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|.Global overview
Il. M-theory
I1l. Rational Homotopy Theory description

I1V. New connections and applications

Joint work with Urs Schreiber + Domenico Fiorenza, John Huerta, Vincent
Braunack-Mayer
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|. Global overview
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’ Math from physics‘

Q1: What new mathematical structures and constructions can we extract from
studying M-theory?

Math in Physics

Q2: What mathematical structures/conditions/tools should we have in place in
order to properly describe M-theory?

-‘@'— Upshot

| By phrasing in context of math, the physics becomes more transparent.
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Richness of M-theory

Higher Super-
geometry geometry

Differential M- Equivariant

cohomology THEORY homotopy

Generalized Parametrized

cohomology homotopy
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The Physical theories and corresponding geometry

@ M-theory in 11 dimensions.
Objects D M-branes: M2-brane and M5-brane.

@ Reduction to various string theories in 10 dimensions.
Objects D string and D-branes.

@ Requirements:
o Consistent formulation.
o No anomalies.
e Mathematically rigorous.
o Contain as ‘much information’ about the systems as possible.

@ Schematically:

| Physical theory [ Structure | Group \
Dirac theory of Spinors || Spin Spin(n)
string theory String String(n)
fivebrane theory Fivebrane | Fivebrane(n)
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Structures associated to M-branes

- Differential : - -
Topological _erential ‘ Differential geometrlc‘
refinement

Field strengths Potentials
Anomalies [ constraints Wilson loops/ holonomy
[ Brane || Topological | Geometric
Particle F, field strength | connection A;
String Hs field strength | B-field Bs
M2-brane || Gy field strength | C-field C3
Gy, C-field G
M5-brane Hs, B-field B,
G7/H7 dual “dual field" Cs/Bg
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Main setting/ingredients

String Theory

M-Theory

sigma model ¢ : ¥ — X0

sigma model ® : M2 — Y1!

P € T(ST ® ¢* TX19),

B> ~» 1-gerbe

€ T(SM2 @ N (M2 — Y1),

(3 ~» 2-gerbe [Aschieri-Jurco, - - -]

D-brane D 0%

M5-brane D OM2

Freed-Witten condition
W5 + [Hs3] = 0 € H3(X10;Z)

Witten flux quantization
IN+[G] =ae HY (Y™, Z)

Viewpoint since [Kriz-S. 04]: Physical conditions via obstruction theory (AHSS):

Twisted Spin©

Twisted String [Wang, S.-Schreiber-Stasheff]

Twisted K-theory (AHSS)

Twisted elliptic cohomology [S ]

Here we step back: Rational + geometry + other angles.

Homotopic constructions:
[Ando-S., S.-Westerland, Lind-S.-Westerland)]
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M-theory

Physics
setting

Rational Homotopy Theory

Semiclassical

Generalized cohomology

Quantum
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Generalities on what physics wants

Nontrivial physical entities, such as fields, charges, etc. generically take values in
cohomology.

Cohomology

I T

I. Generalized: Capture essential topological and bundles aspects.
[I. Twisting: Account for symmetries via automorphisms.

I1l. Differentially refined: Include geometric data, such as connections, Chern
character form, smooth structure, smooth representatives of maps ...
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|. Generalized cohomology

Motivation from modelling of fields (in QFT, string theory and M-theory).
Schematically:
Q*(M) Classical

é complx
Hix (M)
é quantization
H*(M; Z)
éanomaly cancellation
E*(M) Quantum
= Partition functions are sums/integrals over the moduli spaces of fields

Z:/ e
M

should take values in E.
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[1. Twists

@ We would like to introduce automorphisms.
@ These arise from geometric and physical considerations.

@ Homotopy p.o.v.: moduli/family setting; bundles of spectra.

twistq twistyr twisty twistg
Q'(?//I exact HQ/I quantization He (/\}Z anomaly E'(?//I
SO ENNSNE NN NN NN - NN NSNS
( ) dR ( ) ( ! cancellation ( )

complex

Relations among various twists?

Example (twistq)

Twisted differential forms are forms valued in the orientation line bundle. Top
such form is a density (pseudo-volume form).
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Example: Twisted de Rham cohomology

@ The de Rham complex (Q°,d): ... LN Q(X) N Q+1(X) <.

@ Twist by a 1-form built out of scalar ftn: d ~+ ds := d + dpA with d? = 0.

Example (Witten's deformation of Morse theory)

For smooth f : M — R, the Witten differential is d; = e~ de*f = d + sdf A,
where s € R. Then d? =0, ds : QP — QPTL. The term e~ is a

quasi-isomorphism o Qp 9. qp+l
e—sf ¢ O \L efsf
Qr %5 Qe+l

and ds yields isomorphic cohomology groups.

o Twist by a closed 3-form: dy, = d — H3A, with d23 =0.

Definition
Twisted de Rham cohomology: H'(X, H3) := ker(dy,)/im(dy, )

Example ( The Ramond-Ramond (RR) fields in string theory)

F=>.: U~ Faite, € =0 or 1 for type lIA or type IIB string theory. These are
twisted by a closed 3-form, the NS-field Hs.
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Higher twists?

o Mathematically: can build a differential by adding to dy all expressions of the
form u="Hai 1A, ie. o .
d,l_, = d+ZU7IH2;+1 AR
i=0
@ There is a twisted graded de Rham complex with differential
d+ >, u"Hat1A , provided the differential forms Hp;.1 are closed.

Example (Degree seven twist in heterotic string theory )

Form F = F + xF, with F is the abelianized Yang-Mills field & *F its dual.
Variation of the action S = [ H3 A xHz + [ F> A F> with respect to A and using
the “Chapline-Manton coupling" Hz = CS5(A) gives

((d- HN)F=0]|

This gives a twisted differential dn, = d — Hz A\ which in nilpotent, i.e. squares to
zero, dl%h =0, since H7 is closed.

v

revisit later in dualities —
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Reverse engineering for twisted generalized cohomology

Rational twisted cohomology arises as image of some Chern character.

Example (Twisted K-theory)
Degree three twist Hs:

chy, : K*(X,Hs) — H* (X, Hs)
————
twisted K—theory twisted de Rham cohomology

@ Now if we are presented with higher degree twists on the left-hand-side,
would they be images of some generalized Chern character whose domain is
some generalized cohomology theory?

chE : E*(—;twist) — H®(—;twist) .

15/82



[11. Differential refinement

@ Introduce geometric data via differential forms (connections, Chern forms,
-+), i.e., retain differential form representatives of cohomology classes.

Q*(M)
Hi (M) H*(M; Z) E*(M)
éreﬁnement érefmement érefmement
He (M) H*(M; Z) E*(M)

@ Amalgam of an underlying (topological) cohomology theory and the data of
differential forms:

Differential gen. cohomology Forms
Gen. cohomology de Rham cohomology

@ That is, we have a fiber product or twisted product

“Differential cohomology = Cohomology X d4e Rham Forms” 16 /82



Example (Differential refinement of integral cohomology)

Various approaches to differential integral cohomology:

algebraic

Integral
cohomology

geometric ( approach

Deligne cohomology/
higher bundles

Differential characters/
gerbes

axiomatic

(=)‘ Homotopy pullback

Consider the tr d de Rham

d

d
[ =0 Ql

QZ

d
an ]

Replace the structure sheaf O with the multiplicative group © %
under the exponential map to get the Deligne complex

d d

[ ox fo23 Q2

d
an ]

Deligne cohomology HI(X) in degree n + 1 is the hypercohomology

for this lex of sh of abeli

homology with coeffici

groups, i.e. abelian sheaf
in this chain complex.

/2

ﬁ”v“(x; 7)
H™L(M; 7)

[Schreiber ]
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Differential generalized cohomology

o Start with a generalized cohomology theory h

e Q(X,h,) :=Q(X)®z h.  Smooth differential forms with
coefficients in h, := h(x)

o Qu(X, hy) C Q(X, h,) closed forms

o Hgr(X, h.) cohomology of the complex (Q(X, h.), d)

Definition

A smgoth extension of h is a contravariant functor
h : Compact Smooth Manifolds — Graded Abelian Grps
Qa(X, hs)
/ l
h(X) Har(X, h)
\ T

h(X)

[Chern—Simons, Cheeger-Simons, Simons-Sullivan, Hopkins-Singer, Bunke-Schick, Schreiber, ]
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Full structure

‘ Twisted N Differential N Generalized‘

Geometric
twistar [/a_tijzﬁ/_/ t;% adjoin twiste
H3: ( M) H*(M;Z) E’((}ﬂ) Topological
érefmement grefmement éreﬁnement
H* qx (M) H*(M;Z) E*(M) Combined

[Bunke-Nikolaus, Grady-S.]

@ Twisted Movara K-theory K(2) & E-theory E(2) [s.-Westerland], twisted tmf
[with Ando].

@ Twisted K-theories of n-vector bundles. e.g. K(K(KU)) [s.-Lind-Westerland].

© Differential refinements of twisted cohomology theories including above
[Grady—S.].




Application: What is needed to describe RR fields?

Recall approach [kriz-s] : Physical conditions as obstructions, to orientation or as
differentials in the AHSS spectral sequence.

The spectral sequences can be extended to the differential refinements, that is we
can discuss theory E by adjoining geometric data to it.

Theorem (Grady-S.)

We have the differential refinement of the following:
© Primary cohomology operations: Steenrod Sq.
@ Secondary cohomology operations: Massey (-, -, - -

. >Massey .

© AHSS with a concrete identification of the differentials .

twist

‘Untwisted theory E‘ ‘Twisted theory Etw‘

refinement \L \L refinement

twist

‘Differential theory E‘ ‘Twisted differential theory Etw‘

twist .
d —————————> diwist = d + secondary operation

refinement i \L refinement

twist

refined = d — > dhwist = d + secondary operation 20/ 82



Higher tangential structures

Proper description of fields requires some extra tangential structure
BSO(n)

f o7 ¢

X" . BSO

‘Spin structure: ‘ n=2 B BSpin
X BSO " K(Z,,2)
‘String structure‘ n=4 _ BString
F o7
X =~ BSpin —— K(Z,4)

@ Even higher structures: Fivebrane (n =9), Ninebrane (n = 12).

[ k I 7 8 9 10 11 12
74 (O(n)) z Za Zy [ Z o
O(n) (k) String(n) ~ Fivebrane(n) ‘ 0(9)(n) ‘ 0(10)(n) Ninebrane(n)

kill w7 kill g kill g Kill 799
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At the infinitesimal level:

@ string is a Lie 2-algebra

© fivebrane is a Lie 6-algebra
@ ninebrane is a Lie 10-algebra.

@ These are truncations of L..-algebras.
o Characteristic classes of L-algebra bundles [S.-Schreiber-Stasheff].

Remark (Variations)

o Twisted: All the above can be twisted and differentially refined, e.g. twisted
differential String structures etc. [S.-Schreiber-Stasheff].

@ Stacky: Via stacks and higher bundles [Fiorenza-Schreiber-Stasheff].

o Indefinite: Above structures can be defined for the indefinite (Lorentzian
case) via Spin(p, q) [S.-Shim].

o Rational: Explicit characterizations at the level of rational homotopy and
cohomology [S.-Wheeler].

.. more later ...
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Why stacks? (in a nutshell)

G a Lie group ~ Classifying space BG is a topological space

‘ [X, BG] ‘ ~ ’ equivalence classes of G-principal bundles on X ‘

Shortcoming: BG does not know about:

© the smooth gauge transformations: G-valued functions,
@ actual gauge fields: connections on G-principal bundles.

Remedy: There is a smooth groupoid/smooth stack BG:

‘ maps of smooth stacks X —+ BG ‘ o~ ‘ G-bundles on X ‘

{homotopies of such maps} ~ { smooth gauge transformations}.

o Differential refinement to a richer smooth stack BGy:

‘ maps X — BGy ‘ ~ ‘ G-Yang-Mills gauge fields on X ‘

True configuration space: smooth mapping stack [X, BGy]:

o elements are gauge fields on X,
e morphisms are gauge transformations.
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Higher U(1)-bundles
Machine: ’Chain complexes‘ +SZT}:E:ZOH

Definition (Fiorenza-Schreiber-Stasheff)

@ The n-stack of U(1)-n-bundles ( without connection) | B"U(1) | is obtained
via “Dold-Kan" + “stackification” from the sheaf of chain complexes
U)n = (UY@1)—»0—---=0),
with C*°(—; U(1)) in degree n.

@ The n-stack of U(1)-n-bundles with connections | B"U(1)y | is obtained by
“Dold-Kan" + “stackification” to the (n+ 1)-term Deligne complex

Ul = (U() M QU R) S - S (= R))

where U(1) is the sheaf of smooth functions with values in U(1), and with
Q"(—;R) in degree zero.

@ Equivalence classes of U(1)-n-bundles on X are in natural bijection with
H™ N (X;Z) = H"(X; U(1)) = HO(X; U(1)[n]) = moH(X; B"U(1)) .
e Equivalence classes of U(1)-n-bundles with connection on smooth manifold X

I:InJrl(X; Z) = HO(X’Q(]_)[”]%O) = 7TOH(X; BnU(l)v) . 24 /82




Geometric realizations and smooth refinement

Obvious morphism of chain complexes of sheaves U(1)[n]3° — U(1)[n] induces:
— the forget the connection morphism B"U(1)y — B"U(1),

— Level of equivalence classes: natural morphism A"t (x;2) — H™1(X;Z) from differential coh | to integral coh !

While smooth higher stacks have richer structure than topological spaces, there is
a map called geometric realization | — | that sends any smooth higher stack to the
topological space which is the “best approximation” to it, in a precise sense.

Examples

@ The geometric realization of the n-stack B"U(1) is the Eilenberg-MacLane
space K(Z,n+ 1) (notice the degree shift) which classifies integral
cohomology |B"U(1)| ~ K(Z,n+ 1).

@ The geometric realization of the moduli stack BSpin of Spin-principal bundles
is the ordinary classifying space BSpin: |BSpin| ~ BSpin
(all up to weak homotopy equivalence).
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[I. M-theory
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Bosonic 11D supergravity

e Bosonic Lagrangian: given by the eleven-form [Cremmer-Julia-Scherk]

LEDS:R*]*%G4/\*G4*%G4/\G4/\C3 . (1)
o Equations of motion: The variation Sanee _ () for G gives the
corresponding equation of motion
d*Gs + 1G4 N Gy =0]. (2)

e Bianchi identity:

#6=] g

@ The second order equation (2) can be written in a first order form, by first
writing d (*G4 + %C3 A G4) =0 so that

*Gyp = Gy = dC@-%C3/\G4 R (4)

where Cg is the potential of G7, the Hodge dual field strength to G4 in 11
dimensions.
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The effect of the fermions

@ The femionic field ¢ € (S ® TM) (the gravitino) satisfies the generalized
Dirac equation, the generalized Rarita-Schwinger equation

Drsy =0, wel(SeT'M)|.

(involves mixing of terms).

@ The fields themselves are in fact combinations of bosonic and fermionic
fields. Physics literature usually writes:

super I

G = Gy + P

~—~ N——
~~topology/geometry  ~-topology/geometry

@ Similarly for the connections

super

w = w + fermion-bilinears

[See Duff-Nilsson- Pope]

Strategy: Extract topology/higher geometry from bosons and fermions separately.
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The M-theory gauge algebra

@ Action Spos = fy dvol(Y)Lyes, and hence the EOMs, are invariant under the
abelian gauge transformation

0CG = do,

Alternatively write the gauge parameter as A3 = d ;.
o First order eqn (4) is invariant under the infinitesimal gauge transformations

0CG = A3, 6C6:/\6—%/\3/\C3,

where Ag is the 6-form gauge parameter satisfying d/Ag = 0.
@ Applying two successive gauge transformations:

[0As»0ny] = —0nz
[0As:0ne] =0,
[6/\5u 6/\’5] =0 )

with the new parameter A = Az A AS.
@ Nonlinear due to Chern-Simons form.

[See Kalkkinen-Stelle]
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@ Introduce generators v3 and vg for A3 and Ag gauge transformations, resp.
@ On the generators, we get the graded Lie algebra

{vs,v3} = —v,
[vs,v6] = O,
[ve,v6] = 0.
@ Use graded commutators: [va, v] = —ve ,
[v3,v] =0,
[ve, v6] =0 .

o Properties:

@ Constant: dvs =0 = dvs.

@ Grading on the generators v3 and vg follow that of the potentials Cs and Gs.
@ Maurer-Cartan flatness: Total uniform degree field strength G = dVV~! with

Y = GOzl (5)

The equation of motion for C3 (= Bianchi identity for Cg) and the Bianchi
identity for C3 are obtained together from

dG—-GAG=0.

[See Cremmer-Julia-Lu-Pope, 509]

—> We will offer two (related) interpretations.
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Rational degree four twists

Three-form C3 with G4 = dC3. We can build a differential with G, as
de, = d + v3 ' G4

Proposition (S.09)

The de Rham complex can be twisted by a differential of the form d + v5;'; GoiA
provided that Gy, is closed and v»; _; is Grassmann algebra-valued.

Form a graded uniform degree form G = v; G, + vg ' G;. This expression can
now be used to twist the de Rham differential, leading to

de=d+GA=d+v; G A+v5 1Gr A . (6)

Proposition (S.09)

The de Rham complex can be twisted by the differential dg provided {vs, v3} = vg
and dG7 = —%64 A G4.

@ The first condition is the M-theory gauge algebra and the second is the
equation of motion.
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Massey products in M-theory

[Kriz-S.]: Lifted Chern-Simons term can be written as a Massey triple product and
the one-loop term can be explained as being a part of the Massey product
indeterminacy.

Chern-Simons term and the one-loop gravitational correction term,

%LHQA@A@fQAw (7)
where IR is a polynomial in the curvature of Y whose class is
le=a5(p2 =),  Ai=3p
View the EOM
d * G4:—%G4/\G4. (8)

as a trivialization of the cup product [G4] U [G4] = 0, by writing
G4/\G4272d* G4

Once the cup product is trivial as a primary cohomology operation, one can
introduce a secondary cohomology operation, the Massey product on the kernel of
the first operation. 32/82



o A differential graded algebra (DGA) is a graded algebra A with a map
d: A — A of degree +1 which satisfies the relations

dd = 0,
d(aB) = (da)B+ (—1)"m*a(dB).

@ Then the cohomology H(A) of A with respect to d is a graded algebra.
@ It has further certain operations called Massey products, as a correspondence

H(A) @ H(A) @ H(A) — H(A) (9)

which is denoted by [, 3,7], where «, 8,7 € H(A). It is defined only when
aff = By =0 € H(A), and the dimension of the result is

dim(a) 4+ dim(8) + dim(y) — 1. (10)

@ It is also not well defined, it is only defined modulo terms of the form
ax + yf where x, y are some elements of H(A).

Definition (Massey product)
With af = dy, 8y = dz for y,z € A, set

(o, 8,7) = yv + (-1)m**Haz, (11)

This is a cocycle and the cohomology class is defined modulo the
indeterminacy given above. 33/82



Apply to M-theory:

e The EOMs define a triple Massey product (Gy, Gs, G4) as a coset in HL.

o If we view xG, as an independent field Gz then we can write the Lagrangian
itself as a Massey product.

@ The one-loop term can be explained as a part of the indeterminacy. So the
Massey product predicts its existence.

@ More precisely, the term is of the form
Gy N\ I7 (12)

where J; is a 7-dimensional cohomology class in Y11
@ We can view /7 as a flat potential for /g.

@ From the structural point of view, this hints at underlying rich homotopic
structures.

Differential refinement:
[Grady-S.] Refinement of Massey products to differential cohomology.
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M-branes and nonabelian Chern-Simons

@ When a class is trivial in cohomology [3;] = 0 € H'(X;R) then the
corresponding differential form is exact §; = dv;_1.
= This allows us to consider boundaries.

o For the M2-brane: Trivially we essentially have Chern-Simons theory. This
arises from the trivialization of the String structure, p;(w) ~ dCSs.

o What about the M5-brane? A trivialization of the Fivebrane structure
pz(w) ~ dC57
In fact, it will be a ‘composite’ (cup-product) nonabelian Chern-Simons
theory: CSps ~ CS7 + CS3 A ps.

= Capture aspects of the nonabelian gerbe theory on the (extended)
M5-brane worldvolume via 7d Chern-Simons [FSS].
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The abelian CS-theory. Conformal blocks of (0,2)-SCFT are identified with the
geometric quantization of a 7d CS-theory

G G NGy Gy :N/ G AdG, (13)
X7x 54 Xz

where N := fs4 G4. This induces on its 6-dimensional boundary the self-dual
2-form.

The nonabelian CS-theory. One-loop term via M5-branes:
(w, G3) G A (G A Gy — I§R(w)) (14)
X7x 54

So we pick up another 7-dimensional Chern-Simons term, now one which depends
on nonabelian fields. Locally,

N
Sracs (0, G) o g [ G AdG— N / 81 (w) (15)
X7 X7

where CS,(w) is a Chern-Simons form for I§{®(w)

dCS), (w) = IR (w). (16)



Recall flux quantization condition

2[Gs) = Lip1 +2a € HYX,Z)|.

On an asymptotic neighborhood of the asymptotic boundary 0.X:

ip1+2a=0 € HY9X,Z)|.

Notice that [G4] = O at the boundary means that the C field is still there, but

given by a globally defined differential 3-form Cs.

(17)

(18)

Imposing condition (18) in a gauge equivariant way involves refining it from an

equation between cohomology classes (hence gauge equivalence classes) to a

choice of coboundary between cocycles for %pl and 2a.
=

locally: Spin connection ~» globally: 2-connection on a twisted String-principal
2-bundle, or equivalently a twisted differential String structure, where the twist is
given by the class 2a.

Example of “cup-product Chern-Simons theories" [FSS].
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between stacky notions and the corresponding bundle structures appearing in
relation to M5-branes and M-theory:

l symbol H (higher) moduli stack of... ‘
BU(1) circle bundles / Dirac magnetic charges
BU(1)y U(1)-connections / abelian Yang-Mills fields
BSping Spin connections / field of gravity
BEg Es-instanton configurations

(BEs)v Eg-Yang-Mills fields

B2U(1)y || B-field configurations (without twists)

B3U(1)y C-field configurations (without twists)

BString, String 2-connections / nonabelian 2-form connections

BString®® || Eg-twisted String-2-connections
CField bulk configurations of supergravity C-fields (and gravity)
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The moduli stack of supergravity C-field configurations

[FSS]

@ Locally: 3-form (C-field), so-valued 1-form (vierbein), and on boundary:
eg-valued 1-form (the gauge field), and B-field.

o Globally: these fields are interrelated and arrange to certain nonabelian
twisted differential cocycles.

@ The analogy with dd : BPU(H) — B2U(1) is the canonical map

a:BE — B3U(1) (19)

from the moduli stack of Eg-bundles to that of circle 3-bundles / bundle
2-gerbes, constructed as a morphism of smooth 3-stacks.

o Under geometric realization: morphism a: BEg — K(Z,4) of topological
spaces representing a generating degree-4 integral cohomology class in
H*(BEg) ~ Z. Higher connectedness of Eg this a is an equivalence on
15-coskeleta.

So, while nonabelian Eg-gauge fields have a very different differential geometry
than abelian 3-form connections, the instanton sectors on both sides may be
identified.

397/%



@ M — Y a 5-brane worldvolume embedded into spacetime Y = Y1
@ A corresponding cocycle in a-twisted relative differential cohomology is a
homotopy commuting diagram of higher stacks

Q£ - B(Es)v

X —=BU(l)y

o For fixed bulk field C, this is equivalently of €|o-twisted differential
String( Eg)-structures [SSS], which are twisted String(Eg)-2-connections on Q.

Therefore, where the restriction of the abelian B-field on a D-brane gives rise to a
nonabelian 1-form gauge field, the restriction of the C-field relative the a-class
gives rise to a nonabelian 2-form gauge field.
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The moduli 3-stack of C-field configurations for %pl divisible by 2 is then the
homotopy pullback

CField B3U(1)

i |- (21)
%P1+22
BSpiny x BEs ——— B3U(1)

)
where %pl is the smooth refinement of %pl.

Main Points

A field configuration ¢ : ¥ — CField has an underlying circle 3-connection C, a
Spin connection F,,, an Eg-principal bundle with class a, and a choice of gauge
transformation

H:G—a—1ps (22)

between the underlying circle 3-bundle of G and the difference between the
Chern-Simons circle 3-bundles of the Spin- and the Eg-bundle.
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Boundary moduli [FSS]

Two stages of boundary conditions for this data, exhibited by a sequence of maps
CField"® — CField"* — CField. (23)

@ Restriction to M5: For boundary field configurations ¢ : ¥ — CField®™ the
integral cohomology class of Gy is required to vanish and a differential 3-form
part may remain.

@ Restriction to heterotic boundary: while for CField®™ the full differential
cohomology class of Gy is required to vanish.

@ Both cases: Eg-bundle picks up a connection over boundary ~» dynamical.
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Connection to rational homotopy theory

Definition

The field equations of (a limit) of M-theory on an 11-dimensional manifold Y1! are

d*G4 %G4/\G4
dG, = 0

Q. What topological & geometric information can the above system
provide us?
o Rational structures: Differential forms, rational cohomology, rational
homotopy theory ...
o More refined structures: (twisted) 2-gerbes, (twisted) String structures,
orientations ...

@ A priori, G4 should be described by a map f: Y — K(Z,4).
o Differential refinement G, corresponds to Y — B2U(1)y.

@ Product structure on Eilenberg-MacLane spaces is cup product, with no a
priori information about trivialization.

o Need (G, G7) satisfying above <+ Y — 7.

@ Need (@4, 67) satisfying above <+ Y — 2.
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Observation (The Sullivan model as the equations of motion (S13))

The above equations correspond to the Sullivan CDGA model of the 4-sphere S*
M(S*) = (ANva, y2); dyr = yi, dya =0)
What about the factor of 17

o Whitehead bracket [t4, t4]w : ST — S* generates Z (Q)-summand in m7(S5%).
@ There is an extra symmetry as we are in the dimension of a Hopf fibration,
i.e. o the H-Hopf map and so the generator is o = %[u, talw.

Observation (The Quillen model as the M-theory gauge algebra

(Fiorenza-S.-Schreiber))

The Sullivan model for 52" is given by the DGCA
M(52") = (/\(X2n7X4n—1); dXZn = 07 dX4n—1 = X2n2) )
so that imposing the Maurer-Cartan equation on the degree 1 element
Xon€1_on + Xan—1&2_4n We find the Lie bracket dual to the differential is given by

[£1—2n, &1—2n] = 282_4n
with all the other brackets zero.

Example (n = 2)

The graded Lie algebra R¢_3 & RE_g with bracket [€_3,&_3] = 2€_¢ (Quillen
model) can be identified with the M-theory gauge Lie algebra. a5 /82




@ What comes out of this?

Proposal (S13)

Higher gauge fields in M-theory are cocycles in cohomotopy.

o [Y, 53] = m5(Y) rational cohomotopy.

o Ultimately interested in full Map(Y, S*) > f.

o Geometry + physics = interested in differential cohomology, i.e., differential
cohomotopy [Fiorenza—S.—Schreiber]

Formulate in stacks/chain complexes.

© Reduction via a circle bundle = new functors formalizing dimensional
reduction via loop (and mapping) spaces.

@ The rational data of S* on the total space Y'! of a circle bundle
St = Y 5 X719 |eads exactly to rational data of twisted K-theory on base
X0,

© Even if we take flat + rational we can still see a lot of structure: Study of
cocycles in Super-Minkowski space recovers cocycles in rational twisted
K-theory.

@ Furthermore, T-duality can be derived at the level of supercocycles.
46 /82



Differential cohomotopy [Fiorenza-S.-Schreiber]

o H-Hopf fibration:
$? —§" — 5" — BSU(2) 25 K(Z,4). (24)
o Rationalize: S3 — S — S — (BS?)q which is equivalent to
K(Q,7) — S§ — K(Q,4)

o Rational homotopy of spaces can be modelled using L..-algebras.

e The Eilenberg-MacLane spaces K(Q, n) = B"Q can be modelled using
algebras via chain complexes: b"Q = Q[n].

o Lie 7- algebra s* is defined by CE(s5*) = R[ga, g7] with gk in degree k and with
the differential defined by dgs = 0, dg7z = ga A ga.

e Has a natural structure of infinitesimal R[2]-quotient of R[6], i.e., there exists
a natural homotopy fiber sequence of L..-algebras

R[6] — 5*

Ve
g —R[3]. (25)
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o Define the stack S¢ by analogy with that of the stack BP**U(1)y.
Sy —— [(8%)
v |

B*U(1)y —= B*Z

exhibits SY as a differential refinement of the homotopy type of S* in analogy
to how B3U(1)v is a differential refinement of the homotopy type K(Z; 4).

Differential 4-cohomotopy ———— S* homotopy type

; i

Differential K(Z,4) with connection —— Differential K(Z, 4)

The system (64, 67) forms a cocycle in differential cohomotopy.
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Let's go super
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Super-Minkowski spacetimes

In terms of the (super-)L..-algebras/semifree differential (bi-)graded commutative
algebras duality, the algebra CE(R?~11IV) precisely encodes the super-Lie algebra
structure of the left-translation in the super-Minkowski spacetime RY=L1IN,

Example (Eleven dimensions)

o Super Minkowski spacetime RV
Spin(10, 1).

o (—)F(=): N®N — R?is a symmetric bilinear Spin-equivariant pairing.

, where N is a real Spinor representation of

o {e}9_ 1, {¥*}¢mN basis of left-invariant 1-forms on ROV satisfy
dy® =0, de® =y ATy, (26)

o CE(R®!IV) the differential (N,Z/2)-bigraded commutative algebra of left-invariant
polynomial differential forms. Algebraically, R[e?, 1] on the generators {€?,*} in
bidegree (1, even), (1, 0dd), with d as in (26) of degree (1, even).

o This encodes the super-Lie algebra structure of left-translations on RV,

For M-theory: N = 32, so we consider R0:1132,
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The supercocycles in M-theory [Fiorenza-S.-Schreiber]

[(X):=Loo-algebra dual to given Sullivan model (Ay, dy) for rationalization of X, i.e, CE([(X)) := (Ax, dx).
Observation
There are elements 14 and p7 in CE(R®1132) which satisfy
dus =0, duz = pa A pig .
The pair (ua, p7) equivalently constitutes components of an L,,-morphism
f = (pua, ) - RO 5 ((S4)
namely, dually, the components of a dg-algebra homomorphism
CE(IS*) —— CE(R10:1132)

N ——
T — T

The morphism 1 = (pa, p17) is actually induced by an equivariant 7-cocycle on the
m2btane extension of the super-Minkowski space R19:1132,

Definition

Write m2brane for the super L.-algebra which is the homotopy fiber of yy4, i.e.
sitting in a homotopy pullback diagram of the form
m2btane —— 0
\ v
R10, 132 _74 B3R . .



Observation

(i) There is a super L,-cocycle of the form

m2brane i [(S7) = b°R .
(i) Both m2brane and [S7 are naturally b?R-principal bundles, and the morphism
w7 is b°R-equivariant.

The ingredients arrange themselves according to the quaternionic Hopf fibration

Proposition

Starting with cocycle p4, there is commutative diagram of L.-algebras of the form

m2brane f [(S7)

\0/
—

b3R
where the two front faces of the prism are homotopy pullbacks.

R10,1/32

(%)
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Applications
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Application 1: Reduction on a circle

Q. If fields in M-theory are modelled by S*, what would fields in type lIA string
theory be modelled by?

Example (Cyclified loop space)

Let X = S* be the 4-sphere, with

CE(K(S*)) = (A" (g2, £7), dga = 0, dgr = 32 A ga).

The free loop space of S* is modeled by
4Ny . dws =0, dws = h3 N\ wa,
CE(I(£S*)) = (R[w4,wa, has el G 0, dh e —heos e ) :

and the homotopy quotient by S* is modeled as

4 1, . dwz =0, dws = h3 A w2, dwe = hs A wa
CE((£S*)/5%) = (Rlun, o, s, el 0 o e )

(27) J

Observation

@ Relations in (27) correspond to EOMs of fields in type IIA string theory.
© These in turn correspond to rationalization (via the Chern character) of twisted
K-theory classes.
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Formalization of dimensional reduction

Observation

The (M-theory) super-Minkowski spacetime R1%-1132 is rationally a Si-principal
bundle over the (type IIA) spacetime R%:1/16+16,

e There is a homotopy fiber sequence of L..-algebras

R0:1132 0

LS

i vrttv
RO-1[16+16 bR .

which exhibits R*®132 a5 the central extension of super Lie algebras classified
by an explicit 2-cocycle (DO-brane’s W' w).

e There is an equivalence between two rational cohomology theories:

There is an isomorphism of hom-sets

Hom,__(R:1132, 56) = Hom, __ (RIO’I‘IGJ’E, ES(S,)

(one can refine further ...) 55 /82



Application 2: Relation to twisted K-theory

Observation

© This is exactly the data for rational twisted K-theory at the level of field equations.
@ There is a correspondence between Massey products and differentials in the AHSS
for twisted K-theory.

o In string theory we have 3-cocycles in stead of 4-cocycles in M-theory.
e To start connecting to twisted K-theory, we form:

Definition

(i) The super Lie 2-algebra stringy, is the the super Lie 2-algebra extension of
R:1116+16 c|assified by a certain 3-cocycle ., , the string cocycle.
Equivalently, it is the homotopy fiber (in super L..-algebras) of the 3-cocycle p,,:

stringgy, ——— 0

/ |

_ fp
R9,1\16+16 L > bR .

(ii) For p € {0,2,4,6,8} there is Dp-brane cocycle p,, € CE(stringp, ).

Definition
Define [(KU) to be the L..-algebra [((KU) = P bPTIR as the minimal

p even
Sullivan model for the rationalization of the K-theory spectrum.

|
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o Notice that the Chevalley-Eilenberg algebra of [((KU) is
CE(I(KU)) = (R[{wzp}p-1.2,...] i dwap =0) ,

i.e., the even closed forms, as appropriate for rationalization of K-theory, via
the Chern character, with target even rational cohomology.

o The direct sum of cocycles yi, = €@  pp, defines an Lo.-morphism
p=0,2,4,6,8

Wy RO+ @ PR C— [((KU). truncated

p=0,2,4,6,8

Proposition
The brane cocycles of type IIA fit into a comm diagram of super L..-algebras
[(KU)

stringp, /
hoﬁb(,u,F1 \L \ \Lhoﬁb(@

RSt l (KU/BU(1)) .

mbzk/(b

Both front faces of the prism are homotopy pullbacks, and
CE([(KU/BU(].))) = {R[{WQP, h3}p:1’2,m] » dhs =0, dw2(p+1) = h3 A wzp} .
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Derivation of twisted K-theory from M-theory

How to enhance the cyclification of the M2/Mb5-cocycle from 6-truncated to
un-truncated rational twisted K-theory?
Earlier approaches:  [Diaconescu-Moore-Witten] (untwisted)

[Moore-Saulina] (trivially twisted)

[Mathai-Sati] (twisted)
assume that the fields are already described by (twisted) K-theory and check the
behavior of the partition function of the C-field is compatible with the a priori
K-theory classification of D-branes. Here we provide an actual derivation.

Main Points (Parametrized spectra)

o A spectrum is a kind of linearized version of a topological space.

o By Brown representability theory maps into spectra represent cocycles in abelian
generalized cohomology theories, such as K-theory.

o Moreover, a parametrized spectrum is a bundle of spectra over some base space,
and maps into these represent cocycles in twisted generalized cohomology theories.

Parametrized Underlying
c over the point Parametrized parameter space
ectra aces
P spectra P

o Homotopy theory supplied in thesis of [V. Braunack-Mayer] leading to full solution
in [Braunack-Mayer-S.-Schreiber]

y

Answers quest since [506]: Which cohomology theory describes fields in M-theory. ss/s2




o (Rational) cohomotopy in degree-4 is the generalized cohomology theory that
is represented by the (rationalized) 4-sphere, meaning that the joint
M2/M5-brane cocycle is a morphism in the rational super homotopy category
of the form [Fiorenza-S.-Schreiber]

Hmz/ms

R0:1[32 sS4 € Ho (SuperSpacesR) .

o Compatible circle action st u(1)

Y Y

§* = S(R@C?
which is the suspension of the circle action on the C-Hopf fibration.
The projection to the corresponding (rational) homotopy quotient is hence

identified with the M-theory circle fibration:

’ 11d super-spacetime ‘ R10:1132 s
l Hm2/ms
’ 10d super-spacetime ‘ RO1116+16 , 10,1132 /51 styst
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The identification SU(2),

$* ~ S(R®C?)
induces an action of SU(2) on the 4-sphere, where on the right we have the
defining linear representation of SU(2) on CZ.
Along the canonical inclusion S ~ U(1) < SU(2) this restricts to a circle
action on the 4-sphere.
We call the corresponding homotopy quotient (Borel construction)

s*)st ~ s* x ES*

51
the A-type orbispace of the 4-sphere.
The ordinary topological quotient of the above circle action is the 3-sphere:
s*/s' ~ 3.
The fixed point space of the circle action is the 0-sphere, included as two
antipodal points
1
SO = (5% —= s*.

In summary, we have the following system of spaces over S°:

e s-sphere hsied e (28)
S0 (54) s g4 54//51 54/51
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Application 3: T-duality

Theorem (Fiorenza-S.-Schreiber)

© There is an Loo-isomorphism of the form
61 : I(L(KU/BU(1))/SY) +>- I(L(XKU/BU(1))/S")
relating the cyclifications of the rational twisted KU-coefficients.
@ This takes the dimensionally reduced type IIA F1/Dp-cocycle Q(ulFliA/ Dp) /R to the
dimensionally reduced 1B cocycle £(u 0,)/R, making the following diagram of
super Loo-algebras commute:

bR
=
Il'B/
2

C.
B _
R8:1/16+16 ~|or

T ™
F1/Dp \
\ LIKU/BU(1))/R .

\bR/

e There is a corresponding explicit pull-push (Fourier-Mukai) formula. 61/82
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classifying space
for circle bundles

10d 1A superMinkowski class of Hﬁﬁ cyclified twisted K1

T~ (1B ﬁelds)/

‘ od N = 2 superMinkowski ‘ ~

P \ (1A ﬁelds)\
10d 11B superMinkowski class of II% cyclified twisted K©

/

\

/

classifying space
for circle-bundles
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Higher T-duality in M-theory



Higher T-duality in M-theory

e By analyzing super-torsion and brane super-cocycles, we derive a new duality in
M-theory, which takes the form of a higher version of T-duality in string theory.

e This involves a new topology change mechanism abelianizing the 3-sphere
associated with the C-field topology to the 517-torus associated with
exceptional-generalized super-geometry.

e This explains parity symmetry in M-theory within exceptional-generalized
super-spacetime at the same level of spherical T-duality, namely as an isomorphism
on 7-twisted cohomology.

o Generalizes “topological T-duality" and “spherical topological T-duality".

This is a derivation of M-theoretic structures from first principles, not involving
any extrapolation from perturbative string theory nor any conjectures or informal
analogies from other sources.
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Replacing the string with the M5-brane, we uncover a duality fully within
M-theory, which may be formulated as a higher-structural analog of T-duality
in string theory.

o Uses constraints on super p-brane fluxes due to local supersymmetry
(supergravity) [Achicarro-Evans-Townsend-Wiltshire, de Azcarraga-Townsend]
Reduces in string theory to a generalization of “topological T-duality”

o The fermionic component of the brane charges (fluxes) restricted to any of
these infinitesimal neighborhoods is constrained to be a non-trivial solution to
the supersymmetric Gauss law (mathematically: a non-trivial cocycle in the
Chevalley-Eilenberg CE-complex of the supersymmetry algebra)
[Bergshoeff-Sezgin-Townsend, Bandos-Lechner-Nurmagambetov-Pasti-Sorokin-Tonin]

Cartan moving frame Super Minkowski

linear | extension

Infinitesimal neighborhoods
“thickenings”

o The full implication of these constraints has perhaps not been fully appreciated
until recently. Indeed, in [FSS16], we showed that these constraints already
imply the Buscher rules for the F1/Dp-brane charge sector of T-duality.

65/ 82



3-spherical T-duality for Mb5-branes

Rationally: Higher bundles of odd degree are equivalent to higher spheres of odd

dimension:

K(Z,2n+1) ~g K(Q,2n+1) ~q SZ"!

Example (n = 1)

A 2-gerbe or B2U(1)-principal bundle is rationally equivalent to S3-principal

bundle.

[ Concept

I

T-duality in string theory

Higher T-duality in M-theory

Maurer-Cartan

0 1-form

C3

Curvature F> of circle bundle Gg of 3-bundle
T-dualizable flux H3 = Hz3 +60 A F.‘( Gy = G7 + %Cg A Gg
Integration JtH=F Js3 Gz = Ga

Poincaré form

P on ST x ST bundle

Pe on S° x S* bundle

Fux transformation

7
eB2 AC' = I eP2 A7t (eBZ AC)

efe N F = Js3 ePe A7t (eC6 A]—')

Isomorphism

. J1 eP2 Am* (=) -
He s (xo) L He R (X30)

. 3 €76 AT* (— .
He 67 (VAL Js3 ) He 67 (VAL
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How to interpret the 7-twisted M-theoretic flux e A F?

o new effect seen in M-theory.
e should couple to whatever it is on which M5-branes may end.
o String theory limit: We invoke Horava-Witten theory. On this boundary:

G~7 M/HET duality H-

eCo N F } — eBo p Fhet (29)

o Precisely this had been identified in [S09]: F5* must be the heterotic gauge
field strength and F& its 10-dimensional Hodge dual. These jointly form an
Hz-twisted cocycle due to the Green-Schwarz anomaly cancellation
mechanism, i.e. from the twisted Bianchi identity

dH o< tr(F3* A F3)

for the NS 3-form flux.

[ T-duality I Higher T-duality |
Torus bundle 3-sphere bundle 517-torus bundle
MC 1-form 6 MC 3-form GC3 decomposable C3*°
String M5-brane
Hs +6 A F) G7+%C§exc)/\G4
D-branes Exotic M(9)-branes?
ef2 nC e A F
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A new topology change mechanism

e Transmutation of 3-spherical fiber to a 517-torus fiber via exceptional
supergeometry
o Subtlety: spherical T-duality of M5-branes acts not on internal spaces within
super-spacetime, but rather on the M2-gerbe over the total spacetime.
© we ask for parameterization of that super 2-gerbe by an ordinary super-space,
such that it still serves as a target space for the M5-brane sigma-model.

Exceptional-generalized Super 2-gerbe,
super-geometry over super-spacetime
10,132 s
Rec Y m2brane

4 A
U-duality equivariant :

sigma-model- & gauge-field

Sigma-model-

ZMS . & gauge-field

@ super-geometric refinement R:el,?c"lsm of the M-theoretic exceptional generalized

geometry of [Hull07b]:

Rg}({)c,,ls\?d ~ R10,1|32 o) 32 o /\Z(RIO,I)* D /\5(R10,1)* o 32
Spacetime

Super-spacetime

I lized i 68 /82




o Effect on C-field: comparison map ¢s pulls back the universal C-field c3 to a
decomposable form:
Cexc,s = s (c3) - (30)
o This decomposition is indeed what makes the idea of exceptional-generalized
geometry work: Each choice of section (linear splitting) of the exceptional

ngent bund| 10,1/32
tangent bundle Moduli space Rexc,sl
Classifying map o ( \Lﬂ'exc,s
Spacetime R10:1132

allows to pull-back the universal decomposed C-field and thus induce an actual
C-field configuration satisfying the M2-brane super-torsion constraint [BST2]:

d (0" Coxe,s) = 20T apth A €” A e’. (31)
~————

C-field

configuration

Torsion constraint

This leads to the following characterizations:

1. Each of the fermionic extensions Ri,?c’,lsm of the R01132  for each nonzero real
parameter s, serves as a moduli space for C-field configurations.

2. The decomposed C-field Cexc,s in CE(R:SC’E”) is the corresponding universal
field on the moduli space, whose pullback along classifying maps o yield the

actual C-field configurations on super-Minkowski spacetime. 0000



Using the new concept of C-cohomology

kernel(Cexc,s A (_))

image(cocs A (<)) (32)

C-cohomology =

and corresponding spectral sequence analysis, one can show that the spherical
T-duality of M5-branes passes along the decomposition map to the
exceptional-generalized superspacetime. cf. [Severa]

If we think of the latter as compactified, this means to trade the original
rational 3-sphere for a 517-torus (517 = 528 — 11) with tangent space
/\Z(Rlo,l)* D /\S(RIO,l)

‘Transmutation’

Torus bundle Sphere bundle
‘Large abelian’ *Small nonabelian’
Hlmrnh‘ A over
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Parity symmetry

o Lifting of parity symmetry on exceptional generalized spacetime to the level of
spherical T-duality.

o 11D supergravity is invariant under an odd number of spacetime-reflections if
these are accompanied by sending the C-field to its negative [Duff-Nilsson-Pope]

C3 = —C3 . (33)
e This operation lifts to an equivalence p* of M5-brane 7-flux-twisted
cohomology on exceptional-generalized super-spacetime, on par with the
spherical T-duality equivalence,
H e (R 32) o HT e (R ) (34)

o This means that we should view parity and 3-spherical T-duality as generators
that jointly induce a larger M-theoretic duality group which also contains their
composite operation:

H*Fws (35)
Js3 eTe AV p*
H’+’1M5 = H'+ﬁM5 X

‘Paritized’

3-spherical T-duality

o Compatible with the results of parity in the topological sector in

[Diaconescu-Freed-Moore]. 71/82



From global geometric and topological perspective, M-theory is parity invariant,
and so should in principle be formulated in a way that makes sense on unoriented,
and possibly non-orientable manifolds. We hope that our formulation provides
some insight into this problem.

Example (Parity as rational T-duality of Eg bundles)

Since the homotopy group of Eg are concentrated in degrees (3,15, --), the
group Eg has the same homotopy type as K(Z, 3) up to degree 14. Eg and SU(2)
have the same rational homotopy and cohomology in the above range. Overall:

“Eg 2147(@ K(Q, 3) ~Q 5U(2) ~Q 53” .

Equivalence in rational homotopy theory:

N2

Taking the class of the bundle E to be a and the class of the bundle E’ to be —a
then puts the two bundles as a parity dual pair, which fits into our discussion of
T-duality for rational sphere bundle as a special case.

S3 ~ K(Q,3) ~149 B —E '~ E3~g K(Q,3) = S3
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Let's go equivariant
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branes at singularities

e Use equivariant homotopy theory.
o Unexpexted equivalence via

Theorem (Elmendorf’s theorem)

Homotopy theory for equivariant homotopies is equivalent to another homotopy theory
where no equivariance on homotopies exists anymore, but where instead extra structure
appears on singularities, namely on the fixed point strata of the original group action.

Physics impact:

e For fundamental M2/M5-brane: deg 4 cohomotopy on superspaces [FSS].

o Here the open question is: which enhancement of rational cohomotopy also
captures the black M-brane located at real ADE-singularities?

o Proposal [Huerta-S.-Schreiber]: ADE-equivariant cohomotopy on superspaces
the equivalence of homotopy theories that is given by Elmendorf’s theorem
translates into a duality in string/M-theory that makes the black branes at real
ADE-singularities appear from the equivariance of the super-cocycle of the
fundamental M2/M5-brane:

Elmendorf’s theorem

G-equivariance -~ G-fixed points
Fundamental M2/M5-branes [HSS] Fundamental F1/M2/M5-branes
on 11d superspacetime with -~ on intersecting black M-branes

real ADE-equivariant sigma-model at real ADE-singularities a8




Definition (Actions on the 4-sphere)

Regard the 4-sphere as the unit sphere: Im(H)
—
S*~SROROR*OR). (36)
H

This decomposition induces the following group actions on the 4-sphere:

© Multiplication by unit quaternions on H preserves the 4-sphere and hence yields two
actions SU(2), which we denote by SU(2), and SU(2)r, respectively.

@ These two actions manifestly commute with each other, and hence we have the
corresponding action of the Cartesian product of SU(2) with itself, which we denote
by SU(2). x SU(2)r.

© We denote the action induced from this via the diagonal homomorphism
SU(2) -2 SU(2) x SU(2) by SU(2)a.

© There is then an inclusion S* < SU(2) such that the corresponding restriction of
the diagonal action fixes the second coordinate in (36). This induced action we
accordingly denote by S3.

©@ The Zs-action induced by the involution given by reflection of the last coordinate in
(36) (i-e. multiplication by -1 on the real part of the quaternionic coordinate in
(36)) we denote by (Z2)uw.

@ This commutes with the SU(2)a-action, so that there is the corresponding action of
the Cartesian product group, which we accordingly denote by SU(2)a X (Z2)uw.
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Remark (Summary of actions)

In terms of the decomposition (36):

SU(2)a
Im(H) (Z2)nw
——
S*~SR @ ReR*a® R ) (37)

()
SU(), C H Q SU@)k

which may by collected into two actions of Cartesian products as

SU(2)L XSU(2)R SU(2)AX(Z2)HW
Y "
st and st

Example (Suspended Hopf action)

Under the canonical inclusion S ~ U(1) < SU(2), of the circle group into the
special unitary group (as the subgroup of diagonal matrices) the induced action
S} on the 4-sphere, by above, is the image under topological suspension of the
Sl-action that exhibits the complex Hopf fibration S — S2 as an S'-principal
bundle.
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o Which enhancement of rational cohomotopy also captures the black M-brane
located at real ADE-singularities?
o We set up equivariant cohomotopy on superspaces.

Theorem (Equivariant enhancements of the fundamental brane

cocycles (Huerta-S.-Schreiber))

Enhancement of the fundamental M2/M5-brane cocycle from (rational)
cohomotopy of superspaces to (rational) equivariant cohomotopy exists, and the
possible choices correspond to fundamental branes propagating on intersecting
black M-branes at real ADE-singularities.

o Part of this statement is a full classification of finite group actions on super
Minkowski super spacetime R%*132 by isometries.

o Enhancements of the M2/M5-brane cocycle to equivariant cohomotopy

GADE X GHw GADE X GHw

O, )
Riosz MM st € Ho((Gape x Guw) SuperSpaces) .
o It is shown in [Huerta-S.-Schreiber] that this equivariant enhancement makes
the black branes at ADE-singularities appear, and unifies them with the
fundamental M-branes.
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More on K-theory from M-theory
Recall that we provided a derivation of twisted K-theory from M-theory. Can this

be enhanced to equivariant?
Point is that equivariant rational homotopy theory will see a bit of finite
information, thereby going a bit beyond rational towards full cohomology.

Objects Cohomology theory
M-branes Real ADE-equivariant
Cohomotopy
Real
D-branes Ketheory

To support this, we have seen:
(1) a homotopy-theoretic formulation of “compactifying M-theory on a circle”, s.t.
(2) under this operation the cohomology theory degree-4 cohomotopy transmutes
into the cohomology theory K-theory, matching how the M-branes are
supposed to reduce to F1/Dp-branes under double dimensional reduction.

o [FSS16a][FSS16b]: Rationally, (1) is exhibited by the Ext/Cyc-adjunction and
then (2) follows, since 6-truncated twisted K-theory appears, rationally, in the
cyclic loop space of the 4-sphere.

o [B-MSS]: the gauge enhancement of this result to the full, untruncated,
twisted K-theory spectrum.

p

stabilized
Ext/Cyc-adjunction
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The fundamental brane scan

o Green—Schwarz-type Lagrangians shown in [Heurta-S.-Schreiber] to be just the
super volume forms (hence the "super Nambu-Goto Lagrangians”)

GS d
Lp+1 = V01p+1 + @p+1 f— Mp+2 - (38)
~—— M~ —~—
NG WZW super-
SN—— cocycle
svolpy1

supersymmetric volume
o These cocycles ji,42 are what the (old) brane scan [Duff] classifies: the
non-trivial Spin-invariant super (p + 2)-cocycles on super Minkowski
spacetimes, for p > 1.

p 1 2 3 (4|5 678910
d+1\
10+1 T
9+1 u’:‘/l Thxss
8+1 *
7+1 *
6+1 *
5+1 * *
4+1 *
341 * *
2+1 w

o These cocycles correspond to those fundamental super p-branes that do not
carry (higher) gauge fields on their worldvolume. 70 /82



e [FSS13]: Improve to include also all these further branes, if one passes from
super Lie algebras to their homotopy theoretic incarnation: super L..-algebras.
o Every 2-cocycle ui> on a (super) Lie algebra classifies a central extension.

Type IIA superspacetime carries a Spin-invariant 2-cocycle pi,,, = ¥, whose central
extension is D = 11, A/ = 1 super Minkowski spacetime:

R10,1[32

central extension
by 11pg = 910y

R9,1\16+ﬁ

v

e In rational super homotopy theory, a 2-cocycle as above is equivalently a map,

namely a map of the form RO116+16 12, B and for every map in homotopy

there is the corresponding homotopy fiber.

Example (DO-brane Lie superalgebra continued)

R10,132

homotopy fiber
of up = Pridy

16 H2=yl%
R9:1/16+16 B2R .
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e Now we go higher:

Example (The superstring Lie 2-algebra)

stringy,

homotopy fiber
of npy .
fpy =75 (PTawp)Ae?

RO:1I16+16 B3R .

o Q: Does this carry further Spin-invariant cohomology classes?
Indeed it does carry non-trivial Spin-invariant cocycles precisely for all the
previously missing branes:

Example (Super D-branes of type II1A)
02pbrane

homotopy fiber
of 1p(2p)

. KD(2p)
string, ———— > B*"R.
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The global picture

details are encoded in the fundamental brane bouquet:

Higher
T-duality
mbBbrane
N b M/IIA
P I
[Ss, Fss1s] RAQ 2132 Duality
TT——comp.
T A
m2brane
0Bbrane o3brane dlbrane \L Dobtﬂnl‘ 02brane d4brane

R:}g’l‘?'z D7brauc b rane R0, 1‘32 d6branc
ouquet (sb) /
p
ﬁohtanc > Jlt\nglm [FSs13] ﬁﬁtllik 5“‘“UIIA < 08brane

RQ 1/16+16 <— 9,1|16 > Rr9,1/16+16
-

Rr5,118 —> 5,1(8+8

R3.1/4+4 <— p3.1|4 emergent
spacetime

2,1[242 <— 2,12
i3 R

rOI32 ROI1+1 < zOI1
-~

- T-Duality -

The completion of the old brane scan to the remaining branes and various further

[FSs15]

[FSS16a]

Gauge
enhancement

A
[B-MSS]

[HS17]

[FSs16b]

82 /82



