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Dominated CFTP in a nutshell

Suppose that we’re interested in simulating from the equilibrium
distribution of some ergodic Markov chain X .

Think of a (hypothetical) version of the chain, X̃ , which was started by
your (presumably distant) ancestor from some state x at time −∞:

at time zero this chain is in equilibrium: X̃0 ∼ π;

dominated CFTP (domCFTP) tries to determine the value of X̃0 by
looking into the past only a finite number of steps;

do this by identifying a time in the past such that all earlier starts
from x lead to the same result at time zero.



domCFTP: basic ingredients

dominating process Y
draw from equilibrium πY
simulate backwards in time

sandwiching

Lowerlate 4 Lowerearly 4 . . . 4 Target 4 . . . 4 Upperearly 4 Upperlate

coalescence
eventually a Lower and an Upper process must coalesce
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M/G/c queue

Customers arrive at times of a Poisson process: interarrival times
Tn ∼ Exp(λ)

Service durations Sn are i.i.d. with E [S ] = 1/µ (and E
[
S2
]
<∞)

Customers are served by c servers, on a First Come First Served
(FCFS) basis

Queue is stable iff ρ :=
λ

µc
< 1.



The (ordered) workload vector just before the arrival of the nth customer
satisfies the Kiefer-Wolfowitz recursion:

Wn+1 = R(Wn + Snδ1 − Tn1)+ for n ≥ 0

add workload Sn to first coordinate of Wn (server currently with least work)

subtract Tn from every coordinate (work done between arrivals)

reorder the coordinates in increasing order

replace negative values by zeros.

Aim

Sample from the equilibrium distribution of this workload vector



DomCFTP for queues

We need to find a dominating process for our Mλ/G/c [FCFS ] queue X .

C & Kendall (2015): dominate with M/G/c [RA]

RA = random assignment, so c independent copies of Mλ/c/G/1

Evidently stable iff M/G/c is stable

Easy to simulate in equilibrium, and in reverse

Care needed with domination arguments: service durations must be
assigned in order of initiation of service



domCFTP algorithm

Dominating process Y is stationary M/G/c [RA] queue

Check for coalescence of sandwiching processes, Uc and Lc :

these are workload vectors of M/G/c [FCFS ] queues

Lc starts from empty

Uc is instantiated using residual workloads from Y
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Omnithermal simulation

Back to the general perfect simulation setting...

Suppose that the target process X has a distribution πβ that depends on
some underlying parameter β.

In some situations it is possible to modify a perfect simulation algorithm
so as to sample simultaneously from πβ for all β in some given range: call
this omnithermal simulation.

E.g.

Random Cluster model (Propp & Wilson, 1996)

Area Interaction Process (Shah, 2004)

Question

Can we perform omnithermal simulation for M/G/c queues with
varying numbers of servers?



Omnithermal simulation

Back to the general perfect simulation setting...

Suppose that the target process X has a distribution πβ that depends on
some underlying parameter β.

In some situations it is possible to modify a perfect simulation algorithm
so as to sample simultaneously from πβ for all β in some given range: call
this omnithermal simulation.

E.g.

Random Cluster model (Propp & Wilson, 1996)

Area Interaction Process (Shah, 2004)

Question

Can we perform omnithermal simulation for M/G/c queues with
varying numbers of servers?



Comparing queues with different numbers of servers

Consider a natural partial order between vectors of different lengths:

for V c ∈ Rc and V c+m ∈ Rc+m, write V c+m � V c if and only if

V c+m(k + m) ≤ V c(k) , k = 1, . . . , c .

(“Busiest c servers in V c+m each no busier than corresponding
server in V c”.)

Observation

Dynamics for workload vectors with different numbers of servers are
monotonic w.r.t. this partial order
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So we can produce processes Uc+m and Lc+m over [T , 0], coupled to our
c-server dominating process Y , such that:

Uc+m and Lc+m sandwich our M/G/(c + m) FCFS process of interest

Uc+m
t � Uc

t and Lc+m
t � Lc

t

But Uc+m and Lc+m won’t necessarily coalesce before time 0!
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Establishing coalescence

Write C c
t for the remaining time (at time t) until coalescence of Uc

t and
Lc
t under the assumption of no more arrivals:

C c
t = Uc

t (nc
t ), where nc

t = max {1 ≤ k ≤ c : Uc
t (k) 6= Lc

t (k)} .
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Evolution of C c
t

Suppose that we see an arrival (in both Uc and Lc) at time t, with
associated workload S .

if Uc
t−(1) = Lc

t−(1) then arrival does not affect the time to
coalescencence;

if not, then we will see an increase in the time to coalescence iff the
new service is placed at some coordinate k ≥ nc

t− in Uc .

C c
t = max

{
C c
t− , (Uc

t−(1) + S)1[Uc
t−(1)6=Lct−(1)]

}



Problem

It is not true in general that C c+m
0 ≤ C c

0 =⇒ C c+m
t ≤ C c

t .
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Solution

Write T c ≤ 0 for the coalescence time of Uc and Lc .

Condition A

At NO arrival time τ ∈ [T ,T c ] do we find Lc
τ−(1) = Uc

τ−(1) > 0

Theorem

If Condition A holds then T c+m ≤ T c for any m ∈ N.

This gives us a method for performing omnithermal domCFTP:

1 for a given run of the c-server domCFTP algorithm, check to see
whether Condition A holds. If not, repeatedly backoff (T ← 2T ) until
Condition A is satisfied;

2 run Lc+m (for any m ∈ N) over [T , 0], and return Lc+m(0).
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Example output

Simulation results from 5,000 runs for M/M/c with λ = 2.85, µ = 1 and
c = 3 (ρ = 0.95)

333 (7%) runs needed extending

only 2 runs needed more than 2 additional backoffs

Mean workload at each server, for c = 3 and m ∈ {0, 1, 2, 3}:

Number of servers

3 4 5 6

1 2 3 4 5 6
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Workload vector coordinate
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o
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a
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Example output

Distribution functions for workload at (a) first and (b) last coordinates of
the workload vector:

Number of servers
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(a) First coordinate workload
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(b) Last coordinate workload
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How expensive is this in practice?

Not very!

Simulations indicate that Condition A is satisfied (with no need for
further backoffs) > 90% of the time when ρ ≤ 0.75, and in > 70% of
cases when ρ = 0.85

In addition, runs in which Condition A initially fails typically don’t
require significant extension

Theoretical analysis of run-time would be nice, but hard!



Extensions

This idea can be applied in other settings.

1 Consider keeping c fixed, but increasing the rate at which servers
work; same analysis as above holds.

2 Moreover, there’s no need to restrict attention to Poisson arrivals!
Blanchet, Pei & Sigman (2015) show how to implement domCFTP
for GI/GI/c queues, again using a random assignment dominating
process.



Conclusions

It is highly feasible to produce perfect simulations of stable GI/GI/c
queues using domCFTP

Furthermore, with minimal additional effort this can be accomplished
in an omnithermal way, allowing us to simultaneously sample from
the equilibrium distribution when

using c + m servers, for any m ∈ N
increasing the service rate

or both.

There are other perfect simulation algorithms out there, e.g. gradient
simulation for fork-join networks (Chen & Shi, 2016), for which it
may be possible to produce omnithermal variants.
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