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Informed Proposals
Aim: sampling from a probability measure 7 defined on Q
Metropolis-Hastings (MH) kernel

1. Sample y ~ Q(x, ")

2. Accept y with probability 1 A a(x, y) where a(x,y) = %
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Informed Proposals

Aim: sampling from a probability measure 7 defined on Q

Metropolis-Hastings (MH) kernel

1. Sample y ~ Q(x, ")

2. Accept y with probability 1 A a(x, y) where a(x,y) = %
Uninformed proposals S Informed proposals
“blind” proposal : Q(x,y) = Q(y, x) Q incorporates info about the target 7
\ U
small moves and slow mixing longer moves and better mixing

Question: How should we design an informed proposal Q?
Ideal choice would be Q(x,y) = 7(y) but that's typically unfeasible...
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Framework: Q = R", target 7(x)dx

Typical uninformed proposal
— (RWM)  Qy(x,-) = N(x,c?1,)
How to design informed Q7 Discretize m-rev. diffusion dX; = Viogn(X:) yp + dW;

2
—  (MALA) QU(Xa'):N(X‘FUzM,O'qn)

(RWM) (MALA)

{ \\.
®

NB: by construction the bias towards high-probability regions is calibrated so that
Q is approximately m-reversible.
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Informed proposals in discrete spaces?
Q finite state space
m(x) target measure
N(x) neighbourhood of x (e.g. Ny(x) ={y € Q:d(x,y) < o})
Ks(x,-) = Unif(N,(x)) natural uninformed proposal
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Informed proposals in discrete spaces?
Q finite state space
m(x) target measure
N(x) neighbourhood of x (e.g. Ny(x) ={y € Q:d(x,y) < o})
Ks(x,-) = Unif(N,(x)) natural uninformed proposal

Example: sampling matchings (2134) (1243)

Q = {perfect matchings of n+ n bipartite graph} X I L ) X

(3214) (1234) (1432)
W(X)O(Hwe >¢< I<—“ ) “>I<:
eex L

(N,
‘n.XK

(4231) (1324)

Informed proposal Q(x,-) ~» non-uniform probability distribution on N(x).
How should we design such a distribution?

N(x) = {y's obtained by swapping two edges of x}

Is the localized version of 7, i.e. Qx(x,y) o 7(y)In(x)(y). a good choice?
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Framework

Target distribution
M(dx) = m(x)dx for some base measure dx

Natural uninformed kernel
A Markov transition kernel K, (x, dy) satisfying:

1. K, is dx-reversible

2. Ko(x,-) = 6x(-) as 0 L 0 and K,(x,dy) = dy as o0 T o0
Examples: K,(x,-) = N(x,0?L,) or K,(x,-) = Unif(N,(x))

Aim

Connection to other schemes
[e]e]e}

Incorporate information from 7 into K, to obtain a good proposal @ to target 7.
Equivalently: bias K, towards high-prob. regions of 7 in an appropriate way.

NB: would like to be fairly general in terms of 7 and K.
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Heuristics
Naive informed proposal
~ w(y)Ko(x, dy) W) In,(y)  w(y)e” s
R I s LT (17 Rl o 09

Q@ looks reasonable for big o because Q. (x, dy) = MN(dy) as o 1 co. What
happens for small o7

K, dx-reversible implies Q reversible w.r.t. m(x)Z,(x)

_ 7w(x) if 0 1 oo (Global move)
But Z, = K, * m and thus 7(x)Z,(x) = { 7(x)? o 10 (Local move)

~> @ is not appropriate to design local moves targeting
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Heuristics

Simple fix: introduce a balancing function g, Qg(x)(x, dy) o< g(7(y))Ks(x, dy)

Qx(x,dy) =~ ﬁ*KK );( )y reversible w.r.t. /7 (x)(v/7 * k., )(x) war(x)

Q.7 produces local moves that are asymptotically m-reversible as o | 0
~ Q /= is appropriate to design local moves targeting 7
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Locally balanced proposals

Class of proposals considered: “point-wise informed” proposals of the form

Qg.o(x,dy) x g (ZEQ) K, (x, dy) forsome g : Ry — R,

Definition: {Q,(x, dy)}s>0 is locally balanced if Q, is M,-reversible and
My, =TMasol0.

Theorem: Let K, be dx-reversible and K,(x,-) = dx(-) as ¢ | 0. Then
{Qg,0}o>0 is locally balanced iff

g(t)=tg(1l/t) vt >0

NB: some regularity assumptions on g and 7 needed to guarantee integrability.
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Question: locally-balanced proposals are asymptotically 7-reversible as o | 0.
Intuitively, this is a good features for a local Metropolis-Hastings proposal. Can
we say something more explicit in terms of efficiency of the induced MCMC ?

“Answer” : in high-dimensions locally-balanced proposals are maximal elements in
terms of Peskun ordering.
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Peskun Ordering

Lemma (Peskun ordering)

Let P; and P, be m-reversible Markov kernels on a finite Q. If
Pi(x,y) < Pa(x,y)  Vx#y (1)
then the Spectral Gaps and Asymptotic Variances of P; and P, satisfy

Gap(F1)
Var,(h, P1)

Gap(P»)

<
> Varg(h,P,) Vh:Q—R.

Intuition: if (1) holds, then P, is more efficient than P;.
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Peskun Ordering

Lemma (Peskun ordering with constant)

Let P; and P, be m-reversible Markov kernels on a finite Q. If

Pl(Xay)SCP2(X7y) VX#)/ (2)

for some ¢ > 0, then the Spectral Gaps and Asymptotic Variances of P; and P,
satisfy

Gap(P1)
Varw(h, Pl)

c Gap(Pz)

<
> cVarg(h,Py)+ (1 —c)Var(h) Vh:Q—R.

Intuition: if (2) holds, then P, is L-times more efficient than P;.
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Asymptotic Peskun ordering of locally balanced proposals

Consider €2 finite and K(x, -) = Unif(N(x)). Given Zg(x) = > cni) & (%)

define

oN

%
C = sup > 1.
g x€Q, yeN(x) Zg(X)

Theorem
Let g: Ry — Ry and g(t) = min{g(t),tg(1/t)}. Then the MH kernels obtained
from the proposals Q, and Qg respectively satisfy

Pe(x,y) < ¢ Pe(x,y)  Vx#y.
Intuition: for every g there is a locally-bal. & which is more efficient modulo cé.

Asymptotic regime
In many contexts c¢; — 1 as the dimension of Q goes to infinity. In these cases
locally balanced proposals are asymptotically optimal in the Peskun sense

Giacomo Zanella (Bocconi University) Design of informed Metropolis-Hastings proposal distributions 1/08/2017 1/19



ntroduction and motivation ocally Balanced Proposals eskun orderin, onnection to other schemes
| luct | L Ily Bal 1 Pro Pesk d C th

[e]e]e} 00000 0O00@000 [e]e]e}

Example: sampling matchings
Q, = {perfect matchings of n+ n bipartite graph}
7(x) o [Tocy We with we ~ ¢ LogNormal(0, A2) N(x) = {switching two edges}

Qux,y) o< Iy (y) Qe y) occm(y)Inp(y)  Quz(xy) o V7(y) Ingo (¥)

Acceptance rates for target measures with increasing roughness

lambda=0 (uniform target) lambda=1 lambda=2 lambda=3 (rougher target)
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Example: sampling matchings

Q, = {perfect matchings of n x n bipartite graph}
T(x) o< [[acy We with we x LogNormal(0, A?) N(x) = {swapping two edges}

Qux,y) o< Iy (y) Qe y) ccm(y)Inp(y)  Qua(x,y) o< Va(y) Ingo(v)

Traceplots for n=300 and lambda=3 Distance from target over time
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Example: Ising model
Q,={-1,1}V  where V is the n x n lattice

m(x) o< exp{A(X ey @ixi + 30 Xix;)} with o . Unif(—o, o)
N(x) = {flipping one bit}

Qux,y) o< Iy (y) Qe y) ccm(y)In(y)  Qua(x,y) o< V(y) Ingo(v)

Acceptance rates for target measures with increasing roughness

lambda=0 (uniform target) lambda=1 lambda=2 lambda=3 (rougher target)
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Optimal choice of locally-balanced proposal?

Question: is there an optimal choice of Q, among the ones with g(t) = tg(1/t)?
Many different choices of g lead to locally-balanced proposals

g(t) =t g(t) =i glt)=1At
Qe(x,y) x | VAIK(x) | 75585 K () | (17 2 )K(x,y)

Partial answers:
e Reminescent of choosing an expression for the acceptance probability in the
accept/reject step. In that case the MH choice 1 A g g Peskun-dominates all
others.

e In our case, there is no Peskun-ordering among couples of locally-balanced
Qg. Also, the restriction g(t) < 1, so the class of admissible g's in broader.

e In some simplified scenarios (e.g. {0,1}" with product target) the optimal
choice turned out to be g(t) = 113, i.e. %K(X,y)

e In simulations, different locally-balanced proposals performed very similar.
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Connection to MALA

Connection to other schemes
@00

In continuous spaces, to sample from Qg, one needs to replace E ; with some
approximation 7, (y).

E.g.: 7x(y) = exp (Vlog m(x)(y — x)) 1st-order Taylor expansion leads to MALA

Informed{
twf
V log m(x partms,
QuaLa(x,y) = N(x + Uzgf(), (72}1") 4 Target ™
ly — X‘z Scaling part k, £
o /exp (Vlog m(x)(y — x))exp <%2) Proposal
Qrara
= /() Ko (x, dy) -
2V log w(x
I i ()

NB: choice of g(t), K,(x, dy) and approximation 7 provide large flexibility.

Giacomo Zanella (Bocconi University) Design of informed Metropolis-Hastings proposal distributions 1/08/2017 16 /19



Introduction and motivation Locally Balanced Proposals Peskun ordering Connection to other schemes
[e]e]e} 00000 0000000 oeo

Application to Multiple-try MCMC
Original Multiple-Try kernel (MTM)?

1. Sample y1,...,yn irig Ky(x,+)
2. Choose y from (yi, ..., yn) with probabilities o (7(y1),...,7(yn))
3. Sample x{, ..., x5_1 g K(y,-) and set x5 = x

T )+t (xy)
m(y1)++m(yn)

PROBLEM: as N — co MTM converges to MH with Q(x, dy) « 7(y)K,(x, dy)
= inherently mis-specified for local moves!

4. Accept y with probability 1 A

Liu&al.(2000) The multiple-try method and local optimization in metropolis sampling= JASA
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Application to Multiple-try MCMC
Original Multiple-Try kernel (MTM)?

id
. Sample Y15 YN ~ KU(X")

iid

1
2. Choose y from (yi, ..., yn) with probabilities o (7(y1),...,7(yn))
3. Sample x{', ..., x5_1 ~ Ky(y,-) and set xj; = x

T )+t (xy)
m(y1)++m(yn)

PROBLEM: as N — co MTM converges to MH with Q(x, dy) « 7(y)K,(x, dy)
= inherently mis-specified for local moves!

Locally balanced MTM kernel (Bal-MTM)

4. Accept y with probability 1 A

id
. Sample Y1, -5 YN ~ KU(X")

1

2. Choose y from (y1,...,yn) with probabilities o< (v/7(y1), ..., vV7(¥n))
3. Sample x{, ..., x5_1 g Ks(y,-) and set x5 = x

4 Va(y) VrOg)+ VT )

V() V)tV ()

'Liu&al.(2000) The multiple-try method and local optimization in metropolis sampling= JASA
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Example: 10* dimensional target (iid t-student)

Targeting a 10°-dimensional distribution
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Summary

e MCMC based on uninformed proposals (i.e. RWM) can be slow.

e Biasing proposals towards high-probability regions is a natural thing to do
(e.g. gradient-based MCMC), but how this should be done is not obvious.

e Framework of locally-balanced proposal can provide useful guidance to design
informed proposals, especially in discrete spaces.
Things which we didn’t discuss:
e Approximate versions to achieve a good cost-vs-efficiency trade-off?
e Interpolation between o | 0 and o T c0?
e Connections to continuous time versions
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