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In this paper a beginning is made on the sampling theory of neutral alleles.
That is, we consider deductive and subsequently inductive questions relating
to a sample of genes from a selectively neutral locus. The inductions concern
estimation, confidence intervals and hypothesis testing. In particular the test of
the hypothesis that the alleles being sampled are indeed selectively neutral will
be considered. In view of the large amount of data currently being obtained by
electrophoretic methods on allele frequencies and numbers, and the current
interest in the possibility of extensive ‘“non-Darwinian’ evolution, such a
sampling theory seems necessary. However, a large number of unsolved
problems in this area remain, a partial listing being given towards the end of
this paper.

MATHEMATICAL THEORY

A number of quantities will be considered in this paper and it is useful to
gather together the notations that will be used consistently throughout. We
define. :

N = number of individuals in the parent (diploid) population (normally
unknown)

N, = effective size of parent population (normally unknown)

u = mutation rate to entirely new alleles (normally unknown)

n = number of individuals in sample (taken in generation t)

K = number of alleles in the population in generation ¢ (an unknown
random variable)

k = number of different alleles observed in the sample (a realized value of
a random variable)

* Supported by USPHS Grant GM-15769.

t Current address: Mathematical Research Center, University of Wisconsin, Madison,
WI 53706. Permanent address: Department of Mathematics, La Trobe University,
Bundoora 3083, Victoria, Australia.
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THE COALESCENT

J.F.C. Kingman

Mathematical Institute, University of Oxford, Zngland

The n-coalescent is a continuous-time Markov
chain on a finite set of states, which des-
cribes the family relationships among a

sample of n members drawn from a large haploid
population. Its transition probabilities can
be calculated from a factorisation of the chain
into two indermendent components, a pure death

preocess and a discrete-time jump chain. For
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a deeper study,
more complicated Markov prccess in which n-
coalescents for all values of n are embedded

in a natural way.
Keywords: Genetical models, haploid genealogy, random eguiv-
alence relations, coupling, exchangeability, Markov

process, jump chain.

1. The.n-éoalescent
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For any natural numbesr n, let &_ denote the finite set OF
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equivalence relaticns on {1, 2, ..., n}. For R ¢ G ¢enote by

|R| the numker of equivalence classes of R. & continuous-time



POPULATION GENETICS THEORY - THE PAST AND THE FUTURE

W.J. Ewens

Department of Mathematics
Monash University
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Department of Biology
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ABSTRACT. Classical population genetics theory was largely directed towards processes relating to the
future. Present theory, by contrast, focuses on the past, and in particular is motivated by the desire to
make inferences about the evolutionary processes which have led to the presently observed patterns and
nature of genetic variation. There are many connections between the classical prospective theory and the
new retrospective theory. However, the retrospective theory introduces ideas not appearing in the classical
theory, particularly those concerning the ancestry of the genes in a sample or in the entire population. It
also introduces two important new distributions into the scientific literature, namely the Poisson-Dirichlet
and the GEM: these are important not only in population genetics, but also in a very wide range in
science and mathematics. Some of these are discussed. Population genetics theory has been greatly
enriched by the introduction of many new concepts relating to the past evolution of biological populations.

1. Introduction

These notes are based on lectures given to an audience consisting of biologists,
statisticians and mathematicians, and they reflect the breadth of interests of the participants.
I have preferred to seek out connections and analogies between these disciplines rather
than to pursue any topic in depth, to show how questions of interest to geneticists have led
to mathematical developments in areas quite different from biology, and how in tum
various mathematical developments lead to a more complete understanding of the
evolutionary process.

The title does not imply an ambitious attempt to give an overview of population
genetics theory. Rather, it can be interpreted in two different and more specific ways.
First, it is intended to suggest the view that even the most recent research has its origins in,
and often borrows results from, the classical theory. Secondly, it reflects the view (the
closing theme in Ewens (1979)) that the direction of interest in population genetics theory
is changing from the prospective to the retrospective. The classical theory, aiming to
prove the validity of Darwinian evolution as a Mendelian process, was prospective and
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EWENS' FORMULA

n sampled genes

n!
ni!l-ng!

assignments of k£ types

Xprp IT types are unlabelled with b; being

the number of types represented ;5 times

xn! orders of loss backward in time by muta-
tion or coalescence, with the convention that
one of the genes at random is lost when two
coalesce



if the th lost is the last of its type

9
X 0Fi—1)

(9+ _1) if it is the j5th last of its type, for
1= 1,...,n, since we have the rates
e;0 /2 for mutation among i genes
ei(i — 1)/2 for coalescence among i genes

o0 /2 for loss by mutation of a given gene

o(j—1)/2 for loss by coalescence of a given
gene with one of j — 1 genes of the same type

The multiplication of all terms gives

n! . 1 . 6"
101...0bn  bpl--bpt 0(60+1)---(04+n—1)

for the probability of having k types with bj
types represented 5 times.



WAT TERSON'S FORMULA
(KINGMAN'S FORMULA IF 6 = 0)

n labelled genes traced back to m ancestral
genes of types 1,....m

ni---nm POSSible ancestral genes
x(n —m)! orders of loss of the younger genes

fore=m-+1,.

9
Xi0Fi—1) © z(@—l— —1)

and this gives

(n—m)!@k_mnl 1! Hl m+1(n—1)!
i m_|_1z(9—|—z 1)

for the probability of having n; given genes of
typelfori=1,...mm—+1,... k



VARIABLE POPULATION SIZE
WITH AGE-ORDERED TYPES
TYPE 1 BEING THE OLDEST
AND TYPE £k THE YOUNGEST

nl'n—'nk' assignments of k types

X Hég:]_ n: (Z,ljzl ny —ip) (2221 Ny — 141 +2)

(a;) orders of loss with i; genes remaining just
before type [ is lost by mutation for il =1,...,k

0 (G—1)/M(T)
XOFG—1)/MT] O T+G-1)/AT)]

given a time back of loss 7; when ¢ genes re-
main and then a population size \(T;) relative
to the present size, for: =1, ...,n, which gives

o1 . s [T M(T3)
(T, ) =5 {H?=2[9/\(Ti)+i—1]}



LADDER INDICES AND HEIGHTS
IN AN URN MODEL

T he probability of having age-ordered frequen-
ciesny,...,ng in @ sample given mutation events
when iq,...,7 genes remain is

oG — 1) ﬁ (XM ny — i)
(n—1)' = (" — i+ 1)!

T his is also the probability that the successive
maxima obtained by drawing balls labelled from
1 to n, at random and without replacement,
have increments nq,...,n; given that the suc-
cessive maxima occur at the drawing num-
bers 4, ...,%L.



POPULATION DISTRIBUTION OF
AGE-ORDERED FREQUENCIES

As the sample size goes to infinity, the relative
frequency of the [th oldest type, n;/n, given
11...., 11, 1S distributed as

§—11152;(1 — &)
where all & are independent and have densities
(g1 — (1 —2)4+172 0 < 2 < 1.

Moments and Laplace transforms of these fre-
quencies can be deduced and then, in particu-
lar, the probability that the oldest type in the
sample is the oldest in the population

ON(T})

00 k
P (=1)F" 1() [H] > (I = =1 )11

All this is consistent with the GEM distribu-
tion for a population of constant size.



GENEALOGY OF A DERIVED TYPE

A derived type represented r times in a sample
of size n is lost by mutation at time back T;,,41
when there remain m—+1 genes with probability

Pm—|—1/(2?;€ pj—l—l) where py, 11 is

( n—m-—1 >
(n—1)10 r—1 . E{ ATpt1) }
r ( n—1 ) [ e [OA(T;)+i—1]
-

Then the distribution of the age of the derived
type can be studied, by conditioning on m+41,
under assumptions about the population size
and be approximated under conditions such as
low 60, large n or small », and similarly for the
coalescence times of the genes of the derived

type.



CONCLUSION

Combinatorial arguments coupled with the co-
alescent approach may simplify the proofs of
known results and lead to some new ones.



