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Recap

(&t)t=0 Markov chainin E, x:E —V, X;=x(&)
Be) = lim £ B(x() ~ x(&0)i60 = ) = [ {x(n) = x(Oale. dn)

al(€) = lim e E(x(60)~x(60) 6o = €) = [ elm—x(€)a(é. dn)
We look for conditions under which X; is close to the solution of
the differential equation x; = b(x;) with high probability.

We will assume that the transition kernel g is bounded.

We assume for now that V' has an inner product. We used this in
defining «.



Martingales

For any bounded measurable function f : E — R, the following
processes are martingales

M= f(e) — fle) — [ Qte)ds. M= mE — [ e(r)e)ds
where

0r(€) = [{rm=F(Ebaté dn). &N = [ IF~FOFas.dn)
Write x = (x;) in some orthonormal basis of £. Then

B8=Qx, a= Za,-, where «a; = &(x;)
i
so the following processes are martingales

Me = X — Xo /O B(e)ds, e = M, — /0 a(¢2)ds.



Martingale inequalities
If the diffusivity « is small, then so is the martingale M.
e Doob’s L? inequality
For all stopping times T,
-
E <sup ]Mt\2> < 4E/ a(&s)ds.
t<T 0

e Exponential martingale inequality

Assume that the jumps of the ith coordinate process are
bounded uniformly by A;. Then, for all i, all stopping times T
and all 4,7 € (0, 00),

. T
P <Sup IM{| > 6 and / j(&s)ds < T> < 26~ 9/(2A7)
0

t<T

where A € [1,00) is given by Alog A = dA;/T.



Gronwall
Subtract the equations

t t
X=X+ Mt [ B(eds, x=ro+ [ bx)ds
0 0
to obtain

X — xt] < [Xo — 0| + [Me] + \ [ 6te) - syas.

Fix T >0and § > 0. Set ¢ = e X7§/3 where K is a Lipschitz

constant for b. Consider the events Qg = {|Xo — xo| < €},

-
Q= {/ |B(&:) — b(Xe)|dt < 5}, Q= {sup M| < e
0 t<T
On Qo N Q1 N, we have, forall t < T,
t
|Xt_Xt| <3€+K/ ‘XS—X5|d5

so | Xt — x¢| < 0 by Gronwall's lemma.



Localization
The tube argument allows to localize these estimates.

Assume that (x; : t € [0, tp]) is continuous, with

t
Xt = X0 + / b(xs)ds, t €0, to].
0

Fix an open set U containing every point at distance at most §
from {x; : t € [0, tp]}. Assume only that [Vb| < K in U.

In the Gronwall argument, take
T:mf{t}O . ‘Xt—Xt| g U}/\to
to see that, on Qo N Q1 N Qy,

sup | Xe — x¢| < 0.
t<T

In particular X7 € U, so T = ty. So, on the same event,

sup | Xe — x¢| < 4.
t<ty



Long-time estimates for stable flows
Recall

(&t)t=0 is @ Markov chainin E, x: E— V., X;=x(&)
B6) = lim £ E(x(€:) ~ x(é0)l60 = ) = [ (x(1) ~ x(©)a(é: ).
E

We look for conditions under which X; is close to the solution of
the differential equation x; = b(x;) with high probability.

Take E=V =R and b= 8 and Xg = xp. Here we will suppose
that the associated flow of diffeomorphisms

de(x) = b(¢e(x)),  do(x) = x
has the following stability properties: for some A > 0 and B < oo,
Voe(x)yl < e Myl,  [V26:(x)(y,y)| < Be M y|>.

This forces b to have a stable fixed point. Something close to
b(x) = Ax with (Ax,x) < —A|x|? will work.



Long-time estimates for stable flows

We interpolate from x1 to X7 using (¢7-+(X¢) : t € [0, T]).

The following process is a martingale

M: = 7_o(Xe) — b7(X0) — /0 p(T — 5.X:)ds

where
(5, ) / {65y — Y60y — x)}alx, dy).
Moreover .
E(\MtF)—/O o(T — 5, Xs)ds
where

(s, x) / {¢s(y) — ds(x)}*q(x, dy).



Long-time estimates for stable flows
Now

;
X1 = ¢1(%0) = M1 +/ p(T —t, X¢)dt
0

and from our stability assumptions

o(s,x) < e a(x), |p(s,x)| < Be™*a(x)/2
SO
T Jolos
B(MrP) < ke | e T 00 < 19
. 2\
" T o
Blla| o
T — s, X < —.

So we get a uniform-in-time estimate

lloll o Bl o
_ < .
[ X7 — 91 (x0)[[2 < 4/ ot o




Averaging over fast variables (joint with M. Luczak)

Recall join-the-shorter-queue with memory:
e N queues, each serves at rate 1
e customers arrive at rate N for some \ <1
e choose a queue at random and compare with memory queue

e join the shorter queue and update the memory

Ztk = proportion of queues of length at least k

Y: = length of memory queue.
Use fluid coordinate map x(z,y) = z. The drift of Z¥ is

Bi(z,y) = Azk—1lyyop-1y — Azkl{yopy — (26 — Zkt1)-



Averaging over fast variables

In general, for a Markov chain (&¢)¢=0 in E, we may distinguish
between fluid and fast coordinates

x:E—=V, y:E—=I

and consider the drift and the local transition rates

B(E) = /E {x(n) — x(©)}a(E. dn).
Y&y =q(&{ne E:y(n)=y}).

Let us suppose that

B(&) = b(x(£),¥(€)), (& Y) = &xe)(¥(8),¥")

where Gy = (gx(y,¥’))y,7er is the generator of a Markov chain.



Averaging over fast variables

We may guess that the fluid coordinates behave approximately as
).Q- = E(Xt)
where b is the effective drift

b(x) =D b(x,y)mx(y)
y
with 7, the invariant distribution of Gy.

e How to build this into quantitative estimates?
e When does it work?



Averaging over fast variables
Fix a reference state y € | and consider the function

:
(xy) =E /O {b(x,y¢) — b(x, 7¢)}dt

where

o T=inf{t=>0:y: =y}

* (yt)t=0 and (¥:)¢>0 have generator Gy with yo =y, yo = y.
Assume we can couple (y¢)¢=0 and (¥:)t>0 so that

sup E (T) < 7.
x€V,y€el (’y)( )

Then |x(x,y)| < 7[/bs and

Gx(x,y) =Y _ &y, ¥y )x(x,¥') = b(x,y) = b(x).
y'el

The notion that Y; = y(&;) converges fast to equilibrium is
quantified in treating 7 as small.



Averaging over fast variables

We make a small correction to the fluid variable

Then

where

A = / / {x(x(n),y(m) — x(x(&), y(n) ta(&s, dn)ds

We can make hypotheses so that M is small (as above) and also
A. Then the Gronwall argument gives an estimate on the deviation
from x; of X; and hence of X;.



