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Random Walk Notation

= P transition matrix of a lazy walk on an undirected, connected graph G

% if u=v,
1 .
Pu,v = Tg(u) If {U, V}GE(G),
0 otherwise.
= 7 with 7, = dzg“(:.“’) is the stationary distribution

Fundamental Quantities

* mixing time: tmi(2) =min{teN:Vue V:1 ¥ . |pl, - m|< 1}

= (maximum) hitting time: tpe = maxy,vev Ey [ min{t: X¢ = v} ]

Focus of this talk

= meeting time: tmeet = Maxy,vev Eyv [ Min {t: X; = Y:} |

» coalescing time: teoa = E1p2,.. 0[]
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Motivation: Voter Model

Voter Model

* At each round, each node "pulls" w.p. 1/2 the opinion of a random
neighbor, otherwise keeps his current opinion.

= Given a graph G = (V, E) with n nodes, each with a different opinion

~——— Duality
Time to reach consensus = Time for n coalescing particles to merge.

(voting) time

(coalescence) time
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Some Related Work and the Agenda of this Talk

For the discrete-time variant:
= For any graph, teal S tmeet - logn [Hassin, Peleg, DIST'01]

1 4 1
= For any graph, tea S e (Iog n+ W)
[Cooper, Elsisser, Ono and Radzik, SIAM J. Discrete Math.’13]
|E]

= For any graph t.a S é S where ¢ is the minimum degree

[Berenbrink, Giakkoupis, Kermarrec and Mallmann-Trenn, ICALP'16]
For the continuous-time variant:

= For any graph, teoa S thit [Oliveira, TAMS'12]

= (simplified) For graphs with tmix << n, tea behaves like on a clique
[Oliveira, Ann. Prob.’12]

= For many graphs, tceal X tmeet OF €ven tea < n (if G is regular)

= Under the premise that tmix and tmeet are “simpler’ quantities, when
does teoal X tmeet hold?
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[ Waiting times are i.i.d. exponentials with mean 1. ]
-

For the continuous-time variant:
= Suppose we are left with k random walks
= Waiting time until the next walk moves ~ Exp(k), and then walk hits one of
the others with probability (k—1)/(n-1)
= Time until k — 1 walks left is an exponential with mean:
1 n-1 1 n-1
T
k k-1 2 (2)

= Since Y2, (T = 2, expected coalescence time is
2

n
>3
k=2

:%(n_ 26—(“0(1))%

N \

()

For the discrete-time variant:
Answer “should be" (£ +0(1)) - n for lazy random walks (loop probability 1/2)
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The Upper Bound and some Consequences

Theorem (Upper Bound)
For any graph G = (V, E),

meet

t .
teoal S tmeet (1 + . |Og n)

= Whenever t;“—ee‘ 2 (log n)?, we have tea 2 tmeet
mix

- |f % =< 1, our bound states t.oal S tmeet - log n

mix

= bound can be viewed as a refinement of the basic teoal S tmeet - logn

Application to “Real World" Graph Models

If the max-degree satisfies A < n/ Iog3 n and tmix S logn, then teoal X tmeet.

—

Unfortunately we are not able to determine tmeet
(it is conceivable though that tmee: = 1/[7[3)
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Proof is quite technical, and we will only glance over one challenging part.

= Consider two random walks (X:)e0, (Y:)es0 starting from stationarity
= By a scaling argument,

tmix
Print(X,Y, tmx) ] > = p,
rLint(X, Y, tmi) 2 7o—=ip

« If we have j random walks Y1, Y2, ..., Y/ do we have

Pr[LjJ int(X,Ye,T)]z17(1,p)f 27

l=1

A

This is of course wrong, since the events are not independent!
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A Glimpse at the Proof of the Upper Bound

Proof is quite technical, and we will only glance over one challenging part.

= Consider two random walks (X:)e0, (Y:)es0 starting from stationarity
= By a scaling argument,

Print(X, Y, tme) ] > =25 = p,

B 16tmeet
= Define
Co= {(x0s ... %) € T Prlint(x,Y,7)] > g}
G = {(x05..., %) € Tr: Prlint(x,Y,7)]> P}
[clique (vertex-transitive graphs) ] [“asymmetric" graphs with core ]

- Then, Pr(X:)io€ G112 or Pr[(X:)ioe G ]> L.
= Suppose Pr[ (X:)i_o € C2] > §. Then a p-fraction of all walks have a “good"”
trajectory that is hit by a stationary walk with probability at least \/p ...

= (Issue: Random walks coalesce and could therefore have terminated earlier!)

S
o
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A Graph Demonstrating Tightness

» Gi, 1<i</n are cliques over \/n nodes, where & = tmeet/tmix
» Gy is a \/n-regular Ramanujan graph on n/\/a nodes
« Node z* is connected to one designated node in each G/ and to \/n/a

distinct nodes in G
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Intuition of the Construction

Gz

= G}, 1<i</nare cliques over \/n
nodes, where o = tmeet/tmix

= G, is a \/n-regular Ramanujan
graph on n/\/a nodes

= Node z* is connected to one
designated node in each G| and to

v/ n/a distinct nodes in G,
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Intuition of the Construction

Gy ,

= Gj, 1<i<+/n are cliques over \/n
nodes, where o = tmeet/tmix

= G, is a \/n-regular Ramanujan
graph on n/\/a nodes

= Node z* is connected to one
designated node in each G| and to

v/ n/a distinct nodes in G,

—— Random Walk Quantities

" tmix X N
= “>": Cheeger's Inequality
= “<" use principle of “Mixing-Time equal to Hitting-Time of Large Sets”
[Peres, Sousi, J. of. Theor. Prob.’15]
* tmeet X N

= very unlikely to meet outside G,
= After tpiy steps, w.p. (1/\/a)? both walks on G, = meet w.c.p.

* teal 2 /an logn
= 3 one walk starting from G{ that doesn't reach G; in \/an log n steps
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Contrasting the Example with the Upper Bound

For the example tmix X /N, tmeet X av/n and teoa 2 /a-nlogn:

14



Contrasting the Example with the Upper Bound

For the example tmix X /N, tmeet X av/n and teoa 2 /a-nlogn:

Theorem (Lower Bound)

For any a = ‘met ¢ [1 log? n] there exists a family of almost-regular graphs
y i , 108

t,
such that:

[t
teoal 2 Emeet - (1 + . |Og n)
tmeet
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Contrasting the Example with the Upper Bound

For the example tmix X /N, tmeet X av/n and teoa 2 /a-nlogn:

——— Theorem (Lower Bound)

For any o = tg‘:;‘ € [1,log? n] there exists a family of almost-regular graphs
such that:
t .
tcoal Z tmeet ° (1 + \ [ - N |0g n)
tmeet
\ v

~——— Theorem (Upper Bound)

For any graph G = (V,E),

tmeet

t .
teoal S tmeet (1 + . |0g n)

= For almost-regular graphs, t.a might be as large as tmeet - log n

= However, for any vertex-transitive graph, teoal X tmeet (X thit)
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Application to Concrete Networks

1D Grid 2D Grid

tmix X N tmix X N
2
thit X tmeet X N thit X tmeet X nlogn

teoal X n2 (\/) teoal X nIOgn (‘/)

3D Grid

2/3
tmixxn/

thit X tmeet X N

teoal X N v
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Application to Concrete Networks

1D Grid

2

tmix X N
2
thit X tmeet X N

teoat 2 1° (V)

Hypercube

tmix < log nloglog n
thit X tmeet X N

teoal X N v

2D Grid

tmix X N
thit X tmeet X nlogn

teoal X nlogn (V)

Expander Graph

I
&
§§%5/

tmix X IOg n

o

thit X tmeet X N

teoal X N v

3D Grid

2/3
tmixxn/

thit X tmeet X N

teoal X N v
Binary Tree
tmix X N

thit X tmeet X nlogn

teoal X Nlogn

) gg
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Summary and Open Questions (1/2)

Results
1. For arbitrary graphs, teoal S tmeet - (1 + 4 /:’“—‘Xt - log n)

2. For any @ [0, log? n], there is an almost-regular matching graph

3. For graphs with constant A/d, tmix S tmeet S teoal S thit S teov

Open Questions

= Can we prove teal S thi for all graphs?

(disc) _ (cont)
= Is it true that ¢t =t for any graph?

coal
* Reduce the number of walks to some threshold « € [1, n].
Conjecture:

= For any (regular) graph, no. walks can be reduced to \/n in O(n) time.
= More generally, it takes O((n/x)?) time to go from n to x.

a5
5l
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Another Direction: Cat-and-Mouse Game

Definition

= The mouse picks a deterministic walk
(vo, vi, v2,...), unaware of the transitions of the cat
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Definition

= The mouse picks a deterministic walk
(vo, vi, v2,...), unaware of the transitions of the cat

= The cat performs lazy random walk (Y:)z0 from u

= The expected duration of the game is

teat-mouse := max E,[min{t>0:Y;=v}].
u,(Vo,vise--)
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= very similar version in Aldous and Fill (Section 4.3)

= we may assume w.l.o.g. that the cat starts from
stationarity by simply letting the cat perform tmix steps
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Definition

= The mouse picks a deterministic walk
(vo, vi, v2,...), unaware of the transitions of the cat

= The cat performs lazy random walk (Y:)z0 from u

= The expected duration of the game is

teatmouse == max  E,[min{t>0:Yi=wv}].

u,(vo,vis---)
A

= very similar version in Aldous and Fill (Section 4.3)

= we may assume w.l.o.g. that the cat starts from
stationarity by simply letting the cat perform tmix steps

Comments on the Cat-and-Mouse Game:

= Easier to deal with in the sense there is only one random object (the cat!)

- C|ear|y, tmeet S tcat—mouse and thit S tcat—mouse-
But do we have tcatmouse X thit?
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