On Microstructures with Sign Changing Properties

Yves Capdeboscq

University of Oxford

LMS Durham Symposia 2018

Motivation

- ▶ Given $\Omega \subset \mathbb{R}^d$, $d \geq 1$, a smooth bounded domain and $\tilde{\Omega}$ an open neighbourhood of Ω .
- ▶ Given $\nabla u_d \in C^{2,\alpha}\left(\overline{\tilde{\Omega}}\right)$, where u is the solution of

$$\operatorname{div}(a\nabla u_d) = 0 \text{ in } \tilde{\Omega},$$

can we find a (with $\int_{\Omega} a dx$ given and $a \geq I_d$)?

Motivation

► Given $x_0 \in \partial\Omega$, consider the flow $X'(t,x_0) = \nabla u_d(X(t,x_0)), t \in \mathbb{R}$ and $X(0,x_0) = x_0$. You find Briane, Milton, Treibergs '14

$$\log a(X(t, x_0)) - \log a(x_0) = \int_0^{t_0} \Delta u_d(t, x_0) dt.$$

So a is known, provided any point $z \in \Omega$ is attained as $X(t, x_0)$ for some t, x_0 .

▶ If (u_1, \ldots, u_d) is a diffeomorphism on $\tilde{\Omega}$, that is the case. So we want to know whether

$$\log |\det (\nabla u_1, \dots, \nabla u_d)| < K < \infty \text{ in } \Omega.$$

Optimal Bounds / G-Closure

What are the possible effective tensors for N-mixtures? N = 2, OK (Hashin-Strikman Bounds), not $N \ge 3$.

Briane-Nesi 2004 : $\det P_{\varepsilon} > 0$ for laminates

where

$$\begin{cases} \operatorname{div} (a_{\varepsilon} \nabla u_{\varepsilon}) = 0 & \text{in } \Omega, \\ u_{a} = \underline{\phi} & \text{on } \partial \Omega, \end{cases}$$

we have

$$u_{\varepsilon} \rightharpoonup u_0$$
 weakly in $H^1(\Omega)$,

$$a_{\varepsilon} \nabla u_{\varepsilon} \rightharpoonup a^* \nabla u_0$$
 weakly in $L^2(\Omega)$

and

$$\nabla u_{\varepsilon} - P_{\varepsilon} \nabla u_0 \to 0$$
 strongly in $L^1(\Omega)$

Motivation

Q: When is the sign of the determinant imposed a priori?

Theorem (Rado-Kneser-Choquet)

Let $D \subseteq \mathbb{C}$ be a bounded convex domain whose boundary is a Jordan curve ∂D . Let $\Phi \colon \partial B(0,1) \to \partial D$ be a homeomorphism of $\partial B(0,1)$ onto ∂D and f be defined as

$$\left\{ \begin{array}{ll} \Delta f = 0 & in \ B(0,1), \\ f = \Phi & on \ \partial B(0,1). \end{array} \right.$$

Then $J_f(z) \neq 0$ for all $z \in B(0,1)$.

For a-harmonic functions, generalized G. Alessandrini 1986, & R. Magnanini 1994, & V. Nesi '01-'15 : $\mathrm{Det}Df\in A_\infty.$

Good boundary conditions?

The Rado-Kneser-Choquet Theorem fails when d = 3.

Good boundary conditions?

The Rado-Kneser-Choquet Theorem fails when d = 3.

Lemma

If $a \in W^{1,\infty}$, and $\nabla \ln a \in L^{\infty}(\Omega)$ is small enough, then if

$$\left\{ \begin{array}{ll} \Delta \underline{u} = 0 & \text{in } \Omega, \\ \underline{u} = \underline{\phi} & \text{on } \partial \Omega, \end{array} \right.$$

satisfies $\det (\nabla \underline{u}) > 1$ in Ω and $u \in C^1(\overline{\Omega})$, then

$$\begin{cases} div(a\nabla \underline{u_a}) = 0 & in \Omega, \\ \underline{u_a} = \underline{\phi} & on \partial\Omega, \end{cases}$$

satisfies

$$\det (\nabla u_a) > C(\Omega, \|\nabla \ln a\|_{\infty}) > 0 \text{ in } \Omega.$$

Complex Geometric Solutions

CGO Solutions (Faddeev, Calderón , Sylvester-Uhlmann '87, Bal-Uhlmann '09, Bal-Bonnetier-Monard-Triki '13):

Assume $a \in H^{\frac{d}{2}+3+\varepsilon}(\Omega)$.

There exists a non-empty open set $\mathbf{G} \subset (H^{\frac{1}{2}}(\partial\Omega))^4$ of quadruples of boundary conditions such that for any $G = (g_1, g_2, g_3, g_4) \in \mathbf{G}$, there exists an open cover of Ω of the form $\{\Omega_{2i-1}, \Omega_{2i}\}_{1 \leq i \leq N}$ and a constant $c_0 > 0$ such that

$$\pm \inf_{x \in \Omega_{2i-1}} \det(\nabla u_1, \nabla u_2, \nabla u_4) \ge c_0$$

and

$$\pm \inf_{x \in \Omega_{2i}} \det(\nabla u_1, \nabla u_2, \nabla u_3) \ge c_0, \quad 1 \le i \le N.$$

Complex Geometric Solutions

$$N^3 \exp(N(2x_2 + x_3))(\cos(Nx_1) \text{ or } \sin(Nx_1) + O(1/N))$$

Runge Approximation Property

$$L := \operatorname{div}(a\nabla \cdot), \ a \in W^{1,\infty}(D_2, \mathbb{R}^{\frac{d(d+1)}{2}}), \ a \ge I_d.$$

Suppose $D_1 \subseteq D_2$, bounded, open Lipschitz sets and $D_2 \setminus D_1$ connected.

$$S_1 := \{ h \in H^1(D_1) : Lw = 0 \text{ in } D_1 \}$$

 $S_2 := \{ h \in H^1(D_2) : Lw = 0 \text{ in } D_2 \}.$

Theorem (Lax, Malgrange (56), Rüland & Salo (18))

For any $\varepsilon > 0$ and any $h \in S_1$ there exists $u \in S_2$ such that

$$||h-u|_{D_1}||_{L^2(D_1)} \le \varepsilon.$$

Unique Continuation implies Runge Approximation.

Runge Approximation Property

Since $a \in W^{1,\infty}$, x_1, \ldots, x_d are approximate local solutions, so $\frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon$ gives

Theorem (Bal, Uhlmann (13))

Take $\Omega' \subseteq \Omega$, given $a \in C^{0,1}(\overline{\Omega}, \mathbb{R}^{\frac{d(d+1)}{2}})$, there exists N, r, such that

$$\Omega' \subset \bigcup_{i=1}^N B(x_i, r) \text{ and } \det \left(\nabla u_{(i)}^1, \dots, \nabla u_{(i)}^d \right) > \frac{1}{2} \text{ in } B(x_i, r)$$

where $u_{(i)}^k$ satisfy solutions of $Lu_{(i)}^k = 0$ in Ω .

(which gives a set of $N \times d$ boundary conditions)

Runge Approximation Property

Set

$$E(\Omega') = \left\{\underline{\phi} \in H^{\frac{1}{2}}(\partial\Omega)^{2d} : \operatorname{rank}(\nabla\underline{u})(x) = d \, \forall x \in \overline{\Omega'} \right\}$$

where

$$\begin{cases} L\underline{u} = 0, & \text{in } \Omega \\ \underline{u} = \underline{\phi} & \text{on } \partial\Omega. \end{cases}$$

Theorem (Alberti, C.)

 $E(\Omega')$ is open and dense in $H^{\frac{1}{2}}(\partial\Omega)^{2d}$.

The large case

For periodic boundary conditions. Briane, Milton & Nesi '04.

$$\pm \det (P(y)) > C$$
, in B_{\pm} ,

where P(y) is the periodic corrector

The large case

Let

$$\Delta \underline{u} = 0 \text{ in } \Omega, \quad \underline{u} = \phi \text{ on } \partial \Omega$$

and

$$\operatorname{div}\left(a(nx)\nabla\underline{u}_{n}\right)=0\text{ in }\Omega\quad\underline{u}_{n}=\underline{\phi}\text{ on }\partial\Omega$$

Theorem (C. '15)

Let

$$A:=\left\{\phi\in H^{\frac{1}{2}}\left(\partial\Omega;\mathbb{R}^d\right)\,:\,\det\left(\nabla\underline{u}\right)>\lambda\left\|\phi\right\|_{H^{\frac{1}{2}}\left(\partial\Omega\right)}^d\ \ in\ B_\rho(x_0)\right\}.$$

$$\exists n(\rho, \Omega, \Omega', \lambda), \ \tau > 0, \ and$$

 $B_{\pm} \subset B(x_0, \rho) \ with \ |B_{\pm}| > \tau |B(x_0, \rho)| \ such \ that$

$$\forall \phi \in A, \pm \det \left(\nabla \underline{u}_n \right) (x) > \tau \lambda \| \phi \|_{H^{\frac{1}{2}}(\partial \Omega)}^d \text{ on } B_{\pm},$$

Use the Avellaneda & Lin Method and regularity theory to show

Lemma (Li & Nirenberg '03, Ben Hassen & Bonnetier '06)

There exists a constant C > 0, independent of n such that

$$\|\nabla \underline{u}_n\|_{L^{\infty}(\Omega')} \leq C\|\phi\|_{H^{\frac{1}{2}}(\partial\Omega,\mathbb{R}^3)},$$

$$\|P(\cdot)\|_{L^{\infty}(\Omega')} \leq C,$$

and

$$\|\nabla \underline{u}_n - P(n\cdot) \nabla \underline{u}\|_{L^{\infty}(\Omega')} \le \frac{1}{n^{1/3}} C \|\phi\|_{H^{\frac{1}{2}}(\partial\Omega,\mathbb{R}^3)}.$$

Use the Avellaneda & Lin Method and regularity theory to show

Lemma (Li & Nirenberg '03, Ben Hassen & Bonnetier '06)

There exists a constant C > 0, independent of n such that

$$\|\nabla \underline{u}_n\|_{L^{\infty}(\Omega')} \leq C\|\phi\|_{H^{\frac{1}{2}}(\partial\Omega,\mathbb{R}^3)},$$

$$\|P(\cdot)\|_{L^{\infty}(\Omega')} \leq C,$$

and

$$\|\nabla \underline{u}_n - P(n\cdot) \nabla \underline{u}\|_{L^{\infty}(\Omega')} \le \frac{1}{n^{1/3}} C \|\phi\|_{H^{\frac{1}{2}}(\partial\Omega,\mathbb{R}^3)}.$$

Then

$$\det\left(\nabla\underline{u}_{n}(x)\right) = \det\left(P\left(nx\right)\right)\det\left(\nabla\underline{u}(x)\right) + R_{n}(x)$$

Use the Avellaneda & Lin Method and regularity theory to show

Lemma (Li & Nirenberg '03, Ben Hassen & Bonnetier '06)

There exists a constant C > 0, independent of n such that

$$\|\nabla \underline{u}_n\|_{L^{\infty}(\Omega')} \leq C\|\phi\|_{H^{\frac{1}{2}}(\partial\Omega,\mathbb{R}^3)},$$

$$\|P(\cdot)\|_{L^{\infty}(\Omega')} \leq C,$$

and

$$\|\nabla \underline{u}_n - P(n\cdot) \nabla \underline{u}\|_{L^{\infty}(\Omega')} \le \frac{1}{n^{1/3}} C \|\phi\|_{H^{\frac{1}{2}}(\partial\Omega,\mathbb{R}^3)}.$$

Then

$$\det (\nabla \underline{u}_n(x)) = \det (P(nx)) \det (\nabla \underline{u}(x)) + R_n(x)$$

Now use the sign changing properties of $\det \nabla \underline{u}_{\#}$.

Many boundary condition do not help

Corollary

Take $\varphi_1, \ldots, \varphi_N$ in $H^{\frac{1}{2}}(\partial \Omega)$ for some N. $\forall \varepsilon > 0, \exists n \in \mathbb{N}$ such that for any $B_{\varepsilon} \subseteq \Omega'$,

• there exists $x_1 \in B_{\varepsilon}$ such that

$$\max_{1\leq i,j,k\leq N}\left|\det\left(\left[\nabla u_{i}\left(x_{1}\right),\nabla u_{j}\left(x_{1}\right),\nabla u_{k}\left(x_{1}\right)\right]\right)\right|\leq\varepsilon,$$

where $div(a(nx) \nabla u_i) = 0$ in Ω and $u_i = \varphi_i$ on $\partial \Omega$.

• for every $1 \leq i, j, k \leq N$ such that the harmonic extension of $(\varphi_i, \varphi_j, \varphi_k)$ has maximal rank in Ω there exists $x_2 \in B_{\varepsilon}$ such that

$$\det\left(\left[\nabla u_{i}\left(x_{2}\right), \nabla u_{j}\left(x_{2}\right), \nabla u_{k}\left(x_{2}\right)\right]\right) = 0.$$

New microstructures

Theorem

Given $\Omega = (-1,1)^d$, let $Q \subset \Omega$ be a non-empty, open, connected C^1 domain, symmetric with respect to the origin in all variables and such that $B(0,\varepsilon) \cap Q = \emptyset$ for some $\varepsilon > 0$ and $\Omega \setminus Q$ is connected. Then there exists $\delta > 0$ such that

$$a = 1 + \delta \chi_Q$$

is a sign changing micro-structure.

With Luc Nguyen and Shaun Chen Yang Ong.

Sketch of Proof

In a cylindrical geometry, with a small ring and b.c. $(r\cos\theta,r\sin\theta,z)$.

Sketch of Proof

In a cylindrical geometry, with a small ring and b.c. $(r\cos\theta, r\sin\theta, z)$.

$$u_x = f(r, z)\cos\theta$$
, $u_y = f(r, z)\sin\theta$, $u_z = g(r, z)$

and for all θ

$$\det P(r, \theta, z) = \frac{f}{r} \left(\partial_z g \partial_r f - \partial_r g \partial_z f \right)$$

Sketch of Proof

In a cylindrical geometry, with a small ring and b.c. $(r\cos\theta, r\sin\theta, z)$.

$$u_x = f(r, z)\cos\theta$$
, $u_y = f(r, z)\sin\theta$, $u_z = g(r, z)$

and for all θ

$$\det P(r, \theta, z) = \frac{f}{r} \left(\partial_z g \partial_r f - \partial_r g \partial_z f \right)$$

By symmetry f is odd in r, even in z, g is odd in z, even in r.

New microstructures

$$\det P(r,0,0) = \frac{f}{r}\partial_z g \partial_r f$$

Hoptf's Maximum principle and oddness to conclude. On going work: quantitative estimates (with Luc Nguyen and Shaun Chen Yang Ong).

New microstructures

Computation made with FreeFem++

Homogenization Question

Suppose
$$u_n \in H_0^1(\Omega)$$

$$\operatorname{div}\left(a\left(nx\right)\nabla u_{n}\right)=f,$$

If

$$\nabla u_n \in L^p(\Omega)$$
 (uniformly in n)

is

$$\nabla u_n - P(n \cdot) \nabla u_0 \in L^{p'}(\Omega)$$
, (uniformly in n)?

Homogenization Question

Suppose
$$u_n \in H_0^1(\Omega)$$

$$\operatorname{div}\left(a\left(nx\right)\nabla u_{n}\right)=f,$$

If

$$\nabla u_n \in L^p(\Omega)$$
 (uniformly in n)

is

$$\nabla u_n - P(n \cdot) \nabla u_0 \in L^{p'}(\Omega)$$
, (uniformly in n)?

First non-trivial example: 2 dimensional laminate (~ Milton, Faraco-Astala Meyers' exponent)

