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Bayesian Linear Model

For i = 1, . . . ,K

Yi |θi , γi
ind∼ N(θi , γ

−1
i )

θi |µ, λθ, λi
ind∼ N(µ, λ−1θ λ−1i )

µ ∼ N(m0, s
−1
0 ) γi

iid∼ Gamma(a3, b3)

λθ ∼ Gamma(a1, b1) λi
iid∼ Gamma(a2, b2)

Posterior density
q(θ, γ, λ, µ, λθ|y)



Bayesian Model

We want to calculate, say,

E [θ1|y ] =

∫
θ1 q(θ, γ, λ, µ, λθ|y) dθ dγ dλ dµ dλθ

and

E [γ1|y ] =

∫
γ1 q(θ, γ, λ, µ, λθ|y) dθ dγ dλ dµ dλθ



Gibbs Samplers for Bayesian Model

λθ|θ, µ, λ, γ ∼ Gamma (a∗1, b
∗
1(λ, θ, µ))

λi |θ, µ, λθ, γ
ind∼ Gamma (a∗2, b

∗
2(λθ, θ, µ))

γi |θ, µ, λθ, λ
ind∼ Gamma (a∗3, b

∗
3(θ))

(θ, µ)|λ, λθ, γ ∼ NK+1(ξ0,V )

Gibbs Samplers:

((θ(n), µ(n)), λ
(n)
θ , λ(n), γ(n))→ ((θ(n+1), µ(n+1)), λ

(n+1)
θ , λ(n+1), γ(n+1))



Bayesian Model

Simulated data:
> Ydata

[1] -1.703497 4.047338

Simulate 5e3 realizations of the random scan Gibbs sampler to
obtain:
> apply(tg.out, 2, mean)

[1] -1.313975 2.007110

Should we stop sampling?
> ess(tg.out)

[1] 606.5829 482.4933



Bayesian Model
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Bayesian Model

After 5e3:
> apply(tg.out, 2, mean)

[1] -1.313975 2.007110

> ess(tg.out)

[1] 606.5829 482.4933

After 1.5e4:
> apply(tg.out1, 2, mean)

[1] -1.374471 2.018791

> ess(tg.out1)

[1] 2014.954 1475.851

We could keep going, but should we stop?



Bayesian Model
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Multivariate Output Analysis

If g : X → Rp, set

η = EFg(X ) =

∫
X
g(x)F (dx) .

SLLN

ηn =
1

n

n−1∑
i=0

g(Xi )
a.s→ EFg(X ) = η n→∞

CLT

√
n(ηn − η)

d→ Np(0,Σ) n→∞



Multivariate Output Analysis

CLT

√
n(ηn − η)

d→ Np(0,Σ) n→∞

Σ = Λ +
∞∑
k=1

[
CovF [g(X1), g(X1+k)] + CovF [g(X1), g(X1+k)]T

]
where VarF [g(X )] = Λ and if the Markov chain is reversible:

Σ = Λ + 2
∞∑
k=1

[CovF [g(X1), g(X1+k)]]



Multivariate Output Analysis

Estimating Σ:

Initial sequence estimators (Dai and Jones (2017), J. Multivariate
Analysis)

Spectral variance estimators (Vats, Flegal, and Jones (2017),
Bernoulli)

Batch means (Vats, Flegal, and Jones (2017), Submitted)

If the Markov chain is geometrically ergodic and
‖EFg(X )‖2+δ <∞ for some δ > 0, then spectral variance and
batch means estimators are strongly consistent for Σ.



Output Analysis

If Σn estimates Σ, then a 100(1− α)% confidence region is

C (n) = {η ∈ Rp : n(ηn − η)TΣ−1n (ηn − η) ≤ F∗(α)}

If the Markov chain is geometrically ergodic and
‖EFg(X )‖2+δ <∞ for some δ > 0, then C (n) is asymptotically
valid in the sense that it will have coverage probability 1− α.



Gibbs Samplers for Bayesian Model

The deterministically updated Gibbs sampler and the random scan
Gibbs sampler are geometrically ergodic if 2a1 + K − 2 > 0 and
a3 > 1. (Johnson and Jones (2015) J. Multivariate Analysis)

Some conditional Metropolis-Hastings samplers are geometrically
ergodic. (Jones, Roberts, and Rosenthal (2014) Adv. Applied
Prob.)



Bayesian Model
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Figure: Confidence ellipses and estimates after 5e3 and 1.5e4 iterations.



Relative-Volume Stopping Rules

If C (n) is the 100(1− α)% confidence region, then

Volume(C (n)) = kn|Σn|1/2 → 0 n→∞

Terminate the first time that the volume of the confidence region
is less than an εth fraction of the posterior standard deviation.

More formally, stop the first time after n∗ that

Volume(C (n))1/p + n−1 ≤ ε|Λn|1/2p



Effective Sample Size

Define

ESS = n

[
|Λ|
|Σ|

]1/p
when p = 1 this reduces to the familiar

ESS =
n

1 +
∑∞

i=1 CorrF (g(X1), g(X1+k))

We estimate ESS with

ESSn = n

[
|Λn|
|Σn|

]1/p



Bayesian Model

n ESS ESS1 ESS2

5e3 582.9 606.5 482.5

1.5e4 1742.6 2015 1475.9



ESS as stopping rule

Stopping the first time after n∗ that

Volume(C (n))1/p + n−1 ≤ ε|Λn|1/2p

is asymptotically equivalent to stopping when

ESSn ≥
22/pπ

(pΓ(p/2))2/p
χ2
1−α,p
ε2



Bayesian Model

To achieve a Monte Carlo error that is at most 10% of the posterior
standard deviation with 90% confidence when p = 2 we need

ESSn ≥ 1447

> dim(tg.out1)

[1] 15000 2

> multiESS(tg.out1)

1742.674

> apply(tg.out1, 2, mean)

[1]-1.374471 2.018791



Bayesian Model
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Figure: Ellipses and estimates after 5e3, 1.5e4, 1e5, and 1e6 iterations.



Discussion

The multivariate nature of MCMC estimation has largely been
ignored.

Effective sample size can be used to assess the simulation in a
principled manner.

Convergence rate of the Markov chain is key.

All of the output analysis methods in this talk are in the mcmcse R
package available on CRAN.


