, Paul, Taddei (PLoS 2005)



Increasing Damage

Tim
e





How do we model the aging that comes 
from accumulated damage in 
protozoans?


How do we estimate the advantage that 
comes from segregating damage?


Can the organism gain a selective 
advantage by accumulating more 
damage, but segregating more often?



Branching diffusion model
Protozoans may increase growth rate by 
segregating damage.

State of system is a random measure on R+.

Position=amount of damage.

Each individual performs independent 
diffusion.  Dies at rate increasing in damage.  
Splits at rate decreasing in damage.

At split, two daughters jump to ±random 
variable.  That is, parent’s damage is divided 
randomly between the daughters



Superprocess model
Superprocess=measure-valued diffusion.

State measures quantity of damage.  At a split, 
daughters jump up and down.

Semigroup of nonlinear differential operators.

Rescaling limit behavior determined by 
spectrum of

Here κ=killing rate, β=splitting rate, b and σ depend 
on the underlying motion, and on the jump process.  
In particular, the jump at fission increases σ.

L⇤� = �1

2
�2�00 + (b�)0 + (� �)�.



Pt = e-t!* determines the mean.  More generally,

E� [⇥⇤, Xt⇤] = ⇥Pt⇤, �⇤,
E� [⇥⇤, Xt⇤⇥⇤⇥, Xt�⇤] = ⇥Pt⇤, �⇤⇥Pt�⇤

⇥, �⇤

+
�⇤ t

0
Ps [⇥ · Pt�s⇤ · Pt��s⇤

⇥] ds, �
⇥
.

Theorem (Evans & S. 2006) - If  -λ>0 — that is, 
asymptotic growth rate is positive — and β—κ is 
nonincreasing, then the rescaled random measure

                                  converges in L2 to a random

multiple of the measure with density ϕλ.


The long-term growth rate of the total mass is -λ.

�Xt := �Pt1, �⇥�1Xt



What does this say about 
the advantage of damage 

segregation?
Theorem: If drift b is bounded below, away from 
0, then the maximum -λ is attained for

a nonzero finite value of σ.  In particular, if 
inherent damage accumulation is deterministic, 
then unequal segregation of damage increases 
the long-term growth rate.



MCMC application
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Pollock et. al. (2016) simulates from an 
intractable density by defining a killed diffusion 
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Scalable Langevin Exact (ScaLE) Algorithm of 
Pollock et. al. (2016) simulates from an 
intractable density by defining a killed diffusion 
for which it is the quasistationary distribution.

Does it converge?

Short answer (joint work with Roberts, Kolb, 
Wang): Yes.

Long answer: Andi Wang’s talk Thursday.


