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Online maps: from Durham to Ripon

https://www.openstreetmap.org/

Tsukayama, Washington Post, January 30, 2013:
Estimated annual impact of online maps: $1.6tn.
Estimated growth 30% per year (smartphones!).
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SIRSN – a very short introduction
A journey to the Soukh

γ−1
2 v

−γ dv

1
2

d r dθ for γ > 2.
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SIRSN axioms
What would a scale-invariant (random) network look like?
(Aldous, 2014; Aldous and Ganesan, 2013)
Input: set of nodes x1, . . . , xn;
Output:
random network N(x1, . . . , xn) connecting nodes.

(1) Scale-invariance: for each Euclidean similarity λ,
L (N(λx1, . . . , λxn)) = L (λN(x1, . . . , xn)).

(2) If D1 is length of fastest route between two points at unit
distance apart then E [D1] <∞.

(3) Weak SIRSN property: the network connecting points of
(independent) unit intensity Poisson point process has
finite average length per unit area.
(Strong) SIRSN property: the network connecting points
of dense Poisson point process has finite average length
per unit area of “long-range” part of network
(more than distance 1 from source or destination).
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Results and a question

First SIRSN construction based on
randomized dyadic lattice: Aldous
(2014).

Improper speed-marked Poisson
line process Π produces random
map and pre-SIRSN: WSK (2017)

. . . which is actually a strong SIRSN:
Kahn (2016).

But can the Π-geodesics pause en
route?

Hard question, so seek answer for
“randomly broken” Π-geodesics?
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Random wandering on a SIRSN

Options: (thanks to Banerjee, Croydon for helpful
conversations!)

1. Random walk, connecting between successive jumps
using Π-geodesics.

(Con: Always stopping and starting!)

2. Brownian motion on the line pattern.

(Con: Relationship with speed limits is not explicit.)

3. Rayleigh random flight:
Proceed at top speed along current line;
Switch to intersecting lines depending on relative
speeds;
Choose new direction equi-probably.

4. This is SIRSN-RRF: a “randomly broken Π-geodesic”.

Can it be made to be speed-neighbourhood-recurrent?
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Scattering – an abstract approach (I)

How to define a SIRSN-RRF?
Proceed at top speed along current line;
Switch to intersecting lines depending on relative
speeds;
Choose new direction equi-probably.

Suffices to sample process when it changes speed.

Since Π is improper line process, opportunities to
change speed are dense along each line!

Convenient to take an abstract view:

Advantages of axiomatic method
“same as the advantages of theft over honest toil”
(Russell, 1919, p.71).
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Scattering – an abstract approach (sketch)
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Scattering – an abstract approach (II)

Generalization (possibly of wider interest?):

1. A discrete-time Markov chain on countable state-space is
an abstract scattering process if pab =ωabsb for
(symmetric) transmission probabilities ωab and
scattering probabilities sb (set ωa,ã = 0, sa > 0 for all a).

2. (Consider a matrix (ωab): if row-vectors (ωa·) all lie in
`1 then the Hahn-Banach theorem can be used to
characterize whether (ωab) is transmission matrix.)

3. Require dynamically reversibility for measure π :
Involution a↔ ã preserving measure π ,
with πapa,b̃ = πbpb,ã.

4. Relate πa/sã to scatter-equivalence classes (“lines”):
if there is a chain a = b0, b1, . . . , bn = c with
ωbm−1,b̃m

> 0, then πa/sã = πc/sc̃.
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Scattering – an abstract approach (III)
5 Adopt “Metropolis-Hastings recipe”: divide state-space

into equivalence classes using ω,
set πa =min{κ, κ′} where we choose κ, κ′ as positive
constants belonging to classes of a and ã,
set scattering probability sa =min{1, κ/κ′}
(dynamic reversibility is then automatic!).

6 In case of a suitable total ordering ≺ for each “line”,
transmission probabilities are functions of scattering
probabilities.
For each a ≺ b, there are ωa,± summing to 1 with

pa,b̃ = ωa,b̃sb̃ = ωa,+


 ∏

a≺c≺b
(1− sc̃)


 sb̃ ,

and similar for pb,ã using ωb,−.

All follows from choice of the class constants κ
(and say equiprobable choice of direction ωa,± = 1

2 ).
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Application

Define the SIRSN-RRF, sampled at changes in direction, by
specifying equilibrium probabilities at intersections of lines.

1. Scaling invariance: π(`1,`2) =min{vα1 , vα2 }, parameter α.

2. Scattering probability: s(`1,`2) =min{1, (v2/v1)α}.
3. Dynamical reversibility: non-symmetric Dirichlet form.

4. Apply Campbell-Slivnyak-Mecke theorem (twice!) to
identify (translated, rotated, scaled) “environment viewed
from particle” via reduced non-symmetric Dirichlet form.

5. Resulting log-relative-speed-changes X1, X2, . . . form a
stationary process.

16

Motivation SIRSN RRF Scattering Application Conclusion References

Dynamical reversibility
Let f(x,Π) be bounded, measurable, x an intersection of lines L1, L2 in Π.

For convenience set f̃ (L1,L2;Π) = f(L2,L1;Π).
Consider the non-symmetric form

B(f , g) =

E


E


E


 ∑∑

L1≠L2∈Π
f̃ (Z̃0;Π)× g(Z1;Π)×πx

∣∣∣ Z0 = x = (L1,L2)



∣∣∣ Π




 .

Using Campbell-Mecke-Slivnyak theory twice, this can be reduced (taking out
translations, rotations, scale-changes) to the study of

E
[ ∑

L3∈Π
f (2)(L∗1 ;Π∪{L∗1 })s(L̃0,L∗1 )




∏

L∈Π: L separates origin from L̃0∩L3

(1− s(L̃0,L))




× s(L̃0,L3)g
(2)(L3;Π∪ {L∗1 })

]

Read off equilibrium distribution from reduced non-symmetric form: at
critical α = 2(γ − 1), typical log-relative-speed-change X has stationary
symmetric Laplace distribution.
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Outline of remainder of argument

Adapt Kozlov (1985, Section 2) to show X is ergodic
(depends on nice properties of Poisson line process!).

Critical case E [X] = 0, i.e. α = 2(γ − 1): apply
continuum adaptation of Kesten-Spitzer-Whitman range
theorem (Spitzer, 1976, Page 38) to show log-speed
process

∑
X is neighbourhood recurrent.

In this critical case α = 2(γ − 1), SIRSN-RRF provides a
“randomly-broken Π-geodesic” which avoids slowing
down to zero speed (or speeding up to infinite speed).
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Conclusion

Critical case (α = 2(γ − 1)): SIRSN-RRF speed is
neighbourhood-recurrent.

Sub-critical case (α < 2(γ − 1)): SIRSN-RRF converges to
a random limiting point in the plane (trapped by cells of
tessellation of high-speed lines).

Super-critical case (α > 2(γ − 1)): SIRSN-RRF disappears
off to infinity (consider high-speed tessellation).

So a critical “randomly-broken Π-geodesic” does not halt
en route. What about Π-geodesics themselves?

THANK YOU!
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