A Liouville theorem for stationary and ergodic
ensembles of parabolic systems

Benjamin Fehrman
MPI Leipzig

August 20, 2018

B. Fehrman (MPI Leipzig) Liouville theorem August 20, 2018 1/31



I. Introduction

We consider random ensembles of parabolic systems
=V -aVu in R? x (0,00),
with space-time dependent coefficients a := a(z,t).

Qualitative theory (essentially) due to Papanicolaou and Vardhan [15]
and Kozlov [14].

e intrinsic (extended) corrector

large-scale regularity estimate

Liouville principles
Simon [16] (deterministic), Avellaneda and Lin [4, 5, 6] (periodic)
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I. Introduction

The coefficients are indexed by a probability space a € (2, F,P).

e Stationarity: The environment is statistically homogenous.

e Frgodicity: The environment is mixing: stationary random
variables exhibit deterministic averaging effects on large scales.

o Uniform Ellipticity: There exists A € (0, 1] such that, for (-)-a.e a,

lag| < €] and AEJ* < €-aé for each & € RY.
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II. Deterministic elliptic setting

The space of strictly sub-quadratic harmonic functions

=0 with — Au=0 in R?

are spanned by the constant and coordinate functions
ze R a; for ie{l,...,d}.

Higher order statements hold: for n > 1, the space

[u(@)] =0 with —Au=0 in RY,

lim sup o[

|z]—o0

is the space of harmonic polynomials of degree < n.
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II. Deterministic elliptic setting

For an a-Hoélder continuous function,

R Ju(e) — u(0)P dz < [ulooe(sy) ][ 22 da
Br Br

A

R
< [U]Cova(BR)R_(2a+d)/0 plotd=1 4.
S [u]coa(By)-

Indeed, from Campanato [10],

: —2a 2
u]co,a ~ sup sup inf r ][ |u(z) — c|* dz.
lelone ) 2€Br re(0,d(=,0Bx)) €k (2)
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III. Random elliptic setting

The homogenization corrector ¢; solves
—V-a(Vei+e)=0 in R? for i e{1,...,d},

with stationary, finite-energy gradient. It is sub-linear (hence,
quadratic) in the sense that

1
1 2
limsup(][ ’@‘2) =0.
R—o0 R Br

The correctors define the a-harmonic coordinates:

€ R z; + ¢i(x) for i€ {1,...,d}.
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III. Random elliptic setting

The correctors define the coordinate functions of the flux:
gi = a(Ve; +e;) for i e {1,...,d}.
The homogenized coefficient field is the expectation of the flux:
ahom€i = (a(V; + €;)) .

On large-scales, a-harmonic functions inherit the properties of
QAhom-harmonic functions

—V - apomVv =0 in RY,

measured with respect to the intrinsic geometry of the coefficient field.
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III. Random elliptic setting

Versions of excess were introduced by
e Avellaneda and Lin (periodic)
e Armstrong and Smart [3] (random)
e Gloria, Neukamm, and Otto [13] (random)

For each R > 0, the excess on scale R is

Bxc(Riw)i= inf, f (Vu—€ - Voe) -a (V¢ - Vo).

for the corrector

G¢ 1= &i i
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III. Random elliptic setting

The excess defines an intrinsic large-scale a-Holder norm:

R™2*Exc(R;u) ~ R~ - (Vu—€—Vee)-a(Vu—E&— V).

Theorem [13] (Gloria, Neukamm, Otto)

Assume stationarity, ergodicity, and uniform ellipticity. For (-)-a.e. a,
there exists 7«(a) € (0, 00) such that, for every r. < R; < Ry < 00,

R ?*Exc(R1;u) S Ry 2*Exc(Ra;u).

Or,

R 2
Exc(Ry;u) < (R—1> Exc(Ra;u).
2
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III. Random elliptic setting

The energy of the homogenization error
w:=u— (14 np;0;)v,
provides a good proxy for the excess, where

—V-ahovazo in BR,
v=u on O0BRp,

and where 7 is a cutoff ensuring vanishing boundary conditions.

It suffices to show that, for all R > 0 sufficiently large,

1 2a
Vw-aVw < (> Vu-aVu.
2 Br

Bgr
T
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III. Random elliptic setting

The flux ¢ is divergence-free:
—V.-¢i=-V-a(Vpi+e)=0 for i € {1,...,d}.
As a closed (d — 1) form, the flux correction solves the exterior equation
V.o, =q — (q;) for i € {1,...,d},
with the choice of gauge
Aol = Ok — Ojqi for 4,5,k € {1,...,d}.
Here, the o; are skew-symmetric matrices ((d — 2)-forms) and

(V- 0i); = Okoij.
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III. Random elliptic setting

The homogenization error solves, in Bg,

—V -aVw =V - ((1 = n)(a — apom) Vv + (¢;a — 0;)V(nd;v))
=V - ((¢ia — 0;)V(no;jv)) + boundary terms,

After testing this equation with w, and using the interior/boundary
regularity of v:

/ Vw - aVw < ( 12][ o] + ]J\2dm>][ Yu - aVu.
By R? /By Br
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III. Random elliptic setting

The sub-linearity of (¢, ) is essentially classical:

1

1 2
lim — 2 2) =o.
rYoo R (]iRW *lol ) 0

Hence, for any « € (0, 1), for all R > 0 sufficiently large:

2«
Vw-aVw < <1> Vu - aVu.
2 Br

Br
2
To recover the excess, the argument is invariant after replacing v with

ue(x) :=u+E&- v+ ¢e(x).
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III. Random elliptic setting

Theorem [13] (Gloria, Neukamm, Otto)

Assume stationarity, ergodicity, and uniform ellipticity. Suppose that u

is an a-harmonic function that is strictly subquadratic in the sense
that, for some « € (0, 1),

1

1 2
li e 2 = 0.
i e (]ﬁR'“' )

Then, there exists ¢ € R and ¢ € R? such that

u(z) =c+ & x4 de(z) for = € RL

e Armstrong, Kuusi, and Mourrat [3] (higher order)
e Fischer and Otto [12] (higher order)
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IV. Random parabolic setting

The parabolic excess is defined by

Bxe(R) i= inf, | (Vu—¢= Vo) a(Vu—& - Vo),

for the parabolic correctors solving
i =V -a (Vi +€) in RY x (—00,00),
and for the parabolic cylinder
Cr := Br x (—R?,0].
The aim is to prove that, for all Ry < Ry sufficiently large,

R ?*Exc(R1;u) < Ry **Exc(Ra;u).
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IV. Random parabolic setting

The flux ¢ is defined by
gi:=a(Vo;+e;) for ie{l,...,d},
which defines the homogenized coefficients
ahom€i = (a (Vi + €;)) = (qi) -
However, the flux is no longer divergence-free: the equation

V-o;=q; — {q;) for i € {1,...,d},

is not solvable. To overcome this, we introduce a four part extended
corrector (¢, 1,0, ().
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IV. Random parabolic setting

We essentially perform a Weyl decomposition of the flux:
¢i *= qpot *+ gsol T C,
where ) is constructed to correct the potential part. That is,
A, =V -q; for i € {1,...,d}.
It is then immediate that

V- (gi — Vi) =0 for each i€ {1,...,d}.
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IV. Random parabolic setting

The solenoidal part of the flux is corrected similarly to the elliptic case:
o solves

V-oi= (¢ — Vi) — (qi | Fra),

where (- | Fra) denotes the conditional expectation with respect to the

sub-sigma-algebra Fpra of subsets left invariant by spatial translations
of the coefficient field.

e According to the choice of gauge

Ao, = Ok(qi — Vibi)j — 05(qi — Vi)

e We use implicitly that

(Vi | Fra) =(V -0y | Fra) = 0.
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IV. Random parabolic setting

The following informal calculation motivated by [13] proves that the
difference

V-oi = (g — Vi),
is invariant with respect to spatial shifts:
A (V- 0i); =A(0k0oijr) = O (Aoijy)
=00k(qi — Vi)j — Ok0j(qi — Vi)
=A(qi — Vbi)j — 0;V - (ai — Vi)
=A(gi — Vi)

Hence,

Veoi—(q— Vi) =(V -0, — (i — V) | Fra) = (¢i | Fra) -
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The extended corrector: ¢

It remains to correct the oscillations of the conditional expectation
about the mean: ( solves

01Gi = (qi | Fra) — (@) = (€ | Fra) — aGhom€;-

It is essential to the analysis that ¢ is constant in space.

In total, the extended corrector (¢, 1, o, () solves:
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i. 0i0i =V -a(Vo; +e;) i. —Va(Ve;+e)=0
ii. AY; =V g ii. ;=0

iii. V- g; = (qi — V”L/JZ) - <qz~ | fRd> iii. V- 0; = (q; — <ql>
iv. 9¢Gi = (¢i | Fra) — Ghom€; iv. ;=0
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IV. Random parabolic setting

Proposition [7] (Bella, Chiarini, F.)

Assume stationarity, ergodicity, and uniform ellipticity. For (-)-a.e a,

1
1 2 2 22
dm % (f, e +1of) " =0

1
1 2 2
limsup—<][ C) = 0.
Rooo RZ cR‘ |

and

e new proof of sub-linearity for ¢
e (1, 0) are constructed to be stationary in time

e sub-linearity of ¢ respects the scaling in time
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IV. Random parabolic setting

Informally, for an apem-caloric function v, the homogenization error
w:=u— (14 ¢;0;)v,
solves the parabolic equation

ow—V - -aVw =V - ((gf)za + P — al)V(&v))
+ 04Gi - V(0;v) — ¢3(0;v); — Y A(Oiv)
(+boundary terms).

® v is apem-caloric in a parabolic cylinder with boundary data
e parabolic estimates require a smoothing boundary data

e boundary terms handled using interior/boundary regularity of
Ahom-caloric functions
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IV. Random parabolic setting

Ignoring the boundary terms:

Ow —V -aVw =V - ((¢ia + ; — 0;)V(0v))
+ atCz . V(aﬂ)) - ¢Z(azv)t — IpZA(aﬂ))

Testing this equation with w yields the energy estimate

1
Br Br

]iR (DG - V(@iv))w‘ :

Br
2

+

e integrate by parts in time

e expand the homogenization error, use the equations satisfied by
(u,v,¢) and the spatial homogeneity of ¢
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IV. Random parabolic setting

Proposition [7] (Bella, Chiarini, F.)

Assume stationarity, ergodicity, and uniform ellipticity. For every

a-caloric function u on Cr and € € (0, %), for each p € (0, %),

2
2 P 2
Vw - aVw <Ce |Vul” + C’E—2 |Vul
Cr

Cr

C 2 2 2 ][ 2
+pg 1, (197 WP +1oP) £ 19

Cr
1

1
C 2 2 C 2 / 2
i (R2p§+3 </CR 4 ) T RIS o d > Cr [V

1 1
+ ¢ q Vu
Rgpd+4<cR!| CRII CRI |
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IV. Random parabolic setting

Theorem [7] (Bella, Chiarini, F.)

Assume stationarity, ergodicity, and uniform ellipticity. Fix a Holder
exponent « € (0,1). Then, there exist constants Cy = Co(cr,d, A) >0
and C1(a,d, A) > 0 with the following property:

If Ry < Ry are two radii such that, for each R € [Ry, Ra],

;z<][ 62 + ]2 +\g|> +R2(][ rcw) <$o’

and such that, for each R € [Ry, Ry,

(f o) <2 (1)

2
then any a-caloric function u satisfies Exc(R;) < C (%) Exc(R2).

v
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IV. Random parabolic setting

[7] Theorem (Bella, Chiarini, F.)
Assume stationarity, ergodicity, and uniform ellipticity. Suppose that u
is an a-caloric function which is strictly subquadratic in the sense that,

for ac € (0,1),

1

1 2
lim ——— ) =o.
o R (][") 0

Then, there exists ¢ € R and ¢ € R? such that

w(z,t) = c+ &z + dex,t) for (x,t) € REFL

e Assuming a finite range dependence, Armstrong, Bordas, and
Mourrat [2] have obtained quantitative estimates and higher order

Liouville properties.
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IV. Random parabolic setting

The first-order Liouville theorem follows from the large-scale regularity
and the parabolic Caccioppoli inequality.

Parabolic Caccioppoli inequality

There exists C' > 0 such that, for (-)-a.e. a, for every R > 0 and
distributional solution u of the equation

Ou =V -aVu in Cg,
and for every ¢ € R and p € (0, %),

C
/ IVul? < —2/ lu—c|?.
cR*p p CR\CR

—p
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IV. Random parabolic setting

Suppose that u is an a-caloric function satisfying, for some « € (0, 1)

For each r < R sufficiently large, the large-scale regularity and
definition of excess (taking £ = 0) prove that

Exc(riu) < (%)M Exc(R;u) < (;)Qa]i Va2,
R

and, from the the Caccioppoli inequality,

T20¢
Exc(r;u) < hm 1nf ][ lu|* = 0.
(2R)2+2a Con
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IV. Random parabolic setting
Since, for each r > 0 sufficiently large,

Exc(r;u) = 5ien]Rfd]{B (Vu—&—=Veg)-a(Vu—E§— V) =0,

there exists ¢ € R? such that
2(x,t) == u(w,t) — € — ge(x,t) in R x (—o0,00),
is constant in space. However, since z solves
Osz =V -aVz,
this implies that z is constant in time as well. Hence, for ¢ € R,

u(z,t) = &2+ de(x,t) + ¢ in R x (—00,00).
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V. Ongoing/Future work

e quantifying the sublinear growth of (¢, v, 0, () assuming mixing
conditions

e applications to quantitative homogenization (extending the results
of [2] to non-symmetric systems)

e applications to the longtime homogenization of time-dependent
wave equations (Benoit and Gloria [9])

e large-scale regularity and Liouville theorems in degenerate
time-dependent environments in the setting of Andres, Chiarini,
Deuschel, and Slowik [1]

e motivated by Bella, F., Otto [8] in the degenerate elliptic
framework of Chiarini and Deuschel [11]
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Thanks

Thank you.
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