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I. Global overview
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Theme

Math from physics

Q1: What new mathematical structures and constructions can we extract from
studying M-theory?

Math in Physics

Q2: What mathematical structures/conditions/tools should we have in place in
order to properly describe M-theory?

By phrasing in context of math, the physics becomes more transparent.

Upshot
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Richness of M-theory
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The Physical theories and corresponding geometry

M-theory in 11 dimensions.
Objects ⊃ M-branes: M2-brane and M5-brane.

Reduction to various string theories in 10 dimensions.
Objects ⊃ string and D-branes.

Requirements:
Consistent formulation.
No anomalies.
Mathematically rigorous.
Contain as ‘much information’ about the systems as possible.

Schematically:

Physical theory Structure Group
Dirac theory of Spinors Spin Spin(n)
string theory String String(n)
fivebrane theory Fivebrane Fivebrane(n)
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Structures associated to M-branes

Topological Differential

refinement
// Differential geometric

Field strengths Potentials

Anomalies/constraints Wilson loops/holonomy

Brane Topological Geometric
Particle F2 field strength connection A1

String H3 field strength B-field B2

M2-brane G4 field strength C-field C3

M5-brane
G4,
H3,
G7/H7 dual

C-field C3
B-field B2
“dual field" C6/B6
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Main setting/ingredients
String Theory M-Theory

sigma model φ : Σ ↪→ X 10 sigma model Φ : M2 ↪→ Y 11

ψ ∈ Γ(SΣ⊗ φ∗TX 10),

B2 ; 1-gerbe

ψ ∈ Γ(SM2⊗N (M2 ↪→ Y 11),

C3 ; 2-gerbe [Aschieri-Jurco, · · · ]

D-brane ⊃ ∂Σ M5-brane ⊃ ∂M2

Freed-Witten condition
W3 + [H3] = 0 ∈ H3(X 10;Z)

Witten flux quantization
1
2λ+ [G4] = a ∈ H4(Y 11;Z)

Viewpoint since [Kriz-S. 04]: Physical conditions via obstruction theory (AHSS):

Twisted Spinc Twisted String [Wang, S.-Schreiber-Stasheff]

Twisted K-theory (AHSS) Twisted elliptic cohomology [S.]

Homotopic constructions:
[Ando-S., S.-Westerland, Lind-S.-Westerland]

Here we step back: Rational + geometry + other angles.
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Context

Physics
setting

M-theory

Semiclassical

Rational Homotopy Theory

Quantum

Generalized cohomology
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Generalities on what physics wants

Nontrivial physical entities, such as fields, charges, etc. generically take values in
cohomology.

Cohomology

ww �� ''

Generalized Twisted Differential

I. Generalized: Capture essential topological and bundles aspects.

II. Twisting: Account for symmetries via automorphisms.

III. Differentially refined: Include geometric data, such as connections, Chern
character form, smooth structure, smooth representatives of maps ...

10 / 82



I. Generalized cohomology

Motivation from modelling of fields (in QFT, string theory and M-theory).

Schematically:

Ω•(M)

exact complex

��

Classical

��

H•dR(M)

quantization

��
H•(M;Z)

anomaly cancellation

��
E•(M) Quantum

⇒ Partition functions are sums/integrals over the moduli spaces of fields

Z =

∫
M

e iS

should take values in E .
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II. Twists

We would like to introduce automorphisms.
These arise from geometric and physical considerations.
Homotopy p.o.v.: moduli/family setting; bundles of spectra.

Ω•(M)

twistΩ

��
exact

complex
// H•dR(M)

twistdR

�� quantization // H•(M;Z)

twistH

�� anomaly

cancellation
// E•(M)

twistE

��

Relations among various twists?

Example (twistΩ)
Twisted differential forms are forms valued in the orientation line bundle. Top
such form is a density (pseudo-volume form).
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Example: Twisted de Rham cohomology
The de Rham complex (Ω•, d) : . . .

d−→ Ωi (X )
d−→ Ωi+1(X )

d−→ . . .
Twist by a 1-form built out of scalar ftn: d ; dφ := d + dφ∧ with d2

φ = 0.

Example (Witten’s deformation of Morse theory)
For smooth f : M → R, the Witten differential is ds = e−sf desf = d + sdf ∧,
where s ∈ R. Then d2

s = 0, ds : Ωp → Ωp+1. The term e−sf is a
quasi-isomorphism . . . // Ωp d //

e−sf ���

Ωp+1

e−sf��

// . . .

. . . // Ωp ds // Ωp+1 // . . .

and ds yields isomorphic cohomology groups.

Twist by a closed 3-form: dH3 = d − H3∧, with d2
H3

= 0.

Definition
Twisted de Rham cohomology: H i (X ,H3) := ker(dH3)/im(dH3)

Example (The Ramond-Ramond (RR) fields in string theory)
F =

∑
i≤5 u

−iF2i+ε, ε = 0 or 1 for type IIA or type IIB string theory. These are
twisted by a closed 3-form, the NS-field H3.

To make periodic: adjoin a generator u of degree 2 which implements the
periodicity & makes total degree uniform:

dH3 = d − u−1H3∧ .
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Higher twists?

Mathematically: can build a differential by adding to dH all expressions of the
form u−iH2i+1∧, i.e.

d ′H = d +
∞∑

i=0

u−iH2i+1 ∧ .

There is a twisted graded de Rham complex with differential
d +

∑∞
i=1 u

−iH2i+1∧ , provided the differential forms H2i+1 are closed.

Example (Degree seven twist in heterotic string theory [S.08])
Form F = F + ∗F , with F is the abelianized Yang-Mills field & ∗F its dual.
Variation of the action S =

∫
H3 ∧ ∗H3 +

∫
F2 ∧ ∗F2 with respect to A and using

the “Chapline-Manton coupling" H3 = CS3(A) gives

(d - H7∧)F = 0 .

This gives a twisted differential dH7 = d − H7∧ which in nilpotent, i.e. squares to
zero, d2

H7
= 0, since H7 is closed.

revisit later in dualities →
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Reverse engineering for twisted generalized cohomology

Rational twisted cohomology arises as image of some Chern character.

Example (Twisted K-theory)
Degree three twist H3:

chH3 : K•(X ,H3)︸ ︷︷ ︸
twisted K−theory

−→ Hev(X ,H3)︸ ︷︷ ︸
twisted de Rham cohomology

Now if we are presented with higher degree twists on the left-hand-side,
would they be images of some generalized Chern character whose domain is
some generalized cohomology theory?

chE
tw : E•(−; twist) −→ H•(−; twist) .
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III. Differential refinement
Introduce geometric data via differential forms (connections, Chern forms,
· · · ), i.e., retain differential form representatives of cohomology classes.

Ω•(M)

adjoin

uu
adjoin

��

adjoin

((
H•dR(M)

refinement
��

H•(M;Z)

refinement
��

E•(M)

refinement
��

Ĥ•dR(M) Ĥ•(M;Z) Ê•(M)

Amalgam of an underlying (topological) cohomology theory and the data of
differential forms:

Differential gen. cohomology

��

// Forms

��
Gen. cohomology // de Rham cohomology

That is, we have a fiber product or twisted product

“Differential cohomology = Cohomology×de Rham Forms”

This has various explicit presentations, for instance as a triple in the
Hopkins-Singer model [?], as well as using sheaves of spectra [?] and toposes
and smooth stacks [?].
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Example (Differential refinement of integral cohomology)
Various approaches to differential integral cohomology:

Integral
cohomology

geometric approach

��

algebraic

{{

axiomatic

##
Deligne cohomology/
higher bundles

ks +3 Differential characters/
gerbes

ks +3 Homotopy pullback

Consider the truncated de Rham complex[
Ω0 = O

d // Ω1 d // Ω2 d // · · · d // Ωn
]

Replace the structure sheaf O with the multiplicative group O×
under the exponential map to get the Deligne complex[
O×

d // Ω1 d // Ω2 d // · · · d // Ωn
]

Deligne cohomology Hn+1
D (X ) in degree n + 1 is the hypercohomology

for this complex of sheaves of abelian groups, i.e. abelian sheaf
cohomology with coefficients in this chain complex.

Ωn+1
cl (M)

dR
((

Ĥn+1
∇ (X ; Z)

F (−) 66

I
((

Hn+1(M; R)

Hn+1(M; Z)

ch 66

[Schreiber ...]
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Differential generalized cohomology
Start with a generalized cohomology theory h

Ω(X , h∗) := Ω(X )⊗Z h∗ Smooth differential forms with
coefficients in h∗ := h(∗)

Ωcl(X , h∗) ⊆ Ω(X , h∗) closed forms
HdR(X , h∗) cohomology of the complex

(
Ω(X , h∗), d

)
Definition
A smooth extension of h is a contravariant functor

ĥ : Compact Smooth Manifolds −→ Graded Abelian Grps
Ωcl(X , h∗)

��
ĥ(X )

R

66

I

(( ((

HdR(X , h∗)

h(X )

OO

[Chern-Simons, Cheeger-Simons, Simons-Sullivan, Hopkins-Singer, Bunke-Schick, Schreiber, ...]
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Full structure

Twisted ∩ Differential ∩ Generalized

Ω•(M)

adjoin

uu ��

adjoin

((

Geometric

H•dR(M)

twistdR

��

refinement
��

H•(M;Z)

twistH

��

refinement
��

E•(M)

twistE

��

refinement
��

Topological

Ĥ•dR(M)

twistΩ̂

WW
Ĥ•(M;Z)

twistĤ

WW
Ê•(M)

twistÊ

WW
Combined

[Bunke-Nikolaus, Grady-S.]

Examples
1 Twisted Movara K-theory K(2) & E-theory E(2) [S.-Westerland], twisted tmf

[with Ando].
2 Twisted K-theories of n-vector bundles. e.g. K(K(KU)) [S.-Lind-Westerland].
3 Differential refinements of twisted cohomology theories including above

[Grady-S.].
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Application: What is needed to describe RR fields?
Recall approach [Kriz-S] : Physical conditions as obstructions, to orientation or as
differentials in the AHSS spectral sequence.
The spectral sequences can be extended to the differential refinements, that is we
can discuss theory E by adjoining geometric data to it.
Theorem (Grady-S.)
We have the differential refinement of the following:

1 Primary cohomology operations: Steenrod Sq.
2 Secondary cohomology operations: Massey 〈·, ·, · · · 〉Massey .
3 AHSS with a concrete identification of the differentials .

Untwisted theory E
twist //

refinement

��

Twisted theory Etw

refinement

��

Differential theory Ê
twist // Twisted differential theory Êtw

d
twist //

refinement

��

dtwist = d + secondary operation

refinement

��
drefined = d̂

twist // d̂twist = d̂ + ̂secondary operation 20 / 82



Higher tangential structures
Proper description of fields requires some extra tangential structure

BSO〈n〉
��

X

f
44

f // BSO

Spin structure: n = 2 BSpin

����
X

f
55

f // BSO
w2 // K (Z2, 2)

String structure n = 4 BString

����
X

f
44

f // BSpin
1
2 p1
// K (Z, 4)

Even higher structures: Fivebrane (n = 9), Ninebrane (n = 12).
k 7 8 9 10 11 12

πk (O(n)) Z Z2 Z2 0 Z 0

O(n)〈k〉 String(n) Fivebrane(n) O〈9〉(n) O〈10〉(n) Ninebrane(n)

{

kill π7

AA {

kill π8

AA �

kill π9

== �

kill π11

??
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At the infinitesimal level:

Examples
1 string is a Lie 2-algebra
2 fivebrane is a Lie 6-algebra
3 ninebrane is a Lie 10-algebra.

These are truncations of L∞-algebras.
Characteristic classes of L∞-algebra bundles [S.-Schreiber-Stasheff].

Remark (Variations)

Twisted: All the above can be twisted and differentially refined, e.g. twisted
differential String structures etc. [S.-Schreiber-Stasheff].

Stacky: Via stacks and higher bundles [Fiorenza-Schreiber-Stasheff].

Indefinite: Above structures can be defined for the indefinite (Lorentzian
case) via Spin(p, q) [S.-Shim].

Rational: Explicit characterizations at the level of rational homotopy and
cohomology [S.-Wheeler].

... more later ...
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Why stacks? (in a nutshell)

G a Lie group ; Classifying space BG is a topological space

[X, BG] ' equivalence classes of G -principal bundles on X

Shortcoming: BG does not know about:
1 the smooth gauge transformations: G -valued functions,
2 actual gauge fields: connections on G -principal bundles.

Remedy: There is a smooth groupoid/smooth stack BG :

maps of smooth stacks X → BG ' G -bundles on X ,

{homotopies of such maps} ' { smooth gauge transformations}.

Differential refinement to a richer smooth stack BG∇:

maps X → BG∇ ' G -Yang-Mills gauge fields on X ,

True configuration space: smooth mapping stack [X ,BG∇]:
elements are gauge fields on X ,
morphisms are gauge transformations.
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Higher U(1)-bundles
Machine: Chain complexes Dold-Kan

+stackification
// Stacks

Definition (Fiorenza-Schreiber-Stasheff)

1 The n-stack of U(1)-n-bundles ( without connection) BnU(1) is obtained
via “Dold-Kan“ + “stackification“ from the sheaf of chain complexes

U(1)[n] =
(
U(1)→ 0→ · · · → 0

)
,

with C∞(−;U(1)) in degree n.

2 The n-stack of U(1)-n-bundles with connections BnU(1)∇ is obtained by
“Dold-Kan“ + “stackification“ to the (n + 1)-term Deligne complex

U(1)[n]∞D =
(
U(1)

1
2πi d log
−−−−→ Ω1(−;R)

d−→ · · · d−→ Ωn(−;R)
)
,

where U(1) is the sheaf of smooth functions with values in U(1), and with
Ωn(−;R) in degree zero.

Equivalence classes of U(1)-n-bundles on X are in natural bijection with

Hn+1(X ;Z) ∼= Hn(X ;U(1)) ∼= H0(X ;U(1)[n]) ∼= π0H(X ;BnU(1)) .

Equivalence classes of U(1)-n-bundles with connection on smooth manifold X

Ĥn+1(X ;Z) ∼= H0(X ;U(1)[n]∞D ) ∼= π0H(X ;BnU(1)∇) .

H is hypercohomology of X , and H is the groupoid of principal n-bundles.
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Geometric realizations and smooth refinement

Obvious morphism of chain complexes of sheaves U(1)[n]∞D → U(1)[n] induces:

– the forget the connection morphism BnU(1)∇ → BnU(1),

– Level of equivalence classes: natural morphism Ĥn+1(X ; Z) → Hn+1(X ; Z) from differential cohomology to integral cohomology.

While smooth higher stacks have richer structure than topological spaces, there is
a map called geometric realization | − | that sends any smooth higher stack to the
topological space which is the “best approximation” to it, in a precise sense.

Examples
1 The geometric realization of the n-stack BnU(1) is the Eilenberg-MacLane

space K (Z, n + 1) (notice the degree shift) which classifies integral
cohomology |BnU(1)| ' K (Z, n + 1).

2 The geometric realization of the moduli stack BSpin of Spin-principal bundles
is the ordinary classifying space BSpin: |BSpin| ' BSpin
(all up to weak homotopy equivalence).
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II. M-theory
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Bosonic 11D supergravity

Bosonic Lagrangian: given by the eleven-form [Cremmer-Julia-Scherk]

Lbos11 = R ∗1l− 1
2G4 ∧ ∗G4 − 1

6G4 ∧ G4 ∧ C3 . (1)

Equations of motion: The variation δL(11),bos

δC3
= 0 for C3 gives the

corresponding equation of motion

d*G4 + 1
2G4 ∧ G4 = 0 . (2)

Bianchi identity:
dG4 = 0 . (3)

The second order equation (2) can be written in a first order form, by first
writing d

(
∗G4 + 1

2C3 ∧ G4
)

= 0 so that

*G4 = G7 := dC6 − 1
2C3 ∧ G4 , (4)

where C6 is the potential of G7, the Hodge dual field strength to G4 in 11
dimensions.
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The effect of the fermions

The femionic field ψ ∈ Γ(S ⊗ TM) (the gravitino) satisfies the generalized
Dirac equation, the generalized Rarita-Schwinger equation

DRSψ = 0 , ψ ∈ Γ(S ⊗ T ∗M) .

(involves mixing of terms).
The fields themselves are in fact combinations of bosonic and fermionic
fields. Physics literature usually writes:

G
super
4 = G4︸︷︷︸

;topology/geometry

+ ψΓ2ψ︸ ︷︷ ︸
;topology/geometry

Similarly for the connections

ωsuper = ω + fermion-bilinears

[See Duff-Nilsson-Pope]

Strategy: Extract topology/higher geometry from bosons and fermions separately.
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The M-theory gauge algebra

Action Sbos =
∫

Y
dvol(Y )Lbos, and hence the EOMs, are invariant under the

abelian gauge transformation

δC3 = dλ2,

Alternatively write the gauge parameter as Λ3 = dλ2.
First order eqn (4) is invariant under the infinitesimal gauge transformations

δC3 = Λ3, δC6 = Λ6 − 1
2Λ3 ∧ C3,

where Λ6 is the 6-form gauge parameter satisfying dΛ6 = 0.
Applying two successive gauge transformations:[

δΛ3 , δΛ′3

]
= −δΛ′′6

,[
δΛ3 , δΛ6

]
= 0 ,[

δΛ6 , δΛ′6

]
= 0 ,

with the new parameter Λ′′6 = Λ3 ∧ Λ′3.
Nonlinear due to Chern-Simons form.

[See Kalkkinen-Stelle]
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Introduce generators v3 and v6 for Λ3 and Λ6 gauge transformations, resp.
On the generators, we get the graded Lie algebra

{v3, v3} = −v6 ,
[v3, v6] = 0 ,
[v6, v6] = 0 .

Use graded commutators: [v3, v3] = −v6 ,
[v3, v6] = 0 ,
[v6, v6] = 0 .

Properties:
1 Constant: dv3 = 0 = dv6.
2 Grading on the generators v3 and v6 follow that of the potentials C3 and C6.

Maurer-Cartan flatness: Total uniform degree field strength G = dVV−1 with

V = eC3⊗ v3eC6⊗ v6 . (5)

The equation of motion for C3 (= Bianchi identity for C6) and the Bianchi
identity for C3 are obtained together from

dG − G ∧ G = 0 .

[See Cremmer-Julia-Lu-Pope, S09]
−→ We will offer two (related) interpretations.
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Rational degree four twists

Three-form C3 with G4 = dC3. We can build a differential with G4 as
dG4 = d + v−13 G4∧

Proposition (S.09)

The de Rham complex can be twisted by a differential of the form d + v−12i−1G2i∧
provided that G2i is closed and v2i−1 is Grassmann algebra-valued.

Form a graded uniform degree form G = v−13 G4 + v−16 G7. This expression can
now be used to twist the de Rham differential, leading to

dG = d + G∧ = d + v−13 G4 ∧+v−16 G7 ∧ . (6)

Proposition (S.09)
The de Rham complex can be twisted by the differential dG provided {v3, v3} = v6
and dG7 = − 1

2G4 ∧ G4.

The first condition is the M-theory gauge algebra and the second is the
equation of motion.
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Massey products in M-theory

Main Points
[Kriz-S.]: Lifted Chern-Simons term can be written as a Massey triple product and
the one-loop term can be explained as being a part of the Massey product
indeterminacy.

Chern-Simons term and the one-loop gravitational correction term,

1
6

∫
Y 11

C3 ∧ G4 ∧ G4 − C3 ∧ I dR8 (7)

where I dR8 is a polynomial in the curvature of Y 11 whose class is

I8 = 1
48 (p2 − λ2) , λ := 1

2p1

View the EOM
d ∗ G4 = − 1

2G4 ∧ G4. (8)
as a trivialization of the cup product [G4] ∪ [G4] = 0, by writing

G4 ∧ G4 = −2d ∗ G4

Once the cup product is trivial as a primary cohomology operation, one can
introduce a secondary cohomology operation, the Massey product on the kernel of
the first operation. 32 / 82



A differential graded algebra (DGA) is a graded algebra A with a map
d : A→ A of degree +1 which satisfies the relations

dd = 0,
d(αβ) = (dα)β + (−1)dimαα(dβ).

Then the cohomology H(A) of A with respect to d is a graded algebra.
It has further certain operations called Massey products, as a correspondence

H(A)⊗ H(A)⊗ H(A)→ H(A) (9)

which is denoted by [α, β, γ], where α, β, γ ∈ H(A). It is defined only when
αβ = βγ = 0 ∈ H(A), and the dimension of the result is

dim(α) + dim(β) + dim(γ)− 1. (10)

It is also not well defined, it is only defined modulo terms of the form
αx + yβ where x , y are some elements of H(A).

Definition (Massey product)
With αβ = dy , βγ = dz for y , z ∈ A, set

〈α, β, γ〉 = yγ + (−1)dimα+1αz . (11)

This is a cocycle and the cohomology class is defined modulo the
indeterminacy given above. 33 / 82



Apply to M-theory:

Main Points
The EOMs define a triple Massey product 〈G4,G4,G4〉 as a coset in H11.
If we view ∗G4 as an independent field G7 then we can write the Lagrangian
itself as a Massey product.
The one-loop term can be explained as a part of the indeterminacy. So the
Massey product predicts its existence.
More precisely, the term is of the form

G4 ∧ I7 (12)

where I7 is a 7-dimensional cohomology class in Y 11.
We can view I7 as a flat potential for I8.
From the structural point of view, this hints at underlying rich homotopic
structures.

Differential refinement:
[Grady-S.] Refinement of Massey products to differential cohomology.
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M-branes and nonabelian Chern-Simons

When a class is trivial in cohomology [βi ] = 0 ∈ H i (X ;R) then the
corresponding differential form is exact βi = dγi−1.
⇒ This allows us to consider boundaries.
For the M2-brane: Trivially we essentially have Chern-Simons theory. This
arises from the trivialization of the String structure, p1(ω) ∼ dCS3.
What about the M5-brane? A trivialization of the Fivebrane structure
p2(ω) ∼ dCS7.
In fact, it will be a ‘composite’ (cup-product) nonabelian Chern-Simons
theory: CSM5 ∼ CS7 + CS3 ∧ p1.

⇒ Capture aspects of the nonabelian gerbe theory on the (extended)
M5-brane worldvolume via 7d Chern-Simons [FSS].
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The abelian CS-theory. Conformal blocks of (0, 2)-SCFT are identified with the
geometric quantization of a 7d CS-theory

C3 7→
∫

X7×S4
C3 ∧ G4 ∧ G4 = N

∫
X7

C3 ∧ dC3 , (13)

where N :=
∫

S4 G4. This induces on its 6-dimensional boundary the self-dual
2-form.

The nonabelian CS-theory. One-loop term via M5-branes:

(ω,C3) 7→
∫

X7×S4
C3 ∧

( 1
6G4 ∧ G4 − I dR8 (ω)

)
, (14)

So we pick up another 7-dimensional Chern-Simons term, now one which depends
on nonabelian fields. Locally,

S7dCS : (ω,C3) 7→ N

6

∫
X7

C3 ∧ dC3 − N

∫
X7

CSI8(ω) , (15)

where CSI8(ω) is a Chern-Simons form for I dR8 (ω)

dCSI8(ω) = I dR8 (ω) . (16)
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Boundaries.

Recall flux quantization condition

2[G4] = 1
2p1 + 2a ∈ H4(X ,Z) . (17)

On an asymptotic neighborhood of the asymptotic boundary ∂X :

1
2p1 + 2a = 0 ∈ H4(∂X ,Z) . (18)

Notice that [G4] = 0 at the boundary means that the C field is still there, but
given by a globally defined differential 3-form C3.
Imposing condition (18) in a gauge equivariant way involves refining it from an
equation between cohomology classes (hence gauge equivalence classes) to a
choice of coboundary between cocycles for 1

2p1 and 2a.
⇒

Main Points
locally: Spin connection ; globally: 2-connection on a twisted String-principal
2-bundle, or equivalently a twisted differential String structure, where the twist is
given by the class 2a.

Example of “cup-product Chern-Simons theories" [FSS].
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A dictionary

between stacky notions and the corresponding bundle structures appearing in
relation to M5-branes and M-theory:

symbol (higher) moduli stack of...
BU(1) circle bundles / Dirac magnetic charges
BU(1)∇ U(1)-connections / abelian Yang-Mills fields
BSpin∇ Spin connections / field of gravity
BE8 E8-instanton configurations
(BE8)∇ E8-Yang-Mills fields
B2U(1)∇ B-field configurations (without twists)
B3U(1)∇ C -field configurations (without twists)
BString∇ String 2-connections / nonabelian 2-form connections

BString2a E8-twisted String-2-connections
CField bulk configurations of supergravity C -fields (and gravity)
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The moduli stack of supergravity C -field configurations
[FSS]

Locally: 3-form (C -field), so-valued 1-form (vierbein), and on boundary:
e8-valued 1-form (the gauge field), and B-field.
Globally: these fields are interrelated and arrange to certain nonabelian
twisted differential cocycles.
The analogy with dd : BPU(H)→ B2U(1) is the canonical map

a : BE8 → B3U(1) (19)

from the moduli stack of E8-bundles to that of circle 3-bundles / bundle
2-gerbes, constructed as a morphism of smooth 3-stacks.
Under geometric realization: morphism a : BE8 → K (Z, 4) of topological
spaces representing a generating degree-4 integral cohomology class in
H4(BE8) ' Z. Higher connectedness of E8 this a is an equivalence on
15-coskeleta.

Main Points
So, while nonabelian E8-gauge fields have a very different differential geometry
than abelian 3-form connections, the instanton sectors on both sides may be
identified.
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M → Y a 5-brane worldvolume embedded into spacetime Y = Y 11.
A corresponding cocycle in a-twisted relative differential cohomology is a
homotopy commuting diagram of higher stacks

Q
B̂ //

��

B(E8)∇

â
��

X
Ĉ

// B3U(1)∇

't|
(20)

For fixed bulk field Ĉ , this is equivalently of Ĉ |Q -twisted differential
String(E8)-structures [SSS], which are twisted String(E8)-2-connections on Q.

Main Points
Therefore, where the restriction of the abelian B-field on a D-brane gives rise to a
nonabelian 1-form gauge field, the restriction of the C -field relative the a-class
gives rise to a nonabelian 2-form gauge field.
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The moduli 3-stack of C -field configurations for 1
2p1 divisible by 2 is then the

homotopy pullback

CField //

��

B3U(1)

·2
��

BSpin∇ × BE8
1
2p1+2a

// B3U(1) ,

(21)

where 1
2p1 is the smooth refinement of 1

2p1.

Main Points
A field configuration φ : Σ→ CField has an underlying circle 3-connection Ĉ , a
Spin connection F̂ω, an E8-principal bundle with class a, and a choice of gauge
transformation

H : G
'−→ a− 1

4p1 (22)

between the underlying circle 3-bundle of Ĝ and the difference between the
Chern-Simons circle 3-bundles of the Spin- and the E8-bundle.
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Boundary moduli [FSS]

Two stages of boundary conditions for this data, exhibited by a sequence of maps

CFieldbdr0 → CFieldbdr → CField . (23)

Restriction to M5: For boundary field configurations φ : Σ→ CFieldbdr the
integral cohomology class of Ĝ4 is required to vanish and a differential 3-form
part may remain.
Restriction to heterotic boundary: while for CFieldbdr0 the full differential
cohomology class of Ĝ4 is required to vanish.
Both cases: E8-bundle picks up a connection over boundary ; dynamical.
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Enter RHT
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Connection to rational homotopy theory

Definition
The field equations of (a limit) of M-theory on an 11-dimensional manifold Y 11 are

d ∗ G4 = 1
2G4 ∧ G4

dG4 = 0

Q. What topological & geometric information can the above system
provide us?

Rational structures: Differential forms, rational cohomology, rational
homotopy theory ...
More refined structures: (twisted) 2-gerbes, (twisted) String structures,
orientations ...

A priori, G4 should be described by a map f : Y → K (Z, 4).
Differential refinement Ĝ4 corresponds to Y → B2U(1)∇.

Product structure on Eilenberg-MacLane spaces is cup product, with no a
priori information about trivialization.
Need (G4,G7) satisfying above ↔ Y → ?.
Need (Ĝ4, Ĝ7) satisfying above ↔ Y → ?̂.
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Observation (The Sullivan model as the equations of motion (S13))
The above equations correspond to the Sullivan CDGA model of the 4-sphere S4

M(S4) =
(∧

(y4, y7); dy7 = y24 , dy4 = 0
)

What about the factor of 1
2?

Whitehead bracket [ι4, ι4]W : S7 → S4 generates Z (Q)-summand in π7(S4).
There is an extra symmetry as we are in the dimension of a Hopf fibration,
i.e. σ the H-Hopf map and so the generator is σ = 1

2 [ι4, ι4]W .

Observation (The Quillen model as the M-theory gauge algebra
(Fiorenza-S.-Schreiber))
The Sullivan model for S2n is given by the DGCA

M(S2n) =
(∧

(x2n, x4n−1); dx2n = 0, dx4n−1 = x2n
2) ,

so that imposing the Maurer-Cartan equation on the degree 1 element
x2nξ1−2n + x4n−1ξ2−4n we find the Lie bracket dual to the differential is given by

[ξ1−2n, ξ1−2n] = 2ξ2−4n

with all the other brackets zero.

Example (n = 2)
The graded Lie algebra Rξ−3 ⊕ Rξ−6 with bracket [ξ−3, ξ−3] = 2ξ−6 (Quillen
model) can be identified with the M-theory gauge Lie algebra. 45 / 82



What comes out of this?

Proposal (S13)
Higher gauge fields in M-theory are cocycles in cohomotopy.

[Y , S4
Q] = π4

Q(Y ) rational cohomotopy.
Ultimately interested in full Map(Y , S4) 3 f .
Geometry + physics ⇒ interested in differential cohomology, i.e., differential
cohomotopy [Fiorenza-S.-Schreiber]

Formulate in stacks/chain complexes.

Preview:

1 Reduction via a circle bundle ⇒ new functors formalizing dimensional
reduction via loop (and mapping) spaces.

2 The rational data of S4 on the total space Y 11 of a circle bundle
S1 → Y 11 → X 10 leads exactly to rational data of twisted K-theory on base
X 10.

3 Even if we take flat + rational we can still see a lot of structure: Study of
cocycles in Super-Minkowski space recovers cocycles in rational twisted
K-theory.

4 Furthermore, T-duality can be derived at the level of supercocycles.
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Differential cohomotopy [Fiorenza-S.-Schreiber]

H-Hopf fibration:

S3 −→ S7 −→ S4 −→ BSU(2)
c2−→ K(Z, 4). (24)

Rationalize: S3
Q −→ S7

Q −→ S4
Q −→ (BS3)Q which is equivalent to

K(Q, 7) −→ S4
Q −→ K(Q, 4)

Rational homotopy of spaces can be modelled using L∞-algebras.
The Eilenberg-MacLane spaces K(Q, n) = BnQ can be modelled using
algebras via chain complexes: bnQ = Q[n].
Lie 7- algebra s4 is defined by CE(s4) = R[g4, g7] with gk in degree k and with
the differential defined by dg4 = 0, dg7 = g4 ∧ g4.

Has a natural structure of infinitesimal R[2]-quotient of R[6], i.e., there exists
a natural homotopy fiber sequence of L∞-algebras

R[6] //

��

s4

p��
0 // R[3] .

(25)
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Define the stack S4
∇ by analogy with that of the stack Bp+1U(1)∇.

S4
∇ //

��

∫
(S4)

��
B3U(1)∇ // B4Z

exhibits S4
∇ as a differential refinement of the homotopy type of S4 in analogy

to how B3U(1)∇ is a differential refinement of the homotopy type K(Z; 4).

Differential 4-cohomotopy //

��

S4 homotopy type

��
Differential K (Z, 4) with connection // Differential K (Z, 4)

Theorem (FSS)

The system (Ĝ4, Ĝ7) forms a cocycle in differential cohomotopy.
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Let’s go super
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Super-Minkowski spacetimes

In terms of the (super-)L∞-algebras/semifree differential (bi-)graded commutative
algebras duality, the algebra CE(Rd−1,1|N ) precisely encodes the super-Lie algebra
structure of the left-translation in the super-Minkowski spacetime Rd−1,1|N .

Example (Eleven dimensions)

Super Minkowski spacetime R10,1|N , where N is a real Spinor representation of
Spin(10, 1).

(−)Γ(−) : N ⊗ N → Rd is a symmetric bilinear Spin-equivariant pairing.

{ea}d
a=1, {ψα}dim N

α=1 basis of left-invariant 1-forms on R10,1|N satisfy

dψα = 0, dea = ψ ∧ Γψ . (26)

CE(R10,1|N ) the differential (N,Z/2)-bigraded commutative algebra of left-invariant
polynomial differential forms. Algebraically, R[ea, ψα] on the generators {ea, ψα} in
bidegree (1, even), (1, odd), with d as in (26) of degree (1, even).

This encodes the super-Lie algebra structure of left-translations on R10,1|N .

For M-theory: N = 32, so we consider R10,1|32.
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The supercocycles in M-theory [Fiorenza-S.-Schreiber]
l(X ):=L∞-algebra dual to given Sullivan model (AX , dX ) for rationalization of X , i.e, CE(l(X )) := (AX , dX ).

Observation
There are elements µ4 and µ7 in CE(R10,1|32) which satisfy

dµ4 = 0 , dµ7 = µ4 ∧ µ4 .
The pair (µ4, µ7) equivalently constitutes components of an L∞-morphism

µ := (µ4, µ7) : R10,1|32 −→ l(S4) ,
namely, dually, the components of a dg-algebra homomorphism

CE(lS4) // CE(R10,1|32)
g4

� // µ4
g7

� // µ7

The morphism µ = (µ4, µ7) is actually induced by an equivariant 7-cocycle on the
m2brane extension of the super-Minkowski space R10,1|32.

Definition
Write m2brane for the super L∞-algebra which is the homotopy fiber of µ4, i.e.
sitting in a homotopy pullback diagram of the form

m2brane //

��
0
��

R10,1|32 µ4 // b3R . 51 / 82



Observation

(i) There is a super L∞-cocycle of the form

m2brane
µ7 // l(S7) = b6R .

(ii) Both m2brane and lS7 are naturally b2R-principal bundles, and the morphism
µ7 is b2R-equivariant.

The ingredients arrange themselves according to the quaternionic Hopf fibration

Proposition

Starting with cocycle µ4, there is commutative diagram of L∞-algebras of the form

m2brane

��

**

µ7 // l(S7)

��

uu0

��

R10,1|32

µ̃4 ))

// l(S4)

uu
b3R

where the two front faces of the prism are homotopy pullbacks.
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Applications
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Application 1: Reduction on a circle

Q. If fields in M-theory are modelled by S4, what would fields in type IIA string
theory be modelled by?

Example (Cyclified loop space)
Let X = S4 be the 4-sphere, with

CE(l(S4)) = (
∧•〈g4, g7〉, dg4 = 0 , dg7 = 1

2g4 ∧ g4) .

The free loop space of S4 is modeled by

CE(l(LS4)) =
(
R[ω4, ω6, h3, h7] ;

dω4 = 0, dω6 = h3 ∧ ω4,
dh3 = 0, dh7 = − 1

2ω4 ∧ ω4

)
.

and the homotopy quotient by S1 is modeled as

CE(l(LS4)/S1) =
(
R[ω2, ω4, ω6, h3, h7] ;

dω2 = 0, dω4 = h3 ∧ ω2, dω6 = h3 ∧ ω4

dh3 = 0, dh7 = − 1
2ω4 ∧ ω4 + ω6 ∧ ω2

)
.

(27)

Observation
1 Relations in (27) correspond to EOMs of fields in type IIA string theory.
2 These in turn correspond to rationalization (via the Chern character) of twisted

K-theory classes.
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Formalization of dimensional reduction

Observation
The (M-theory) super-Minkowski spacetime R10,1|32 is rationally a S1

R-principal
bundle over the (type IIA) spacetime R9,1|16+16.

There is a homotopy fiber sequence of L∞-algebras

R10,1|32 //

��
0

��
R9,1|16+16 ΨΓ11Ψ // bR .

which exhibits R10,1|32 as the central extension of super Lie algebras classified
by an explicit 2-cocycle (D0-brane’s ΨΓ11Ψ).

There is an equivalence between two rational cohomology theories:

Theorem (FSS)
There is an isomorphism of hom-sets

HomL∞(R10,1|32,S4
Q)

∼=−→ HomL∞(R10,1|16+16,LS4
Q)

(one can refine further ...) 55 / 82



Application 2: Relation to twisted K-theory
Observation

1 This is exactly the data for rational twisted K-theory at the level of field equations.
2 There is a correspondence between Massey products and differentials in the AHSS

for twisted K-theory.

In string theory we have 3-cocycles in stead of 4-cocycles in M-theory.
To start connecting to twisted K-theory, we form:

Definition
(i) The super Lie 2-algebra stringIIA is the the super Lie 2-algebra extension of
R9,1|16+16 classified by a certain 3-cocycle µ

F1 , the string cocycle.
Equivalently, it is the homotopy fiber (in super L∞-algebras) of the 3-cocycle µ

F1 :

stringIIA //

��

0

��
R9,1|16+16

µ
F1 // b2R .

(ii) For p ∈ {0, 2, 4, 6, 8} there is Dp-brane cocycle µ
Dp
∈ CE(stringIIA).

Definition
Define l(KU) to be the L∞-algebra l(KU) =

⊕
p even b

p+1R as the minimal
Sullivan model for the rationalization of the K-theory spectrum. 56 / 82



Notice that the Chevalley-Eilenberg algebra of l(KU) is

CE(l(KU)) =
(
R[{ω2p}p=1,2,...] ; dω2p = 0

)
,

i.e., the even closed forms, as appropriate for rationalization of K-theory, via
the Chern character, with target even rational cohomology.
The direct sum of cocycles µD =

⊕
p=0,2,4,6,8

µDp defines an L∞-morphism

µD : R9,1|16+16 //
⊕

p=0,2,4,6,8

bp+1R �
� // l(KU). truncated

Proposition
The brane cocycles of type IIA fit into a comm. diagram of super L∞-algebras

stringIIA
hofib(µ

F1 )
��

,,

µ
D // l(KU)

rr hofib(φ)
��

0

��
R9,1|16+16

µ
F1 ,,

// l(KU/BU(1)) .

φrrb2R

Both front faces of the prism are homotopy pullbacks, and
CE
(
l(KU/BU(1))

)
:=
{
R[{ω2p, h3}p=1,2,...] ; dh3 = 0, dω2(p+1) = h3 ∧ ω2p

}
.
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Derivation of twisted K-theory from M-theory
How to enhance the cyclification of the M2/M5-cocycle from 6-truncated to
un-truncated rational twisted K-theory?
Earlier approaches: [Diaconescu-Moore-Witten] (untwisted)

[Moore-Saulina] (trivially twisted)
[Mathai-Sati] (twisted)

assume that the fields are already described by (twisted) K-theory and check the
behavior of the partition function of the C -field is compatible with the a priori
K-theory classification of D-branes. Here we provide an actual derivation.
Main Points (Parametrized spectra)

A spectrum is a kind of linearized version of a topological space.
By Brown representability theory maps into spectra represent cocycles in abelian
generalized cohomology theories, such as K-theory.
Moreover, a parametrized spectrum is a bundle of spectra over some base space,
and maps into these represent cocycles in twisted generalized cohomology theories.

Spectra �
�

Parametrized
over the point // Parametrized

spectra

Underlying
parameter space // // Spaces

Homotopy theory supplied in thesis of [V. Braunack-Mayer] leading to full solution
in [Braunack-Mayer-S.-Schreiber]

Answers quest since [S06]: Which cohomology theory describes fields in M-theory. 58 / 82



(Rational) cohomotopy in degree-4 is the generalized cohomology theory that
is represented by the (rationalized) 4-sphere, meaning that the joint
M2/M5-brane cocycle is a morphism in the rational super homotopy category
of the form [Fiorenza-S.-Schreiber]

R10,1|32
µ

M2/M5 // S4 ∈ Ho
(
SuperSpacesR

)
.

Compatible circle action

S4

S1

��
:= S(R⊕C2

U(1)

��
)

which is the suspension of the circle action on the C-Hopf fibration.
The projection to the corresponding (rational) homotopy quotient is hence
identified with the M-theory circle fibration:

M2/M5-brane cocycle

11d super-spacetime R10,1|32

��

µ
M2/M5

// S4

��

4-sphere coefficient

10d super-spacetime R9,1|16+16 ' R10,1|32�S1 S4�S1 A-type orbispace
of the 4-sphere
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The identification

S4 ' S( R⊕C2

SU(2)L

��
)

induces an action of SU(2) on the 4-sphere, where on the right we have the
defining linear representation of SU(2) on C2.
Along the canonical inclusion S1 ' U(1) ↪→ SU(2) this restricts to a circle
action on the 4-sphere.
We call the corresponding homotopy quotient (Borel construction)

S4�S1 ' S4 ×
S1

ES1

the A-type orbispace of the 4-sphere.
The ordinary topological quotient of the above circle action is the 3-sphere:

S4/S1 ' S3 .

The fixed point space of the circle action is the 0-sphere, included as two
antipodal points

S0 =
(
S4)S1 � � // S4 .

In summary, we have the following system of spaces over S3:

Fixed
points︸ ︷︷ ︸ 4-sphere︸ ︷︷ ︸ Homotpy

quotient︸ ︷︷ ︸ Naive
quotient︸ ︷︷ ︸

S0 =
(
S4)S1

,,

� � // S4

((

// S4�S1

��

// S4/S1

S3

(28)
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Application 3: T-duality
Theorem (Fiorenza-S.-Schreiber)

1 There is an L∞-isomorphism of the form
φT : l(L(KU/BU(1))/S1)

φT

'
// l(L(ΣKU/BU(1))/S1)

relating the cyclifications of the rational twisted KU-coefficients.
2 This takes the dimensionally reduced type IIA F1/Dp-cocycle L(µIIA

F1/Dp
)/R to the

dimensionally reduced IIB cocycle L(µIIB
F1/Dp

)/R, making the following diagram of
super L∞-algebras commute:

bR

Ll(ΣKU/BU(1))/R

ω2
ll

R8,1|16+16

L(µIIA
F1/Dp

)/R
--

L(µIIB
F1/Dp

)/R
11

c IIA2

((

c IIB2

66

Ll(KU/BU(1))/R .

' φT

OO

ω2rrbR

There is a corresponding explicit pull-push (Fourier-Mukai) formula. 61 / 82



classifying space
for circle bundles

10d IIA superMinkowski

**

cyclified twisted K1

ii

9d N = 2 superMinkowski

(IIA fields)
,,

(IIB fields)

22

class of IIA bundle

%%

class of IIB bundle

99

10d IIB superMinkowski

44

cyclified twisted K0

��
'

OO

uu
classifying space
for circle-bundles
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Higher T-duality in M-theory
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Higher T-duality in M-theory

Main Points
By analyzing super-torsion and brane super-cocycles, we derive a new duality in
M-theory, which takes the form of a higher version of T-duality in string theory.

This involves a new topology change mechanism abelianizing the 3-sphere
associated with the C-field topology to the 517-torus associated with
exceptional-generalized super-geometry.

This explains parity symmetry in M-theory within exceptional-generalized
super-spacetime at the same level of spherical T-duality, namely as an isomorphism
on 7-twisted cohomology.

Generalizes “topological T-duality" and “spherical topological T-duality".

This is a derivation of M-theoretic structures from first principles, not involving
any extrapolation from perturbative string theory nor any conjectures or informal
analogies from other sources.
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Replacing the string with the M5-brane, we uncover a duality fully within
M-theory, which may be formulated as a higher-structural analog of T-duality
in string theory.
Uses constraints on super p-brane fluxes due to local supersymmetry
(supergravity) [Achúcarro-Evans-Townsend-Wiltshire, de Azcárraga-Townsend]
Reduces in string theory to a generalization of “topological T-duality”
The fermionic component of the brane charges (fluxes) restricted to any of
these infinitesimal neighborhoods is constrained to be a non-trivial solution to
the supersymmetric Gauss law (mathematically: a non-trivial cocycle in the
Chevalley-Eilenberg CE-complex of the supersymmetry algebra)
[Bergshoeff-Sezgin-Townsend, Bandos-Lechner-Nurmagambetov-Pasti-Sorokin-Tonin]

The full implication of these constraints has perhaps not been fully appreciated
until recently. Indeed, in [FSS16], we showed that these constraints already
imply the Buscher rules for the F1/Dp-brane charge sector of T-duality.
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3-spherical T-duality for M5-branes

Rationally: Higher bundles of odd degree are equivalent to higher spheres of odd
dimension:

K (Z, 2n + 1) ∼Q K (Q, 2n + 1) ∼Q S2n+1
Q

Example (n = 1)
A 2-gerbe or B2U(1)-principal bundle is rationally equivalent to S3-principal
bundle.

Concept T-duality in string theory Higher T-duality in M-theory
Maurer-Cartan θ 1-form C3

Curvature F2 of circle bundle G4 of 3-bundle
T-dualizable flux H̃3 = H3 + θ ∧ F ′2 G̃7 = G7 + 1

2C3 ∧ G4
Integration

∫
T

H̃ = F ′2
∫

S3 G̃7 = G4
Poincaré form P2 on S1 × S1 bundle P6 on S3 × S3 bundle

Fux transformation eB′2 ∧ C′ =
∫

T
eP2 ∧ π∗

(
eB2 ∧ C

)
eC6 ∧ F ′ =

∫
S3 eP6 ∧ π∗

(
eC6 ∧ F

)
Isomorphism H•+H̃3 (X10

IIA )

∫
T eP2∧π∗(−)

'
// H•+H̃′3 (X10

IIB ) H•+G̃7 (Y 11
M )

'

∫
S3 eP6∧π∗(−)

// H•+G̃7 (Y 11
M )
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How to interpret the 7-twisted M-theoretic flux eC6 ∧ F?
new effect seen in M-theory.
should couple to whatever it is on which M5-branes may end.
String theory limit: We invoke Hořava-Witten theory. On this boundary:

G̃7

eC6 ∧ F

}
� M/HET duality

//
{

H7

eB6 ∧ Fhet (29)

Precisely this had been identified in [S09]: Fhet
2 must be the heterotic gauge

field strength and Fhet
8 its 10-dimensional Hodge dual. These jointly form an

H7-twisted cocycle due to the Green-Schwarz anomaly cancellation
mechanism, i.e. from the twisted Bianchi identity

dH ∝ tr
(
Fhet

2 ∧ Fhet
2
)

for the NS 3-form flux.

T-duality Higher T-duality
Torus bundle
MC 1-form θ

3-sphere bundle
MC 3-form C3

517-torus bundle
decomposable C exc

3
String

H3 + θ ∧ F ′2

M5-brane
G7 + 1

2C
(exc)
3 ∧ G4

D-branes
eB2 ∧ C

Exotic M(9)-branes?
eC6 ∧ F
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A new topology change mechanism
Transmutation of 3-spherical fiber to a 517-torus fiber via exceptional
supergeometry
Subtlety: spherical T-duality of M5-branes acts not on internal spaces within
super-spacetime, but rather on the M2-gerbe over the total spacetime.

1 we ask for parameterization of that super 2-gerbe by an ordinary super-space,
such that it still serves as a target space for the M5-brane sigma-model.

Exceptional-generalized
super-geometry︸ ︷︷ ︸ Super 2-gerbe

over super-spacetime︸ ︷︷ ︸
R10,1|32

exc,s
φs // m2brane

ΣM5
Sigma-model-
& gauge-field

FF

U-duality equivariant
sigma-model- & gauge-field

DD

2 super-geometric refinement R10,1|32
exc,s of the M-theoretic exceptional generalized

geometry of [Hull07b]:

R10,1|32
exc,s ' R10,1|32︸ ︷︷ ︸

Spacetime

⊕ 32

︸ ︷︷ ︸
Super-spacetime

⊕ ∧2(R10,1)∗ ⊕ ∧5(R10,1)∗

︸ ︷︷ ︸
Exceptional-generalized spacetime

⊕ 32

︸ ︷︷ ︸
Exceptional-generalized Super-spacetime
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Effect on C-field: comparison map φs pulls back the universal C-field c3 to a
decomposable form:

cexc,s = φ∗s (c3) . (30)
This decomposition is indeed what makes the idea of exceptional-generalized
geometry work: Each choice of section (linear splitting) of the exceptional
tangent bundle

Moduli space

Classifying map

R10,1|32
exc,s

πexc,s

��
Spacetime R10,1|32

σ

CC

allows to pull-back the universal decomposed C-field and thus induce an actual
C-field configuration satisfying the M2-brane super-torsion constraint [BST2]:

d (σ∗cexc,s )︸ ︷︷ ︸
C-field

configuration

= i
2ψΓabψ ∧ ea ∧ eb

︸ ︷︷ ︸
Torsion constraint

. (31)

This leads to the following characterizations:
1. Each of the fermionic extensions R10,1|32

exc,s of the R10,1|32, for each nonzero real
parameter s, serves as a moduli space for C-field configurations.
2. The decomposed C -field cexc,s in CE(R10,1|32

exc,s ) is the corresponding universal
field on the moduli space, whose pullback along classifying maps σ yield the
actual C-field configurations on super-Minkowski spacetime.
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Using the new concept of C-cohomology

C-cohomology =
kernel(cexc,s ∧ (−))

image(cexc,s ∧ (−))
. (32)

and corresponding spectral sequence analysis, one can show that the spherical
T-duality of M5-branes passes along the decomposition map to the
exceptional-generalized superspacetime. cf. [Ševera]

If we think of the latter as compactified, this means to trade the original
rational 3-sphere for a 517-torus (517 = 528− 11) with tangent space∧2(R10,1)∗ ⊕ ∧5(R10,1)
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Parity symmetry
Lifting of parity symmetry on exceptional generalized spacetime to the level of
spherical T-duality.
11D supergravity is invariant under an odd number of spacetime-reflections if
these are accompanied by sending the C-field to its negative [Duff-Nilsson-Pope]

C3 7→ −C3 . (33)

This operation lifts to an equivalence ρ∗ of M5-brane 7-flux-twisted
cohomology on exceptional-generalized super-spacetime, on par with the
spherical T-duality equivalence,

H
•+µ̃

M5,s (R10,1|32
exc,s )

ρ∗−→
'

H
•+µ̃

M5,s (R10,1|32
exc,s ) . (34)

This means that we should view parity and 3-spherical T-duality as generators
that jointly induce a larger M-theoretic duality group which also contains their
composite operation:

H•+µ̃
M5

'
ρ∗

%%
H•+µ̃

M5

'

∫
S3 eP6∧π∗(−)

99

'

‘Paritized’
3-spherical T-duality

// H•+µ̃
M5 .

(35)

Compatible with the results of parity in the topological sector in
[Diaconescu-Freed-Moore]. 71 / 82



From global geometric and topological perspective, M-theory is parity invariant,
and so should in principle be formulated in a way that makes sense on unoriented,
and possibly non-orientable manifolds. We hope that our formulation provides
some insight into this problem.

Example (Parity as rational T-duality of E8 bundles)
Since the homotopy group of E8 are concentrated in degrees (3, 15, · · · ), the
group E8 has the same homotopy type as K (Z, 3) up to degree 14. E8 and SU(2)
have the same rational homotopy and cohomology in the above range. Overall:

“E8 '14,Q K (Q, 3) 'Q SU(2) 'Q S3” .

Equivalence in rational homotopy theory:

S3
Q ' K (Q, 3) '14,Q E8 // E

π

""

E ′

π′

{{

E8 'Q K (Q, 3) ' S3
Q

oo

Y

Taking the class of the bundle E to be a and the class of the bundle E ′ to be −a
then puts the two bundles as a parity dual pair, which fits into our discussion of
T-duality for rational sphere bundle as a special case.
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Let’s go equivariant
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M-branes at singularities

Use equivariant homotopy theory.
Unexpexted equivalence via

Theorem (Elmendorf’s theorem)
Homotopy theory for equivariant homotopies is equivalent to another homotopy theory
where no equivariance on homotopies exists anymore, but where instead extra structure
appears on singularities, namely on the fixed point strata of the original group action.

Physics impact:
For fundamental M2/M5-brane: deg 4 cohomotopy on superspaces [FSS].
Here the open question is: which enhancement of rational cohomotopy also
captures the black M-brane located at real ADE-singularities?
Proposal [Huerta-S.-Schreiber]: ADE-equivariant cohomotopy on superspaces
the equivalence of homotopy theories that is given by Elmendorf’s theorem
translates into a duality in string/M-theory that makes the black branes at real
ADE-singularities appear from the equivariance of the super-cocycle of the
fundamental M2/M5-brane:

G -equivariance ooElmendorf’s theorem// G -fixed points
Fundamental M2/M5-branes
on 11d superspacetime with

real ADE-equivariant sigma-model
oo [HSS] //

Fundamental F1/M2/M5-branes
on intersecting black M-branes

at real ADE-singularities 74 / 82



Definition (Actions on the 4-sphere)
Regard the 4-sphere as the unit sphere:

S4 ' S(R⊕

Im(H)︷ ︸︸ ︷
R⊕ R2 ⊕ R︸ ︷︷ ︸

H

) . (36)

This decomposition induces the following group actions on the 4-sphere:
1 Multiplication by unit quaternions on H preserves the 4-sphere and hence yields two

actions SU(2), which we denote by SU(2)L and SU(2)R , respectively.
2 These two actions manifestly commute with each other, and hence we have the

corresponding action of the Cartesian product of SU(2) with itself, which we denote
by SU(2)L × SU(2)R .

3 We denote the action induced from this via the diagonal homomorphism
SU(2)

∆−→ SU(2)× SU(2) by SU(2)∆.
4 There is then an inclusion S1 ↪→ SU(2) such that the corresponding restriction of

the diagonal action fixes the second coordinate in (36). This induced action we
accordingly denote by S1

∆.
5 The Z2-action induced by the involution given by reflection of the last coordinate in

(36) (i.e. multiplication by -1 on the real part of the quaternionic coordinate in
(36)) we denote by (Z2)HW.

6 This commutes with the SU(2)∆-action, so that there is the corresponding action of
the Cartesian product group, which we accordingly denote by SU(2)∆ × (Z2)HW.
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Remark (Summary of actions)
In terms of the decomposition (36):

S4 ' S(R ⊕

Im(H)

SU(2)∆

��︷ ︸︸ ︷
R⊕ R2

S1
∆

ZZ ⊕ R

(Z2)HW

��

︸ ︷︷ ︸
HSU(2)L

%%
SU(2)Ree

) (37)

which may by collected into two actions of Cartesian products as

S4

SU(2)L×SU(2)R

��
and S4

SU(2)∆×(Z2)HW

��
.

Example (Suspended Hopf action)
Under the canonical inclusion S1 ' U(1) ↪→ SU(2)L of the circle group into the
special unitary group (as the subgroup of diagonal matrices) the induced action
S1

L on the 4-sphere, by above, is the image under topological suspension of the
S1-action that exhibits the complex Hopf fibration S3 → S2 as an S1-principal
bundle.
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Which enhancement of rational cohomotopy also captures the black M-brane
located at real ADE-singularities?
We set up equivariant cohomotopy on superspaces.

Theorem (Equivariant enhancements of the fundamental brane
cocycles (Huerta-S.-Schreiber))
Enhancement of the fundamental M2/M5-brane cocycle from (rational)
cohomotopy of superspaces to (rational) equivariant cohomotopy exists, and the
possible choices correspond to fundamental branes propagating on intersecting
black M-branes at real ADE-singularities.

Part of this statement is a full classification of finite group actions on super
Minkowski super spacetime R10,1|32 by isometries.

Enhancements of the M2/M5-brane cocycle to equivariant cohomotopy

R10,1|32

GADE×GHW

		 µ̂
M2/M5 // S4

GADE×GHW

��
∈ Ho

(
(GADE × GHW) SuperSpacesR

)
.

It is shown in [Huerta-S.-Schreiber] that this equivariant enhancement makes
the black branes at ADE-singularities appear, and unifies them with the
fundamental M-branes.

77 / 82



More on K-theory from M-theory
Recall that we provided a derivation of twisted K-theory from M-theory. Can this
be enhanced to equivariant?
Point is that equivariant rational homotopy theory will see a bit of finite
information, thereby going a bit beyond rational towards full cohomology.

Objects Cohomology theory

M-branes
Real ADE-equivariant

Cohomotopy

hh
stabilized

Ext/Cyc-adjunction
vv

D-branes
Real

K-theory

To support this, we have seen:
(1) a homotopy-theoretic formulation of “compactifying M-theory on a circle”, s.t.
(2) under this operation the cohomology theory degree-4 cohomotopy transmutes

into the cohomology theory K-theory, matching how the M-branes are
supposed to reduce to F1/Dp-branes under double dimensional reduction.
[FSS16a][FSS16b]: Rationally, (1) is exhibited by the Ext/Cyc-adjunction and
then (2) follows, since 6-truncated twisted K-theory appears, rationally, in the
cyclic loop space of the 4-sphere.
[B-MSS]: the gauge enhancement of this result to the full, untruncated,
twisted K-theory spectrum.
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The fundamental brane scan
Green–Schwarz-type Lagrangians shown in [Heurta-S.-Schreiber] to be just the
super volume forms (hence the “super Nambu-Goto Lagrangians”)

LGS
p+1 := volp+1︸ ︷︷ ︸

NG

+ Θp+1︸ ︷︷ ︸
WZW︸ ︷︷ ︸

svolp+1
supersymmetric volume

� d // µp+2︸︷︷︸
super-
cocycle

. (38)

These cocycles µp+2 are what the (old) brane scan [Duff] classifies: the
non-trivial Spin-invariant super (p + 2)-cocycles on super Minkowski
spacetimes, for p ≥ 1.

p

d + 1

1 2 3 4 5 6 7 8 9 10

10 + 1 µM2

9 + 1 µH/I
F1 µNS5

8 + 1 ∗

7 + 1 ∗

6 + 1 ∗

5 + 1 ∗ ∗

4 + 1 ∗

3 + 1 ∗ ∗

2 + 1 µD=3
F1

These cocycles correspond to those fundamental super p-branes that do not
carry (higher) gauge fields on their worldvolume. 79 / 82



[FSS13]: Improve to include also all these further branes, if one passes from
super Lie algebras to their homotopy theoretic incarnation: super L∞-algebras.
Every 2-cocycle µ2 on a (super) Lie algebra classifies a central extension.

Example
Type IIA superspacetime carries a Spin-invariant 2-cocycle µD0 = ψΓ10ψ, whose central
extension is D = 11, N = 1 super Minkowski spacetime:

R10,1|32

central extension
by µD0 = ψΓ10ψ

��
R9,1|16+16 .

In rational super homotopy theory, a 2-cocycle as above is equivalently a map,
namely a map of the form R9,1|16+16 µ2−→ BR, and for every map in homotopy
there is the corresponding homotopy fiber.

Example (D0-brane Lie superalgebra continued)

R10,1|32

homotopy fiber
of µ2 = ψΓ10ψ

��
R9,1|16+16 µ2=ψΓ10ψ // B2R .
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Now we go higher:

Example (The superstring Lie 2-algebra)
stringIIA

homotopy fiber
of µF1 ��

R9,1|16+16
µ

F1=
i
2 (ψΓaψ)∧ea

// B3R .

Q: Does this carry further Spin-invariant cohomology classes?
Indeed it does carry non-trivial Spin-invariant cocycles precisely for all the
previously missing branes:

Example (Super D-branes of type IIA)
d2pbrane

homotopy fiber
of µ

D(2p) ��
stringIIA

µD(2p) // B2p+2R .
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The global picture
The completion of the old brane scan to the remaining branes and various further
details are encoded in the fundamental brane bouquet:

m5brane

��

[FSS15]

[SS, FSS18] R10,1|32
exc,s

comp ,,

��

��

Higher
T-duality

��
uu M/IIA

Duality

  
[FSS16a]

m2brane

��
d5brane

!!

d3brane

��

d1brane

{{

d0brane

(pb) ""

vv
d2brane

��

d4brane

}}
Gauge

enhancement
ww

R10,1|32
exc

��

d7brane

((

brane
bouquet R10,1|32

""

d6brane

vv
d9brane // stringIIB **

[FSS13] stringH��
stringIIAuu

d8braneoo [B-MSS]

R9,1|16+16 oo
oo

R9,1|16

))
//
//
R9,1|16+16

R5,1|8

vv
R5,1|8+8//
//

R3,1|4+4 oo
oo

R3,1|4

vv
emergent
spacetime [HS17]

R2,1|2+2 oo
oo

R2,1|2

tt
R0|32 oo
oo

.

.

.
R0|1+1 oo

oo
R0|1

Exceptional Type IIB kk
T-Duality

33Type I Type IIA [FSS16b]
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