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Introduction and Motivation

In this talk, we will discuss a quasi-topological twist of a 2d N = (2, 2)
nonlinear sigma model (NLSM) on CP 1 with target space the based loop
group ΩSU(k).

The motivations for doing so are to:

• Describe the ground and half-excited states of the 6d Ak−1
N = (2, 0) little string theory.

• Obtain a physical derivation and generalization of a mathematical
relation by Braverman-Finkelberg which defines a geometric
Langlands correspondence for surfaces.

• Elucidate the 1/2 and 1/4 BPS sectors of the M5-brane
worldvolume theory.
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Introduction and Motivation

This talk is based on

• M.-C. Tan et al., Little Strings, Quasi-Topological Sigma Model on
Loop Group, and Toroidal Lie Algebras, Nucl.Phys. B928, 469-498
(2018)

Built on earlier insights in

• M.-C. Tan, Two-Dimensional Twisted Sigma Models And The Theory
of Chiral Differential Operators, Adv.Theor.Math.Phys. 10, 759-851
(2006).

• M.-C. Tan, Five-Branes in M-Theory and a Two-Dimensional
Geometric Langlands Duality, Adv.Theor.Math.Phys. 14, 179-224
(2010).

• R. Dijkgraaf, The Mathematics of Fivebranes, Documenta
Mathematica, 133-142 (1998).
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Summary of Results

1. In the quasi-topological sigma model with target ΩSU(k), there is a
scalar supercharge Q+ which generated supersymmetry survives on a CP 1

worldsheet, whereby in the Q+-cohomology, we have the following currents
that generate the following toroidal algebra su(k)tor:

[Jan1
m1 , J

bn2
m2 ] = if

ab
c J

c{n1+n2}
m1+m2

+ c1n1δ
ab
δ

{n1+n2}0
δ{m1+m2}0 + c2m1δ

ab
δ

{n1+n2}0
δ{m1+m2}0

2. In the topological subsector of the sigma model, we have instead the
following affine algebra su(k)aff :

[Jan1
0 , Jbn2

0 ] = ifabc J
c{n1+n2}
0 + c1n1δ

abδ{n1+n2}0
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Summary of Results

3. Via a theorem by Atiyah in [1], the left-excited states (in the DLCQ) of
the 6d Ak−1 N = (2, 0) little string theory (LST) on R5,1 can be related
to the Q+-cohomology of the quasi-topological sigma model. In turn, we
find that

left-excited spectrum of 6d Ak−1 (2, 0) LST = modules of su(k)tor

4. Likewise, the ground states (in the DLCQ) of the 6d Ak−1 N = (2, 0)
LST on R5,1 can be related to the topological subsector of the sigma
model. In turn, we find that

ground spectrum of 6d Ak−1 (2, 0) LST = modules of su(k)aff
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Summary of Results

5. This means (via the ground states) that we have

IH∗(MN
SU(k)(R

4)) = ŝu(k)Nc1

i.e., the intersection cohomology of the moduli spaceMN
SU(k)(R

4) of
SU(k)-instantons forms a finite submodule over su(k)aff. This is just the
Braverman-Finkelberg relation in [2]

6. This also means (via the left-excited states) that we have

H∗Čech(Ω̂ch
MN

SU(k)(R4)) = ̂̂su(k)Nc1,c2

i.e., the Čech-cohomology of the sheaf Ω̂ch
MN

SU(k)(R4) of Chiral de Rham

Complex onMN
SU(k)(R

4) forms a submodule over su(k)tor. This is a novel,
physically-derived generalization of the Braverman-Finkelberg relation.
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Summary of Results

7. Using the relevant SUSY algebras, one can show the correspondence
between the ground states of the little string and the 1/2 BPS sector of
the M5-brane worldvolume theory, from which we can compute the 1/2
BPS sector partition function to be

Z1/2 =
∑
λ̂′

χλ̂
′

ŝu(k)c1
(p)

It is a cousin of a modular form which transforms as a representation of
SL(2,Z).

There is an instrinsic SL(2,Z) symmetry in the M5-brane worldvolume
theory on R5,1!

Emerges as gauge-theoretic S-duality of 4d N = 4 SYM after
compactifying on T 2.
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Summary of Results

8. Likewise, one can show the correspondence between the left-excited
states of the little string and the 1/4 BPS sector of the M5-brane
worldvolume theory, from which we can compute the 1/4 BPS sector
partition function to be

Z1/4 =q
1

24
∑
λ̂

χλ̂
ŝu(k)c1

(p) 1
η(τ)

It is a cousin of an automorphic form which transforms as a representation
of SO(2, 2;Z).

There is an intrinsic SO(2, 2;Z) symmetry of the M5-brane worldvolume
theory on R5,1!

Emerges as string-theoretic T-duality of little strings after compactifying
on T 2.
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Main Body of the Talk

LET’S EXPLAIN HOW WE
GOT THESE RESULTS
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Based Loop Group ΩG

A loop group LG is the group consisting of maps from the unit circle S1

to a (Lie) group G:
f : S1 → G. (1)

Parametrize S1 by eiθ. If we impose the based point condition

f(θ = 0)→ I, (2)

we get the based loop group ΩG. One can show that

ΩG = LG/G, (3)

i.e., it is a G-equivariant subset of LG endowed with an LG-action.

ΩG also admits a closed nondegenerate symplectic two-form ω. The
complex and symplectic structures of ΩG are compatible, and conspire to
make it an infinite-dimensional Kähler manifold.
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Based Loop Group ΩG

Let ξ and η be elements of Ωg, the based loop algebra. Then, expanding
them in the Lg basis gives

ξ(θ) = ξne
inθ = ξanT

aeinθ,

η(θ) = ηne
inθ = ηanT

aeinθ,
(4)

where n ∈ Z and a = 1, . . . ,dim g. The based point condition (2), which
can be written as eiξ(θ=0) = 1, then translates to

∑
n ξanT

a = 0.

The metric of ΩG is
gam,bn = |n|δn+m,0 Tr(TaTb). (5)

If we denote T aeimθ ≡ T am, we have
[T am, T bn] = ifabc T

c(m+n). (6)
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The N = (2, 2) Sigma Model on CP 1 with Target
ΩSU(k)

The action of the N = (2, 2) supersymmetric sigma model on CP 1 with
ΩSU(k) target space is

S =
∫
d2z
(
gam,bn(1

2∂zφ
am∂zφ

bn + 1
2∂zφ

am∂zφ
bn + ψ

bn

− Dzψ
am
− + ψam+ Dzψ+

bn)

−Ram,cp,bn,dqψam+ ψbn− ψ
cp

−ψ
dq

+

)
,

(7)

where
φa(−n) = φ

an
,

ψ
a(−n)
∓ = ψ

an

± .
(8)

and
Dzψ

am
− = ∂zψ

am
− + Γambn,cp∂zφbnψ

cp
− ,

Dzψ
am

+ = ∂zψ
am

+ + Γambn,cp∂zφ
bn
ψ
cp

+ .
(9)
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Quasi-Topological A-Model on CP 1 with Target ΩSU(k)
We may twist the N = (2, 2) sigma model, i.e., shift the spin of the fields
by their U(1)R-charges. Let us consider the A-twist. The fermionic fields
then become the following scalars/one-forms

ψam+ → ρamz ,

ψ
am

+ → χam,

ψam− → χam,

ψ
am

− → ρamz ,

(10)

and we can write

S =
∫
d2z
(
gam,bn(∂zφam∂zφ

bn + ρbnz Dzχ
am + ρamz Dzχ

bn)

−Rcp,bn,dq,amρcpz χbnχdqρamz +
∫

Φ∗ω

= Spert. +
∫

Φ∗ω,

(11)

where the map Φ : CP 1 → ΩSU(k) is of integer degree N .
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Quasi-Topological A-Model on CP 1 with Target ΩSU(k)

Like the fermion fields, there are two (nilpotent) scalar supercharges Q+
and Q−, which SUSYs are therefore preserved on a worldsheet of any
genus. In particular, Q+ generates the transformations

δφam = 0,
δφ

am = ε−χ
am,

δρamz = −ε−∂zφam,
δρamz = −ε−Γambn,cpχbnρcpz ,
δχam = 0,
δχam = 0,

(12)

where ε− is a scalar grassmanian parameter.
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Quasi-Topological A-Model on CP 1 with Target ΩSU(k)
• The action (11) can be cast into the form

S =
∫
d2z {Q+,W

′(t)}+ · · ·+ tN (13)

where W ′(t) is a metric-dependent combination of fields with metric
scale t, and the ellipsis indicates additional terms which are
metric-independent but depend on the complex structure of the target
space.

• Although the stress tensor Tzz (i.e. δS/δgzz) is Q+-closed, it is
generically not Q+-exact; only Tzz is Q+-exact. So, the correlation
function of Q+-closed (but not exact) observables Õ is not
completely independent of arbitrary deformations the worldsheet
metric g. This is the quasi-topological A-model.

• Path integral localizes to Q+-fixed points, and from (12), these are
holomorphic maps from CP 1 to ΩSU(k).
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Quasi-Topological A-Model on CP 1 with Target ΩSU(k)

• The Q+-cohomology of the model has ground and left-excited
states, and the relevant operator observables Õ of holomorphic
dimension zero and positive are Čech cohomology classes of the
sheaf Ω̂ch of chiral de Rham complex onM(CP 1 N−−→

hol.
ΩSU(k)) [3].

• A correlation function of observables Õ has the form

〈
∏
γ

Õγ〉 =
∑
N

e−tN
(∫

FN

DφDφDρzDρzDχDχ e
−
∫
d2z({Q+,W

′(t)}+... )∏
γ

Õγ
)
.

(14)
Notice that
d

dt

(∫
FN

Dφ . . .Dχ e−
∫
d2z({Q+,W

′(t)}+... )∏
γ

Õγ
)

= 〈{Q+, . . .}〉pert. = 0 (15)

so we can compute the path integral over FN in (14), henceforth denoted
as 〈

∏
γ Õγ〉pert., at any convenient value of t, whilst keeping the original

value of t in the constant factor e−tN (due to worldsheet instantons).
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Appearance of Toroidal and Affine SU(k) Algebra in the
Q+-Cohomology

• Isometries of the target space inherited as worldsheet symmetries
of the sigma model.

• Since ΩG ∼= LG/G, our sigma model ought to have an LSU(k)
symmetry on the worldsheet.

• Indeed, the corresponding Noether currents, the J ’s, which charges
generate a symmetry of the sigma model, can be shown to obey a
current algebra associated with LSU(k).

• As the J ’s generate a symmetry, they act to leave the
Q+-cohomology of operator observables invariant. Thus, they ought
to be Q+-closed (but not exact), and are therefore also in the
Q+-cohomology, as one can verify.

Meng-Chwan Tan (Durham, 14 Aug 2018) LMS Higher Structures 18 / 34



Appearance of Toroidal and Affine SU(k) Algebra in the
Q+-Cohomology

• We can conveniently compute the correlation functions of the J ’s and
Tzz via a large t limit, as explained in (14)-(15), and as OPEs, they
are (in worldsheet instanton sector N)

Jan1
z (z)Jbn2

z (w) ∼ ifabc J
c{n1+n2}
z (w)
z − w

, (16)

and
Tzz(z)Jakz (w) ∼ Jakz (w)

(z − w)2 + ∂Jakz (w)
(z − w) . (17)
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Appearance of Toroidal and Affine SU(k) Algebra in the
Q+-Cohomology

• Laurent expanding, these correspond to the double loop algebra
LLsu(k)

[Jan1
m1 , J

bn2
m2 ] = ifabc J

c{n1+n2}
m1+m2 , (18)

and
[Ln, Jakm ] = −mJakn+m. (19)

• In the holomorphic dimension zero sector, the corresponding
operator L0 =

∮
dzzTzz must act trivially, i.e., be Q+-exact, and

from (19), we see that m = 0, whence LLsu(k) reduces to the loop
algebra Lsu(k):

[Jan1
0 , Jbn2

0 ] = ifabc J
c{n1+n2}
0 . (20)

This is also the topological sector, since Tzz is also Q+-exact.
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Appearance of Toroidal and Affine SU(k) Algebra in the
Q+-Cohomology

• Our aforementioned J ’s were derived from a classical Lagrangian
density, and there would be quantum corrections.

• This means that the aforementioned algebras ought to modified as
well. Specifically, they will acquire central extensions.

• This leads us to a toroidal lie algebra su(k)tor:

[Jan1
m1 , J

bn2
m2 ] = if

ab
c J

c{n1+n2}
m1+m2

+ c1n1δ
ab
δ

{n1+n2}0
δ{m1+m2}0 + c2m1δ

ab
δ

{n1+n2}0
δ{m1+m2}0

(21)

and affine Lie algebra su(k)aff:

[Jan1
0 , Jbn2

0 ] = ifabc J
c{n1+n2}
0 + c1n1δ

abδ{n1+n2}0 (22)

in the Q+-cohomology (for some c1,2).
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Modules over the Toroidal and Affine SU(k) Algebra in
the Q+-Cohomology

• Now, acting on a ground state |0〉 (which is Q+-closed) with the
generators of su(k)tor, we have the states

J
a{−n1}
−m1

J
b{−n2}
−m2

J
c{−n3}
−m3

. . . |0〉, (23)

where mj , ni ≥ 0.

• They span a module ̂̂su(k)Nc1,c2 over the toroidal Lie algebra su(k)tor
of levels c1 and c2.

• These states have nonzero holomorphic dimension (according to
(19)), and can be shown to be elements of the Q+-cohomology.

• Thus, via the state-operator correspondence, we have

H∗Čech
(
Ω̂ch
M(CP 1

N−−→
hol.

ΩSU(k))

)
= ̂̂su(k)Nc1,c2

. (24)
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Modules over the Toroidal and Affine SU(k) Algebra in
the Q+-Cohomology

• In the topological sector where mi = 0, the states are
J
a{−n1}
0 J

b{−n2}
0 J

c{−n3}
0 . . . |0〉, (25)

where ni ≥ 0.

• They span a module ŝu(k)Nc1 over the affine Lie algebra su(k)aff of
level c1.

• These states have zero holomorphic dimension (according to (19)),
and persist as elements of the Q+-cohomology.

• Thus, via the state-operator correspondence, and the fact that the
zero holomorphic dimension chiral de Rham complex is just the de
Rham complex [3], we have

H∗L2(M(CP 1 N−−→
hol.

ΩSU(k))) = ŝu(k)Nc1
. (26)
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The 6d Ak−1 N = (2, 0) Little String Theory

• Little string theories (LST) exist in 6d spacetimes, and reduce to
interacting local QFTs when string length ls → 0.

• The 6d Ak−1 N = (2, 0) LST, in particular, reduces to the 6d Ak−1
N = (2, 0) superconformal field theory - has no known classical
action. Rich theory, so corresponding LST must be at least just as
rich.

• It is also the worldvolume theory of a stack of NS5-branes in type IIA
string theory, whereby the fundamental strings which reside within the
branes with coupling gs → 0 (whence bulk d.o.f., including gravity,
decouple) and ls 6→ 0, are the little strings.
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The Ground and Left-Excited Spectrum of the 6d Ak−1
(2, 0) LST

• The discrete lightcone quantization (DLCQ) of the LST on R5,1

describes it as a 2d N = (4, 4) sigma model on S1 ×R with target
MN

SU(k)(R
4), the moduli space of SU(k) N -instantons on R4. Here,

k = no. of branes, N = units of discrete momentum along the S1 [4].

• The ground states of the LST are given by sigma model states
annihilated by all the supercharges, i.e., they correspond to harmonic
forms and thus L2-cohomology classes ofMN

SU(k)(R
4).

• The left-excited states of the LST are given by sigma model states
annihilated by the four chiral supercharges, i.e., they correspond to
Čech cohomology classes of the sheaf Ω̂ch

MN
SU(k)(R4).

Meng-Chwan Tan (Durham, 14 Aug 2018) LMS Higher Structures 25 / 34



The Ground and Left-Excited Spectrum of the 6d Ak−1
(2, 0) LST

• According to Atiyah [1], we have the identification

MN
G (R4) ∼=M(CP 1 N−−→

hol.
ΩG). (27)

• In turn, this means we can identify

H∗L2(MN
SU(k)(R4)) ∼= H∗L2(M(CP 1 N−−→

hol.
ΩSU(k))) (28)

and
H∗Čech(MN

SU(k)(R4)) ∼= H∗Čech
(
Ω̂ch
M(CP 1

N−−→
hol.

ΩSU(k))

)
(29)
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The Ground and Left-Excited Spectrum of the 6d Ak−1
(2, 0) LST

• Thus, from (28) and (26), we find that

ground spectrum of 6d Ak−1 (2, 0) LST = modules of su(k)aff
(30)

• Similarly, from (29) and (24), we find that

left-excited spectrum of 6d Ak−1 (2, 0) LST = modules of su(k)tor
(31)
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Deriving the Braverman-Finkelberg Relation and its
Generalization

• From (26) and (28), we also find (c.f. [5]) that

IH∗(MN
SU(k)(R

4)) = ŝu(k)Nc1 , (32)

This is the Braverman-Finkelberg relation in [2].

• From (24) and (29), we also find that

H∗Čech(Ω̂ch
MN

SU(k)(R4)) = ̂̂su(k)Nc1,c2 . (33)

This is a novel generalization of the Braverman-Finkelberg
relation.

Meng-Chwan Tan (Durham, 14 Aug 2018) LMS Higher Structures 28 / 34



The M5-brane Worldvolume Theory

• The setup of the k NS5-branes with type IIA fundamental strings
bound to it as little strings, has an M-theoretic interpretation.

• They can be regarded as k M5-branes with M2-branes ending on
them in one spatial direction (as M-strings) and wrapping the 11th
circle of radius R in the other spatial direction, observed at low
energy scales << R−1.

• As such, the low energy DLCQ of this worldvolume theory of k
M5-branes can also be understood via the LST described as a
MN

SU(k)(R
4) sigma model [6].

Meng-Chwan Tan (Durham, 14 Aug 2018) LMS Higher Structures 29 / 34



1/2 BPS sector of M5-brane Worldvolume Theory
• Using the relevant SUSY algebras, we can show that the low energy
1/2 BPS sector of the M5-brane theory is captured by the ground
states of the LST.

• Thus, according to (30), the partition function of the 1/2 BPS sector
ought to be given by summing representations of su(k)aff . In
particular, it is computed to be

Z1/2 =
∑
λ̂′

χλ̂
′

ŝu(k)c1
(p) (34)

where χ is a character of the module; λ̂′ a dominant highest weight;
p = e2πiτ ; and τ is the complex structure of an auxiliary torus.

• This is a cousin of a modular form which transforms as a
representation of SL(2,Z).

• There is an instrinsic SL(2,Z) symmetry in the M5-brane
worldvolume theory on R5,1, which emerges as gauge-theoretic
S-duality of 4d N = 4 SYM after compactifying on T 2!

Meng-Chwan Tan (Durham, 14 Aug 2018) LMS Higher Structures 30 / 34



1/4 BPS sector of M5-brane Worldvolume Theory
• Using the relevant SUSY algebras, we can show that the low energy
1/4 BPS sector of the M5-brane theory is captured by the
left-excited states of the LST.

• Thus, according to (31), the partition function of the 1/4 BPS sector
ought to be given by summing representations of su(k)tor. In
particular, it is computed to be

Z1/4 =q
1

24
∑
λ̂

χλ̂
ŝu(k)c1

(p) 1
η(τ) (35)

where η is the Dedekind eta function; q = e2πiσ; and σ is the Kähler
structure of an auxiliary torus.

• This is a cousin of an automorphic form which transforms as a
representation of SO(2, 2;Z).

• There is an intrinsic SO(2, 2;Z) symmetry of the M5-brane
worldvolume theory on R5,1, which emerges as string-theoretic
T-duality of little strings after compactifying on T 2!

Meng-Chwan Tan (Durham, 14 Aug 2018) LMS Higher Structures 31 / 34



Conclusion

• We have explained how a quasi-topological ΩSU(k) sigma model can
be used to help us (i) understand the 6d Ak−1 (2, 0) LST; (ii) derive
and generalize the Braverman-Finkelberg relation; (iii) understand the
M5-brane worldvolume theory.

• Notably, we find that the chiral spectrum of the little string is
furnished by representations of a toroidal algebra, and the BPS
spectrums of the M5-brane worldvolume theory are closely related to
modular and automorphic forms.

• Consistent with these aforementioned physical results is a geometric
Langlands correspondence for surfaces – the Braverman-Finkelberg
relation – and its generalization, which we also physically derived.

• We see a nice interconnection between string theory, M-theory,
geometric representation theory and number theory.
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Future Directions

• To ascertain the full chiral plus anti-chiral spectrum of the the 6d
Ak−1 (2, 0) LST. We expect it to be furnished by representations of a
holomorphic plus antiholomorphic (positive-moded) toroidal algebra.

• Gauge the ΩSU(k) sigma model to obtain a derivation and
generalization of the AGT correspondence, which we expect will
relate the equivariant Cech-cohomology of the sheaf of chiral de
Rham complex onMN

SU(k)(R
4) to toroidal W -algebras.

• Go beyond the BPS sector of the M5-brane worldvolume theory as
captured by the full spectrum of the LST. We expect the
corresponding worldvolume partition function to consist of the 1/4
BPS partition function with an extra Dedekind eta function in τ̄ .
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THANKS FOR LISTENING!
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