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Dominated CFTP in a nutshell

Suppose that we're interested in simulating from the equilibrium
distribution of some ergodic Markov chain X.

Think of a (hypothetical) version of the chain, X, which was started by
your (presumably distant) ancestor from some state x at time —oo:
@ at time zero this chain is in equilibrium: Xo ~ 7;
o dominated CFTP (domCFTP) tries to determine the value of Xy by
looking into the past only a finite number of steps;

@ do this by identifying a time in the past such that all earlier starts
from x lead to the same result at time zero.



domCFTP: basic ingredients

@ dominating process Y
e draw from equilibrium 7y
o simulate backwards in time
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domCFTP: basic ingredients

@ dominating process Y
e draw from equilibrium 7y
o simulate backwards in time
@ sandwiching

Lowerjate <X Lowereay < ... < Target < ... < Upper, < Upper e

early

@ coalescence
eventually a Lower and an Upper process must coalesce




M /G /c queue
o Customers arrive at times of a Poisson process: interarrival times
Tn ~ Exp(\)
o Service durations S, are i.i.d. with E[S] =1/ (and E [S?] < o0)

o Customers are served by ¢ servers, on a First Come First Served
(FCFS) basis

A
Queue is stable iff p := — < 1.
e



The (ordered) workload vector just before the arrival of the n'" customer
satisfies the Kiefer-Wolfowitz recursion:

W,i1 =R(W,+ 5,01 — T,1)™ forn>0

@ add workload S, to first coordinate of W, (server currently with least work)
@ subtract T, from every coordinate (work done between arrivals)
@ reorder the coordinates in increasing order

@ replace negative values by zeros.

Aim
Sample from the equilibrium distribution of this workload vector




DomCFTP for queues
We need to find a dominating process for our My /G/c [FCFS] queue X.

C & Kendall (2015): dominate with M/G/c [RA]

o RA = random assignment, so ¢ independent copies of M, ,./G/1
o Evidently stable iff M/G/c is stable

o Easy to simulate in equilibrium, and in reverse

°

Care needed with domination arguments: service durations must be
assigned in order of initiation of service



domCFTP algorithm

e Dominating process Y is stationary M/G/c [RA] queue




domCFTP algorithm

e Dominating process Y is stationary M/G/c [RA] queue

@ Check for coalescence of sandwiching processes, U¢ and L€:
o these are workload vectors of M/G/c [FCFS] queues
o L€ starts from empty

e U°¢ is instantiated using residual workloads from Y




Omnithermal simulation
Back to the general perfect simulation setting...

Suppose that the target process X has a distribution 7z that depends on
some underlying parameter .
In some situations it is possible to modify a perfect simulation algorithm

so as to sample simultaneously from mg for all 3 in some given range: call
this omnithermal simulation.

Eg.
e Random Cluster model (Propp & Wilson, 1996)
o Area Interaction Process (Shah, 2004)



Omnithermal simulation

Back to the general perfect simulation setting...

Suppose that the target process X has a distribution 7z that depends on
some underlying parameter .

In some situations it is possible to modify a perfect simulation algorithm
so as to sample simultaneously from mg for all 3 in some given range: call
this omnithermal simulation.
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e Random Cluster model (Propp & Wilson, 1996)

o Area Interaction Process (Shah, 2004)

Question

Can we perform omnithermal simulation for M/G/c queues with
varying numbers of servers?




Comparing queues with different numbers of servers

Consider a natural partial order between vectors of different lengths:

for V€ € R€ and V™ ¢ RET™ write V™™ < V€ if and only if

Verm(k4+m) < Ve(k), k=1,...,c.

(“Busiest ¢ servers in V<™ each no busier than corresponding
server in V")



Comparing queues with different numbers of servers

Consider a natural partial order between vectors of different lengths:

for V€ € R€ and V™ ¢ RET™ write V™™ < V€ if and only if

Verm(k4+m) < Ve(k), k=1,...,c.

(“Busiest ¢ servers in V<™ each no busier than corresponding
server in V")

Observation

Dynamics for workload vectors with different numbers of servers are
monotonic w.r.t. this partial order




So we can produce processes USt™ and L¢T™ over [T, 0], coupled to our
c-server dominating process Y, such that:

e Uct™ and L™ sandwich our M/G/(c + m) FCFS process of interest

o USt™ < US and LT < L€
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So we can produce processes USt™ and L¢T™ over [T, 0], coupled to our
c-server dominating process Y, such that:

e Uct™ and L™ sandwich our M/G/(c + m) FCFS process of interest

o USt™ < US and LT < L€

But UST™ and L™ won’t necessarily coalesce before time 0!
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Establishing coalescence

Write Cf for the remaining time (at time t) until coalescence of Uy and
L under the assumption of no more arrivals:

Cs = Ug(ng), where nf = max{l < k < c : Ui (k) # Li(k)} .
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Evolution of Cf

Suppose that we see an arrival (in both U€ and L) at time t, with
associated workload S.

o if Uf_(1) = L{_(1) then arrival does not affect the time to
coalescencence;

o if not, then we will see an increase in the time to coalescence iff the
new service is placed at some coordinate k > nf_ in U°.

ce = max{c,f_ L (US_(1) + 5)1[Ut57(1)#§7(1)]}




Problem

It is not true in general that CS*7" < C(§ = C7" < Cf.
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Solution

Write T€ < 0 for the coalescence time of U and L€.
Condition A

At NO arrival time 7 € [T, T¢] do we find LS_(1) = US_(1) >0
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Solution

Write T€ < 0 for the coalescence time of U and L€.
Condition A

At NO arrival time 7 € [T, T€] do we find LS_(1) = US_(1) >0

Theorem

If Condition A holds then T<T™ < T¢ for any m € N.

This gives us a method for performing omnithermal domCFTP:

@ for a given run of the c-server domCFTP algorithm, check to see

whether Condition A holds. If not, repeatedly backoff (T <— 2T) until
Condition A is satisfied;

Q run L™ (for any m € N) over [T, 0], and return L<T™(0).




Example output

Simulation results from 5,000 runs for M/M/c with A =2.85, u =1 and
c=3(p=0.95)

@ 333 (7%) runs needed extending

@ only 2 runs needed more than 2 additional backoffs

Mean workload at each server, for c =3 and m € {0, 1,2, 3}:

4- Number of servers
HsW+sMWs5(]s

Mean workload
N

Workload vector coordinate



Example output

Distribution functions for workload at (a) first and (b) last coordinates of
the workload vector:

/ Number of servers
/ —-3--4 -5 6

/] v Number of servers
/7 -3 --4 5 6

Distribution function
AN
Distribution function
\,
\

o 2 4 6 8 10 0 2 4 6 8 10
(a) First coordinate workload (b) Last coordinate workload



How expensive is this in practice?

Not very!

e Simulations indicate that Condition A is satisfied (with no need for
further backoffs) > 90% of the time when p < 0.75, and in > 70% of
cases when p = 0.85

@ In addition, runs in which Condition A initially fails typically don't
require significant extension

o Theoretical analysis of run-time would be nice, but hard!



Extensions

This idea can be applied in other settings.

@ Consider keeping c fixed, but increasing the rate at which servers
work; same analysis as above holds.

@ Moreover, there's no need to restrict attention to Poisson arrivals!
Blanchet, Pei & Sigman (2015) show how to implement domCFTP

for GI/Gl/c queues, again using a random assignment dominating
process.



Conclusions

o It is highly feasible to produce perfect simulations of stable G/ /Gl /c
queues using domCFTP

@ Furthermore, with minimal additional effort this can be accomplished
in an omnithermal way, allowing us to simultaneously sample from
the equilibrium distribution when

e using ¢ + m servers, for any m e N
e increasing the service rate
e or both.

@ There are other perfect simulation algorithms out there, e.g. gradient
simulation for fork-join networks (Chen & Shi, 2016), for which it
may be possible to produce omnithermal variants.
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