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In this paper a beginning is made on the sampling theory of neutral alleles.
That is, we consider deductive and subsequently inductive questions relating
to a sample of genes from a selectively neutral locus. The inductions concern
estimation, confidence intervals and hypothesis testing. In particular the test of
the hypothesis that the alleles being sampled are indeed selectively neutral will
be considered. In view of the large âmount of data currently being obtained by
electrophoretic methods on allele frequencies and numbers, and the current
interest in the possibility of extensive "non-Darwinian" evolution, such a
sampling theory seems necessary. However, a large number of unsolved
problems in this area remain, a partial listing being given towards the end of
this paper.

MenrEuerrcal TnEony

A number of quantities will be considered in this paper and it is useful to
gather together the notations that will be used consistently throughout. W'e
define.

N - number of individuals in the parent (diploid) population (normally
unknown)

N, : effective size of parent population (normally unknown)

u : mutation rate to entirely new alleles (normally unknown)

z : number of individuals in sample (taken in generation /)

K - number of alleles in the population in generation I (an unknown
random variable)

À : nurnber of different alleles observed in the sample (a realized value of
a random variable)
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ABSTRACT. Classical population genetics ttreory was largely directed lolv-ards processes relating to the

future. present ft*ry, ùy'contrast, focuses on the past, and in particular is motivated by the desire to

make inferences aboui'thé evolutionary processes which have led to the presently observed patterns and

nature of genetic variation. There are inany connections between the classical prospective Ft9.y ld.the
n.* r"t ofoctive theory. However, the retrospective theory introduces ideas not appearing in the classical

theory, particularly those concerning the ancestry of the glnes in a sample or in the entire population- It

also iitrbduces tw-o importanr ne* disttibutions into ttre scientific literature, namely the Poisson-Dirichlet

and the GEM: these àre important not only in population genetics, but also in a very wide range in

science and mathemarics. Sôme of these are diicussed. Population genetics theory has been grgatly

à*i.tr"tUy the introduction of many new concepts relating to the past evolution of biological populations.

1. Introduction

These notes are based on lectures given to an audience consisting of biologists,

statsticians and mathematicians, and ttrey reflect the breadth of interests of the participants.

I have prefened to seek out connections and analogies between these disciplines rather

than to pursue any topic in depth, to sho'w how questions of interest to geneticists have led

to mathematical developments in areas quite different from biology, and how in tum

various mathematical developments lead to a more complete understanding of the

evolutionary process.
The title does not imply an ambitious attempt to give an overview of population

genetics theory. Rather, it can be interpreted in two different and more specific ways.

First, it is intended to suggest the view that even the most recent research has its origins in,

and often borrows results from, the classical theory. Secondly, it reflects the view (the

closing theme in Ewens (1979)) that the direction of interest in population genetics theory

is changing from the prospective to the retrospective. The classical theory, aiming to

prove the validity of Darwinian evolution as a Mendelian process, was prospective and
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EWENS’ FORMULA

n sampled genes

n!
n1!···nk!

assignments of k types

× 1
b1!···bn!

if types are unlabelled with bj being

the number of types represented j times

×n! orders of loss backward in time by muta-

tion or coalescence, with the convention that

one of the genes at random is lost when two

coalesce
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× θ
i(θ+i−1) if the ith lost is the last of its type

or j−1
i(θ+i−1) if it is the jth last of its type, for

i = 1, ..., n, since we have the rates

•iθ/2 for mutation among i genes

•i(i− 1)/2 for coalescence among i genes

•θ/2 for loss by mutation of a given gene

•(j − 1)/2 for loss by coalescence of a given

gene with one of j − 1 genes of the same type

The multiplication of all terms gives

n!
1b1···nbn

· 1
b1!···bn!

· θk

θ(θ+1)···(θ+n−1)

for the probability of having k types with bj

types represented j times.
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WATTERSON’S FORMULA

(KINGMAN’S FORMULA IF θ = 0)

n labelled genes traced back to m ancestral

genes of types 1, ..., m

n1 · · ·nm possible ancestral genes

×(n−m)! orders of loss of the younger genes

× θ
i(θ+i−1) or j−1

i(θ+i−1) for i = m + 1, ..., n,

and this gives

(n−m)!θk−m
∏m

l=1 nl!
∏k

l=m+1(nl−1)!∏n
i=m+1 i(θ+i−1)

for the probability of having nl given genes of

type l for l = 1, ..., m, m + 1, ..., k.
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VARIABLE POPULATION SIZE

WITH AGE-ORDERED TYPES

TYPE 1 BEING THE OLDEST

AND TYPE k THE YOUNGEST

n!
n1!···nk!

assignments of k types

×∏k
l=1 nl ·(

∑l
ν=1 nν− il) · · · (

∑l
ν=1 nν− il+1+2)

(ai) orders of loss with il genes remaining just

before type l is lost by mutation for l = 1, ..., k

× θ
i[θ+(i−1)/λ(Ti)]

or (j−1)/λ(Ti)
i[θ+(i−1)/λ(Ti)]

given a time back of loss Ti when i genes re-

main and then a population size λ(Ti) relative

to the present size, for i = 1, ..., n, which gives

θk−1(∏k
l=1 nl

) ∑
i aiE

{ ∏k
l=2 λ(Til

)∏n
i=2[θλ(Ti)+i−1]

}
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LADDER INDICES AND HEIGHTS

IN AN URN MODEL

The probability of having age-ordered frequen-

cies n1, ..., nk in a sample given mutation events

when i1, ..., ik genes remain is

∏k
l=2(il − 1)

(n− 1)!
·

k∏

m=1

(
∑m

ν=1 nν − im)!

(
∑m−1

ν=1 nν − im + 1)!

This is also the probability that the successive

maxima obtained by drawing balls labelled from

1 to n, at random and without replacement,

have increments n1, ..., nk given that the suc-

cessive maxima occur at the drawing num-

bers i1, ..., ik.

6



POPULATION DISTRIBUTION OF
AGE-ORDERED FREQUENCIES

As the sample size goes to infinity, the relative
frequency of the lth oldest type, nl/n, given
i1...., ik, is distributed as

ξl−1
∏∞

ν=l(1− ξν)

where all ξl are independent and have densities

(il+1 − 1)(1− z)il+1−2, 0 < z < 1.

Moments and Laplace transforms of these fre-
quencies can be deduced and then, in particu-
lar, the probability that the oldest type in the
sample is the oldest in the population

∑n
k=1(−1)k−1

(
n
k

)
E

[∏∞
j=2 (1− k

k+j−1 ·
θλ(Tj)

θλ(Tj)+j−1)
]

All this is consistent with the GEM distribu-
tion for a population of constant size.
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GENEALOGY OF A DERIVED TYPE

A derived type represented r times in a sample

of size n is lost by mutation at time back Tm+1

when there remain m+1 genes with probability

pm+1/(
∑n−r

j=1 pj+1) where pm+1 is

(n−1)!θ
r ·

(
n−m− 1

r − 1

)

(
n− 1

r

) · E
{

λ(Tm+1)∏n
i=2[θλ(Ti)+i−1]

}

Then the distribution of the age of the derived

type can be studied, by conditioning on m+1,

under assumptions about the population size

and be approximated under conditions such as

low θ, large n or small r, and similarly for the

coalescence times of the genes of the derived

type.
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CONCLUSION

Combinatorial arguments coupled with the co-

alescent approach may simplify the proofs of

known results and lead to some new ones.

9


