The Role of Spatial Structure in Bacteriophage Evolution

Steve Krone University of Idaho Department of Mathematics & IBEST

with Wei Wei, Holly Wichman, Caitlin Coberly

NIH COBRE P20 RR16448

Spatial biofilm structure; *P. putida* (red), *Acinetobacter* (purple), with transconjugants (green and yellow) [Christensen, et al., *Appl. Environ. Microbiol.* (1998)]

Microbial Experimental Evolution & Mathematical Modeling

- Most microbial communities grow in spatially structured environments (biofilm, soils, surfaces)
- Evolutionary and ecological dynamics often on similar time scales (experimental evolution possible)
- How does spatial structure affect these dynamics?
- Phage–Bacteria system
- Interacting Particle System model (randomness & spatial structure at individual cell level)

Phage ϕ X174

Phage infection

Outline

• General host-pathogen system: fate of mutant pathogens in a radially expanding epidemic

- the nuts and bolts of invasion

- Phage–Bacteria interactions
 - phage competition on plates (theory and experiment)
 - ecology/evolution

I. Fate of Mutant in Host-Pathogen System

states: Susceptible, Infective, Removed (dead) Mass action ODE (well mixed):

$$\frac{dS}{dt} = -\beta SI + \cdots$$
$$\frac{dI}{dt} = \beta SI - \delta I + \cdots$$

Invasion by second pathogen (evolution of virulence):

- β_i = infection rate for I_i (host infected with virus i)
- δ_i = death rate (virulence) for I_i

Who wins?

• Success determined by basic reproductive ratio:

$$R_0 = \frac{\beta S}{\delta}$$

- In well-mixed (liquid) culture, $\frac{\beta_2}{\delta_2} > \frac{\beta_1}{\delta_1}$ implies I_2 wins (independent of initial densities)
- Both pathogens encounter the same density of susceptible hosts

Partial Differential Equation

Wave Speed $c = 2\sqrt{D(\beta S - \delta)}$

Mutant pathogen at wave front

Fate of mutant determined by relative wave speeds and infectivities; not sensitive to ratio (except for invasion time).

- $c_2 > c_1$ and $\beta_2 > \beta_1 \Rightarrow$ mutant can invade from any position
- c₂ > c₁ and β₂ < β₁ ⇒ mutant can invade from positions far enough toward front
- $c_2 < c_1 \Rightarrow$ mutant can never invade

IPS Simulations: single mutant pathogen

Simulation Data: single mutant

Invasion probability as function of mutant position (d = number of sites in advance of wavefront)

 $eta_1 = 0.002, \ \delta_1 = 0.0005 \ (eta_1/\delta_1 = 4)$ $eta_2/\delta_2 = 10;$ for large (fixed) ratio, infection rate matters

different ratio

 $\beta_1 = 0.002$, $\delta_1 = 0.0005$ (ratio =4 always) $\beta_2/\delta_2 = 3.75$ (smaller than wild type); once $\beta_2 > \beta_1$, easy to invade. But max is not as high as for large ratio.

smaller infectivity

Fixed $\beta_2 = 0.001$ (smaller); very hard to invade unless mutant starts far ahead of wild-type wave; large ratio then helps.

Trade-off

$$\beta_i = \frac{c\delta_i}{1+\delta_i}$$
 (c = 8, $\beta_1 = 2.67, \delta_1 = .5$)

As δ_2 increases from 0.1 to 1, β_2 increases from .73 to 4, and ratio decreases from 7.27 to 4.

Max success prob at intermediate level of virulence (and transmissibility). Ratio and inf. rate both important.

IPS Simulations: spontaneous mutant pathogens

With small probability, individual pathogens mutate

Only mutants near edge have a chance to become established

Time to first invasion

Time to first invasion

fix β_2 and change ratio

As δ_2 increases, ratio decreases; harder to invade. (Ratio important for successful invasion)

Simulation of Yin's Phage Experiment

Plasmid segregation and clonal wedges

Segregation w/ different bacterial species

II. Phage competition and evolution on plates

Experimental System:

- ϕX and $\alpha 3$. . . competing lytic phages
- α 3 dominates in liquid setting
- ϕX dominates in spatial setting
- burst size vs. latent period
- effect of different passage times
- after a "passage" (5h or 18h), host cells are killed and some of phage are transferred using a "bed of nails" to fresh hosts (host cells must be actively dividing for virus to spread)

IPS simulations

yellow = ϕX , blue = $\alpha 3$, green = nutrient, red = host cells

Plate Experiments

yellow = ϕX , blue = $\alpha 3$, green = both, light green = ϕX + resistant cell

5 h passages $\Rightarrow \alpha$ 3 dies out;

18 h passages \Rightarrow Coexistence (resistant cells percolate).

Short-passage simulations

yellow = ϕX , blue = $\alpha 3$, green = both

Each picture shows configuration of phage at end of a "short" passage. Then transfer a sample and do another passage...

short passage; larger α 3 burst size

Long-passage simulations

 $\mathsf{Pink} = \phi \mathsf{X}\text{-resistant cells} + \phi \mathsf{X}$

5-hour passages

3 runs (Top: experiments; Bottom: simulations) α 3 dies out (blue: ϕ X pink: α 3)

18-hour passages

3 runs (Top: experiments; Bottom: simulations) Coexistence (Oscillations in expt due to evolution of α 3)

Effect of passage time (simulations)

Mixed plates-short passage time

Scrape-Mix-Plate. Oscillations due to evolution of α 3.

Mixed plates-long passage times

