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SIRSN and abstract scattering processes
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SIRSN - a very short introduction SIRSN axioms
A journey to the Soukh What would a scale-invariant (random) network look like?
_ (Aldous, 2014; Aldous and Ganesan, 2013)
_ | Input: set of nodes x1, ..., Xn;
random network N(x1,...,X5,) connecting nodes.
\ (1) Scale-invariance: for each Euclidean similarity A,
L(N(Axy,...,Axn)) = L(AN(Xx1,...,Xn)).
(2) If Dy is length of fastest route between two points at unit
/ distance apart then E[D;] < oo.
(3) Weak SIRSN property: the network connecting points of

YAyydv dr de fory> 2.
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(independent) unit intensity Poisson point process has
finite average length per unit area.

(Strong) SIRSN property: the network connecting points
of dense Poisson point process has finite average length
per unit area of “long-range” part of network
(more than distance 1 from source or destination).
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SIRSN RRF Scattering Application

Results and a question

First SIRSN construction based on
randomized dyadic lattice: Aldous
(2014).

Improper speed-marked Poisson
line process IT produces random
map and pre-SIRSN: WSK (2017)

...which is actually a strong SIRSN:
Kahn (2016).

But can the [I-geodesics pause en
route?

Hard question, so seek answer for
“randomly broken” II-geodesics?

References

1" Statistics

9

Motivation SIRSN RRF Scattering Application Conclusion

Random wandering on a SIRSN

Options: (thanks to Banerjee, Croydon for helpful
conversations!)
1. Random walk, connecting between successive jumps
using Il-geodesics.
(Con: Always stopping and starting!)
2. Brownian motion on the line pattern.
(Con: Relationship with speed limits is not explicit.)
3. Rayleigh random flight:
@ Proceed at top speed along current line;
o Switch to intersecting lines depending on relative
speeds;
e Choose new direction equi-probably.
4. This is SIRSN-RRF: a “randomly broken IT-geodesic”.

Can it be made to be speed-neighbourhood-recurrent?
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Scattering - an abstract approach (l)

@ How to define a SIRSN-RRF?

@ Proceed at top speed along current line;

e Switch to intersecting lines depending on relative
speeds;

e Choose new direction equi-probably.

@ Suffices to sample process when it changes speed.
@ Since IT is improper line process, opportunities to

change speed are dense along each line!

@ Convenient to take an abstract view:

Advantages of axiomatic method
“same as the advantages of theft over honest toil”
(Russell, 1919, p.71).
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Scattering - an abstract approach (sketch)
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Scattering - an abstract approach (ll)

Generalization (possibly of wider interest?):

1. A discrete-time Markov chain on countable state-space is
an abstract scattering process if pap = wapsp for
(symmetric) transmission probabilities wg,p, and
scattering probabilities s (set w, 5 = 0, 54 > 0 for all a).

2. (Consider a matrix (wgp): if row-vectors (wy.) all lie in
£' then the Hahn-Banach theorem can be used to
characterize whether (wgp) is transmission matrix.)

3. Require dynamically reversibility for measure r:

Involution a — d preserving measure T,
with TaP, 5 = MvPp,a-

4. Relate 11,/5; to scatter-equivalence classes (“lines”):
if there is a chain a = bg, by, ..., by = c with
w, o> 0, then 1, /sy = 1T/ Sz
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Scattering - an abstract approach (lll)

5 Adopt “Metropolis-Hastings recipe”: divide state-space
into equivalence classes using w,

e set 11, = min{k, K’} where we choose k, k' as positive
constants belonging to classes of a and a,

e set scattering probability s; = min{1, k/k’}
(dynamic reversibility is then automatic!).

6 In case of a suitable total ordering < for each “line”,
transmission probabilities are functions of scattering
probabilities.

For each a < b, there are w4+ summing to 1 with

= wa,+< I (1—55))Sg,
a<c<b

and similar for pj, 5 using wp, .
All follows from choice of the class constants k
(and say equiprobable choice of direction wg,+ = %).
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Application

Define the SIRSN-RRF, sampled at changes in direction, by
specifying equilibrium probabilities at intersections of lines.

1. Scaling invariance: 1y, ¢,) = min{v{, v5}, parameter «.
2. Scattering probability: sy, p,) = min{l, (v2/v1)%}.

3. Dynamical reversibility: non-symmetric Dirichlet form.
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. Apply Campbell-Slivhyak-Mecke theorem (twice!) to
identify (translated, rotated, scaled) “environment viewed
from particle” via reduced non-symmetric Dirichlet form.

5. Resulting log-relative-speed-changes X1, X», ...form a

stationary process.
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Dynamical reversibility
Let f(x,IT) be bounded, measurable, x an intersection of lines £1, £ in II.
For convenience set f([l,Lz;H) = f(Lp, Lq;11).
Consider the non-symmetric form

B(fvg) =
[E[EE [[E[ > F(Zoim) x g(Zy;T) X T ZO—X—(£1,£2)} )HH.

Li+Lorell

Using Campbell-Mecke-Slivnyak theory twice, this can be reduced (taking out
translations, rotations, scale-changes) to the study of

[E[ Z f(D([*;HU{[T})S(L'O,LI*)( H

) (1- S(fo,ﬁ))
L3€ll LEIT: L separates origin from £oNL3

X (70,0592 (L3;TTU {Lf})]

Read off equilibrium distribution from reduced non-symmetric form: at
critical « = 2(y — 1), typical log-relative-speed-change X has stationary

. T £ Statist
symmetric Laplace distribution. anisties




Application

Outline of remainder of argument

@ Adapt Kozlov (1985, Section 2) to show X is ergodic
(depends on nice properties of Poisson line process!).

@ Critical case E[X] =0, i.e. x =2(y — 1): apply
continuum adaptation of Kesten-Spitzer-Whitman range
theorem (Spitzer, 1976, Page 38) to show log-speed
process > X is neighbourhood recurrent.

@ In this critical case &« = 2(y — 1), SIRSN-RRF provides a
“randomly-broken IT-geodesic” which avoids slowing
down to zero speed (or speeding up to infinite speed).
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Conclusion

@ Critical case (x = 2(y — 1)): SIRSN-RRF speed is
neighbourhood-recurrent.

@ Sub-critical case (x < 2(y — 1)): SIRSN-RRF converges to
a random limiting point in the plane (trapped by cells of
tessellation of high-speed lines).

@ Super-critical case (x > 2(y — 1)): SIRSN-RRF disappears
off to infinity (consider high-speed tessellation).

@ So a critical “randomly-broken IT-geodesic” does not halt
en route. What about II-geodesics themselves?

THANK YOU!
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