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Introduction
Generalized quad-trees
Random clusters Multiresolution quad-trees are
i H : T m T,
Percolation used in image analysis. _For ﬁ%@_ﬂ%ﬁ% A r
Comparison example. given a layer of p|>_<els e 5 ﬁ\g}ﬂ
e at finest resolution, successively HHL- ERaang:
Simation te blocks of pixels to Bl ==y BB oF
a re a L 1 o om
Future work ggreg P g #FFW;F%*W ' 'T‘ i 1Y H
produce coarser layers. A sim- TNl o
References . % AR [ )
ple model then stipulates the D i Ejf 0
black/white value of a pixel ¢ e O i
depends on its neighbours in the & P 0™
same layer and (with a different =z 5 [N ‘,qur O
interaction strength) on its parent ~oH T [FA|  PH

and daughters.
This talk describes initial steps in understanding the qualitative

behaviour of this algorithm, addressing the following question:

“What do phase transitions look like when the finest
layer of pixels is unconstrained (“free boundary”)?”

For details, seé
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Multiresolution MAP algorithm, 1.3% misclassification:
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Quad-tree formed by successive averaging using “decimation”:

Generalized quad-trees
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Multiresolution: pros and cons

Generalized quad-trees

+ FAST since low resolution “steers” high resolution;
+ adapted to some kinds 6fiGH-LEVEL objects;

— can producé BLOCKY " reconstructions:
resolution hierarchy mediates all spatial interactions.

Possible solution

Add further explicitlyspatialinteractions?
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Random clusters

2. Generalized quad-trees

DefineQ, as graph whose vertices are cells of all dyadic tessellations
of R¢, with edges connecting each cell to2isneighbours, and also

its parent (covering cell in tessellation at next resolution down) and
its 2¢ daughters (cells which it covers in next resolution up).

|/|/|/|é|/|/|/|/

Al |/ |/

paa
Cased—1| y |[01)/

Neighbours at same level also are connected.

Remark: No spatial symmetry!
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Further define:

e Qg as subgraph o, at res- ,[/,I/,I/ I/

olution levels ofr or higher; ) | / e

e Qq(0) as subgraph formed by l/ I/
o and all its descendants.

e Remark: there are many graph-isomorphisms betw@gn
andQg.,, with naturalZ?-action;

e Remark: there are graph homomorphisms injecti() into
itself, sending to x € Q(o) (semi-transitivity)
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Random clusters

Simplistic analysis

Define J, to be strength of neighbour interaction, to be strength
of parent interaction. I6, = +1 then probability of configuration is
proportional toexp(—H ) where

<fv y)eE(G
for Ji ., = Ji, J; as appropriate.

If J, = 0 then the free Ising model 6@,(o) is abranching process
(Preston 1977Spitzer 197); if J. = 0 then the Ising model on
Qu(0) decomposes into sequencedefimensional classical (finite)
Ising models. So wé&nowthere is a phase change (@t,, J,) =
(0,1n(5/3)) (branching processes), aedpectone when\ = 0+,
indeed at J, J,) = (In(1 + v/2), 0+) (2-dimensional Ising).

But is this all that there is to say?
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3. Random clusters

A similar problem, concerning Ising models on products of trees
with Euclidean lattices, is treated by J)\We
follow them by exploiting the celebratdebrtuin- Kasteleyn random
cluster representatiof 7 :

):

The Ising model is the marginal site procesg at 2 of a site/bond
process derived from a dependent bond percolation model with con-
figuration probabilityP, ,, proportional to

¢© x H ((p<w7y>)b<z,y> x (1 _p<x,y>)l—b<zyy>) '

(z,y)€€(G)

(whereb, ., indicates whether or nofz, y) is closed, and”' is the
number of connected clusters of vertices). Site spins are chosen to be
the same in each cluster independently of other clusters with equal
probabilities for+1.
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Random cluster facts

¢ (Representation of Ising model.) The marginal bond process
Is Ising with

Plzy)y = Ns eXp(_J(:c,y>) ; (2)

e (FK-comparison inequalities.) if > 1 and A is anincreasing

event then
Pyp(4) < Prp(A) ©)
Pep(4) = Piy(A) (4)
where
p/(w,y> A Dizy) A\ Dzy)

Pag) + (1 —Pagy)d  4— (9 — Dpy |

SinceP, , is bond percolation (bonds open or not independently
of each other), we can find out about phase transitions by studying
independenbond percolation.
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Independent bond percolation on products of trees with Euclidean
lattices have been studied by , and
these results were used in the work on the Ising
model. So we can make good progress by studying independent bond
percolation onQ,, usingp. for parental bondsp, for neighbour
bonds.

Theorem 1 There is almost surely no infinite cluster @, (and
consequently if,(o)) if

2dTX,\<1+ 1—2(;1) < 1,

whereX),, is the mean size of the percolation cluster at the origin for
A-percolation inZ<.

Modelledon

Get (1 +4/1 - A& 1) from matrix spectral asymptotics.
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Infinite clusters here

(may or may not be unique)

The story so far: small, small to moderate.


http://http://www.warwick.ac.uk/statsdept/Staff/WSK

WA KV}//ICK
Image analysis
Generalized quad-trees
Random clusters

Percolation

Comparison

Simulation
Future work

References

Home Page
Title Page
L e |
ST
Page 13 of 29
Go Back
Full Screen
Close
Quit

Needd = 2 for mathematical convenience. Use Borel-Cantelli argu-
ment and planar duality to show, for supercritieat- 1/2 (that is,
supercritical with respect to planar bond percolation!), all but finitely
many of the resolution layers,, = [1,2"] x [1,2"] of Qz(o) have
just one large cluster each of diameter larger than constant

Hence ...

Theorem 2 When)\ > 1/2 and 7 is positivethere is one and only
one infinite cluster irQQ, (o).
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1/2

Infinite clusters here

(may or may not be unique)

F /s 1

The story so far: adds smalifor cased = 2.
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The work was remarkable in pointing
out that asr increases so there idarther phase change, from many
to just one infinite cluster foA > 0. The work of

carries through fof),;(o). However the relevant bound is
improvedby a factor ofy/2 if we take into account the hyperbolic
structure ofQ,(o)!

Theorem 3 If 7 < 2=(@D/2.and A > 0 then there cannot be just
one infinite cluster irQ.

Method: sum weights of “up-paths” iQ., \ —
starting, ending at leve). For fixeds and \\
start point there are infinitely many such up- \
paths containing A-bonds; but no more than

(1 + 2d + 2¢)* which cannot be reduced by /
“shrinking” excursions. Hence control the
mean number of open up-paths stretching
more than a given distance at level
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Random clusters Theorem 4 If 7 > ,/2/3 then the infinite cluster a®.., is almost
Percolation surely unique for all positive.
Simulation Method: prune bonds, branching processes, 2-dim comparison . ..

Future work
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Infinite clusters here

(may or may not be unique)

Many infinite clusters

T 0.707 0.816

The story so far: includes uniqueness transition for case2.
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We need to apply the Fortuin-Kasteleyn comparison inequalifes (
and @). The event “just one unique infinite cluster’nst increas-
ing, SO we need more. show it suffices to
establish dinite island propertyor the site percolation derived under
adjacency when all infinite clusters are removeédus:

T 0.707 0.816
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Comparison argume

nts then show the following schematic phase

diagram for the Ising model a@-(o):

All nodes substantially
correlated with each
other in case of free

boundary conditions

Root influenced

by wired boundary

Free boundary condition

is mixture of the two extreme
Gibbs states (spin 1 at
boundary, spin -1 at boundary)

JT 0.288 0.511
0.762  1.190

1.228 2.292
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6. Simulation

Approximate simulations confirm the general story:

http://www.dcs.warwick.ac.uk/“rgw/sira/sim.html

(1) Only 200 resolution levels;
(2) Ateach level, 1000 sweeps in scan order;

(3) At each level, simulate square sub-region 28 x 128 pixels
conditioned by mothef4 x 64 pixel region;

(4) Impose periodic boundary conditions 28 x 128 square re-
gion;

(5) At the coarsest resolution, all pixels set white. At subsequent
resolutions, ‘all black’ initial state.
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(@) Jx =0.25,J- = 0.5 (h) Jx = 0.25,J- = 1 (i) Jx =0.25, J, =2
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I 7. Future work

Generalized quad-trees

Random clusters This is about thdree Ising model onQ,(0). Image analysis more
Percolation naturally concerns the case of prescribed boundary conditions (say,
Comparison Image at finest resolution level . . .).

Simulation

Future work

References Question: will boundary conditions at “infinite fineness” propagate
back to finite resolution?

show answer is yes for analogous prob-
lem on hyperbolic disk (2-dim, all bond probabilities the same).
point out gg in Z? case) these bound-
ary conditions translate to@nditioningfor random cluster model,
and investigate using large deviations.

Project: do same fofQ(0) ...and get quantitative bounds?
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B. Notes on proof ofTheorem 2

Uniqueness: For negative exponerff(1 — \) of dual connectivity
function, set

6, = (nlogd+ (2+¢€)logn)&(l—N).

More than one Z,-large” cluster inL,, forces existence of open path
in dual lattice longer thah,. Now use Borel-Cantelli ... .

On the other hand super-criticality will meanmedistant points in
L,, are inter-connected.

Existence: considerd”[*/2 points inL,,_; and specified daughters
in L,.. Study probability that

(a) parent percolates more thén ,,
(b) parent and child are connected,
(c) child percolates more that).

Now use Borel-Cantelli again . ...
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C. Notes on proof of Theorem 3

Two relevant lemmas:

Lemma 1 Consideru € L,y C Q;andv = M(u) € Ly C Qg.
There are exactl®? solutions inL,, ; of

MX) = SuuX).

One isx = u. The others are the remainir§ — 1 verticesy such
that the closure of the cell representipintersects the vertex shared
by the closures of the cells representingand M (u). Finally, if

X € Ly, does not solveV (X) = Sy.y(x) then

[Suv(X) = Sun(Wlls00 > M) = M(U)[ls00- (5)

Lemma 2 Givendistinctv andy in the same resolution level. Count
pairs of vertices, x in the resolution level one step higher, such that

(@) M(u) =v; (b) M(x) =Y, (C) Suv(X) =Y.

There are at mos?~! such vertices.
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D. Notes on proof ofTheorem 4

Prune! Then a direct connection is certainly established across the
boundary between the cells corresponding to two neighbouring ver-
ticesu, vin Ly if

(a) ther-bond leading fromu to the relevant boundary is open;

(b) ar-branching process (formed by usingponds mirrored across
the boundary) survives indefinitely, where this branching pro-
cess has family-size distribution Binom(ial 72);

(c) ther-bond leading fronv to the relevant boundary is open.

Then there are infinitely many
chances of making a connec-
tion across the cell boundary.
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E. Notes on proof of
infinite island property

Notion of “cone boundary9,(S) of finite subsetS of vertices: col-
lection of daughters of S such thatQ,(v) N S = 0.

Use induction ors, building it layerZ,, on layerL,,_; to obtain
an isoperimetric bound#(9.(5)) > (2¢ — 1)#(S). Hence deduce

P[Sinislandat] < (1 —p.(1—p))@0n

where#(S) = n andn = P [u not in infinite cluster ofQ,(u)].
Upper bound on numbéyY (n) of self-avoiding paths' of length
n beginning auy:

N(n) < (1+2d+2%(2d+2%)".
Hence upper bound on the mean size of the island:

DB @820+ 9%)(2d + 2%t 7,

n=0
whereny, is extinction probability for branching process based on
Binomial(2¢, p..) family distribution.
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