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Abstract

We analyze the changes in the mean and variance components of a quantitative trait caused by 

changes in allele frequencies, concentrating on the effects of genetic drift.  We use a general 

representation of epistasis and dominance that allows an arbitrary relation between genotype 

and phenotype for any number of diallelic loci.  We assume initial and final Hardy-Weinberg 

and linkage equilibrium in our analyses of drift-induced changes.  Random drift generates 

transient linkage disequilibria that cause correlations between allele frequency fluctuations at 

different loci.  However, we show that these have negligible effects, at least for interactions 

among small numbers of loci.  Our analyses are based on diffusion approximations that 

summarize the effects of drift in terms of F, the "inbreeding coefficient," interpreted as the 

expected proportional decrease in heterozygosity at each locus.  For haploids, the variance of 

the trait mean after a population bottleneck is varHD zêL = ⁄k=1
n Fk  VAHkL , where n is the number 

of loci contributing to the trait variance, VAH1L = VA is the additive genetic variance, and VAHkL is 

the kth-order additive epistatic variance.  The expected additive genetic variance after the 

bottleneck, denoted XVA* \ , is closely related to varHD zêL; XVA* \  = (1–F) ⁄k=1
n k Fk-1  VAHkL .  Thus, 

epistasis inflates the expected additive variance above VAH1 - FL , the expectation under 

additivity.  For haploids (and diploids without dominance), the expected value of every 

variance component is inflated by the existence of higher-order interactions (e.g., third-order 

epistasis inflates XVAA
* \).  This is not true in general with diploidy, because dominance alone 

can reduce XVA* \  below VAH1 - FL  (e.g., when dominant alleles are rare).  Without dominance, 

diploidy produces simple expressions: varHD zêL = ⁄k=1
n H2 FLk  VAHkL and 

XVA* \ = H1 –FL ⁄k=1
n k H2 FLk-1  VAHkL .  With dominance (and even without epistasis), varHD zêL  

and XVA* \  no longer depend solely on the variance components in the base population.  For 

small F, the expected additive variance simplifies to 

XVA* \ > H1 - FL VA + 4 FVAA + 2 FVD + 2 FCAD , where CAD  is a sum of two terms describing 

covariances between additive effects and dominance and additive-by-dominance  interactions.  

Whether population bottlenecks lead to expected increases in additive variance depends 

primarily on the ratio of nonadditive to additive genetic variance in the base population, but 

dominance precludes simple predictions based solely on variance components.  We illustrate 

these results using a model in which genotypic values are drawn at random, allowing extreme 

and erratic epistatic interactions.  Although our analyses clarify the conditions under which 

drift is expected to increase VA , we question the evolutionary importance of such increases.
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Introduction

Epistasis, interpreted as nonadditive effects of alleles at distinct loci, has been 

acknowledged as common for polygenic traits since Fisher (1918) reconciled Mendelian 

inheritance with biometrical analyses of similarities between relatives.  Epistasis for fitness is 

essentially inescapable and has been explicit in every model of selection on polygenic traits 

since Wright's (1935) pioneering treatment of stabilizing selection (Coyne et al. 1997, 2000).  

The role of epistatic interactions in producing hybrid inviability and sterility was popularized 

by Dobzhansky (1937) and Muller (1940), but was understood as important for the origin of 

reproductive isolation even earlier (e.g., Poulton 1908, Ch. II).  Nevertheless, there are 

persistent laments that epistasis is ignored or that if its ubiquity were acknowledged, 

evolutionists would embrace drift-based theories of adaptation and/or speciation in which 

epistasis plays some role (e.g., Wade and Goodnight 1998, Cheverud 2000, Templeton 2000, 

Wade 2000).  Part of the mystique surrounding epistasis is that it remains extremely difficult to 

analyze mathematically.  

Recent descriptions of particular patterns of epistasis elucidate the maintenance of 

variation (e.g., Hermisson et al. 2003) and patterns of postzygotic isolation (e.g., Turelli and 

Orr 2000); and Barton and Turelli (1991) introduced a general mathematical framework for 

analyzing epistatic selection.  Yet, until some recent work by Wagner and his associates (e.g., 

Wagner et al. 1998, Hansen and Wagner 2001), the mathematical language used by 

quantitative geneticists to discuss multilocus epistasis had not advanced significantly since 

Cockerham (1954) and Kempthorne (1954) elaborated Fisher's (1918) original treatment.  

Although Cockerham (1954) and Kempthorne (1954) treated n-locus interactions, their 

notation is so complex and the resulting algebra so challenging that most applications have 

reverted to extrapolations from two-loci (e.g., Cockerham and Tachida 1988).  In this paper, 

we describe epistasis by adapting the mathematical framework for multilocus selection 

introduced by Barton and Turelli (1991) and extended by Kirkpatrick et al. (2002).  We show 

how this framework provides an efficient language for describing arbitrary epistatic 

interactions that simplifies the algebra so that some difficult questions become analytically 

tractable.  Our notation for describing general patterns of epistasis for diallelic loci seems to 

provide more transparent solutions for the problems we discuss than the more elaborate 

notation suggested by Hansen and Wagner (2001).  We illustrate our approach by analyzing 

drift-induced changes in the mean and variance components of quantitative traits, even though 

we remain skeptical that such changes are significant for either adaptation or speciation.
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In several experiments, the estimated additive genetic variance has increased after 

severe reductions in population size, N  (e.g., Bryant et al. 1986, Lopez-Fanjul and Villaverde 

1989, Cheverud et al. 1999; reviewed by Walsh and Lynch 1998).  This has seemed paradoxical, 

because genetic drift must, on average, reduce heterozygosity at the underlying loci.  However, 

additive genetic variance may nevertheless increase if the additive effects of alleles increase.  

This may happen through dominance, because the additive effects of recessive alleles will 

increase if they become more common (Robertson 1952, Willis and Orr 1993).  Epistatic effects 

can also lead to increasing additive variance as allele-frequency changes modify additive 

effects (Cockerham 1984; Goodnight 1987, 1988; Cockerham and Tachida 1988).  Drift-induced 

inflation of additive genetic variance has received considerable attention, and we provide a 

skeptical review of its proposed biological significance in our Discussion.  However, our 

mathematical framework describes the effects of arbitrary allele frequency changes on 

quantitative traits, regardless of what causes those changes.

In this paper, we set out a simple analysis of how the mean phenotype and variance 

components change as a result of random drift of allele frequencies.  By neglecting selection, 

we can reach quite general conclusions.  This seems a reasonable assumption, since drift will 

dominate during a brief population bottleneck.  We concentrate on allele frequency changes, 

assuming that the initial and final populations are at linkage equilibrium.  Again, this seems 

reasonable for most outcrossing organisms, since genes will usually be loosely linked, and so 

for isolated populations only very strong epistasis generates significant linkage disequilibrium.  

Transient linkage disequilibria will be generated by drift, but these will soon dissipate.  We 

argue using both analytical approximations and exact multilocus simulations that these 

transient disequilibria have negligible effects on the pattern of allele frequency fluctuations, 

which are of primary importance.
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ü Relation to previous analyses

In classical quantitative genetics, the phenotype is represented as a sum of effects, each 

attributed to a certain set of genes.  (Additive effects are due to single genes, dominance effects 

to pairs of homologous genes in a diploid, pairwise epistatic effects involve contributions from 

alleles or genotypes at pairs of loci, and so on.)  These effects are defined with respect to a base 

population, such that the different effects are uncorrelated (at linkage equilibrium), and the 

total genotypic variance is the sum of the variances of each effect HVG = VA + VD + VAA  …L . 
Variances and covariances between individuals are given by a sum of terms, each term being 

weighted by identity coefficients that give the probabilities that various sets of genes are 

identical by descent from the base population.  In certain cases, this sum involves only variance 

components – for example, covariances between relatives within a base population that is in 

Hardy-Weinberg and linkage equilibrium, with no linkage (Kempthorne 1954, Cockerham 

1954).  However, in general it involves complicated moments of the distribution of effects in 

the base population.

The effects of drift have been analyzed in detail for two loci.  For the general case with 

linkage between the loci, and with linkage disequilibrium in the inbred population, many 

different identity coefficients must be defined.  Explicit formulae for these coefficients are 

cumbersome, but it is straightforward to calculate them using linear recursions.  Goodnight 

(1987, 1988) derived the effect of a single-generation bottleneck and of continued drift on the 

expected additive genetic variance, and found that this would increase for small F if the 

additive genetic variance is smaller than three times the additiveµadditive epistatic variance 

HVA < 3 VAA , neglecting VDL .  Goodnight's results included the linkage disequilibria generated 

by drift, which will contribute to genetic variance immediately after the bottleneck.  

Cockerham and Tachida (1988) calculated the effects on additive genetic variance that persist 

after these linkage disequilibria dissipate.  They found that in the absence of dominance, 

additive genetic variance will increase in the long term if VA < 4 VAA .  However, other 

coefficients contribute, and the effects cannot be written solely in terms of variance 

components. More complex population structures have been analyzed, including migration and 

extinction/recolonization (Tachida and Cockerham 1989, Whitlock et al. 1993).

All these results are essentially two-locus analyses; moreover, they do not include 

additiveµdominance or dominanceµdominance  effects, and so do not give a complete analysis 

even of two loci.  (Cheverud and Routman (1996) do include these effects, but their approach is 

wholly numerical and is restricted to intermediate initial allele frequencies.)  The available 

analytical results apply to multiple loci only if dominance and higher-order additive 
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contributions to the phenotype are neglected.  The general approach based on 

identity-by-descent becomes intractable beyond two loci, because it is necessary to follow 

large numbers of identity coefficients.  (With linkage disequilibrium, one must specify the joint 

probability of identity of sets of genes at multiple loci.  For example, the probability that genes 

8i1, i2, i3<  are identical by descent (abbreviated i.b.d.) at locus i , and that genes 

8 j1, j2< but not j3  are i.b.d. at locus j  could be written F888i1 , i2 , i3 <<,88 j1 , j2 <,8 j3 <<< ; see Appendix 2.)  

Moreover, these multilocus identity coefficients have traditionally been defined in an 

idiosyncratic way, so that it is not possible to write down explicit multilocus formulas.

Our analytical approach provides a way to test simulation-based conjectures and to 

explain some interesting experimental observations.  For instance, in a heroic set of highly 

replicated bottleneck experiments, Cheverud et al. (1999) demonstrated that although additive 

variance increased rather rarely, the observed additive variance was generally in excess of the 

reduced expectation under additivity.  We show that without dominance, epistasis 

systematically inflates XVA
* \ , expected additive genetic variance after a bottleneck, above the 

additive expectation, H1 - FL VA , for all diallelic epistatic systems.  In contrast, dominance can 

increase or decrease XVA
* \ .  Our framework, which complements that of Hansen and Wagner 

(2001), should facilitate additional analyses of the consequences of epistasis.

The model

Suppose a trait is determined in an arbitrary way by n diallelic loci.  For simplicity, we 

assume random mating and no selection.  We also assume that there is no sex-dependence of 

phenotypes and no effect of the parental origin of alleles (i.e., no cis-trans effects or maternal 

effects).  We illustrate some ideas with haploids, but our analysis includes diploidy.  When 

analyzing the consequences of population bottlenecks, we assume that changes in allele 

frequencies can be approximated by a diffusion.  This implies that the pattern of population 

sizes during the bottleneck influences the final distribution of allele frequencies only through a 

single parameter, the net inbreeding coefficient F .  (In the diffusion approximation, time can 

be rescaled relative to the current rate of drift, so that an arbitrary pattern of population size is 

transformed to a standard form.)  We show that this approximation is quite accurate even for 

severe bottlenecks.

We begin by setting out an explicit representation of epistasis and dominance, in which 

the phenotype is written as a polynomial function of variables that describe the genotype.  

Assuming Hardy-Weinberg and linkage equilibrium (HWLE), we show that the coefficients of 

this polynomial are just the additive, dominance, and higher-order interaction effects of 
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classical quantitative genetics.  We next show how these effects, the mean and the variance 

components change as allele frequencies change, giving general expressions that apply to 

haploids and diploids.  Understanding the implications of these changes is greatly simplified by 

assuming that allele frequency fluctuations are independent across loci and that the initial and 

final populations are in HWLE.  It is reasonable to assume linkage equilibrium, because strong 

selection and/or tight linkage are needed to maintain significant linkage disequilibrium in the 

base population, and any disequilibrium generated by drift will quickly dissipate unless linkage 

is tight.  Results for haploids, or for diploids in the absence of dominance, follow directly and 

depend only on the variance components in the base population.  However, dominance 

introduces substantial complications, so that expected values for the population mean and 

additive variance no longer depend solely on the variance components.  Nevertheless, we 

obtain an explicit, fairly compact expression that describes how the additive variance changes 

for small F.  Moreover, for the general model, we show that epistasis inflates the expected 

additive variance after drift above the value expected under complete additivity.  To illustrate 

the general results with extremely complex epistasis, we provide simulation results for a model 

in which genotypic values are chosen at random (similar to Naciri-Graven and Goudet 2003).  

Analytical results concerning this model will be published separately.

Even if the initial and final populations are at linkage equilibrium, transient 

disequilibria do influence the final distribution of allele frequencies.  For example, if there is a 

large fluctuation in allele frequency at one locus, then there is likely to be a large fluctuation at 

a linked locus.  (That is, there is a covariance between the squared deviations of allele 

frequencies at linked loci.)  We derive expressions for these associations, and show that they 

have little influence even with tight linkage (Appendix 2).  These analytical results, together with 

explicit multilocus simulations under extreme epistasis, support our assumption that the 

post-bottleneck distributions of allele frequencies at different loci are statistically independent.
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ü Notation

Our notation follows that introduced by Barton and Turelli (1991) and extended by 

Kirkpatrick et al. (2002).  Loci are labelled i, j, k…  In diploids, genes are denoted with 

subscripts, e.g., im , i f , to indicate paternal versus maternal origin.  A gene and its parental 

origin is termed a position, and denoted by double-struck font (e.g., = im ).  The distinction 

between genetic loci and positions is crucial when we define components of variance in 

diploids.  The state of each position is denoted by X ; for diallelic loci, we set X =  0 or 1.  The 

corresponding frequency of allele 1 is p = E@X D , where E@ D  denotes an expectation over the 

distribution of genotypes in the population.  We assume equal allele frequencies in the sexes, 

so that allele frequency depends only on the locus, i , and can be written pi .  (With  drift, allele 

frequencies differ randomly between the sexes.  However, under the diffusion approximation, 

these differences are negligible.)

Linkage disequilibria are defined relative to a reference point, which might be either 

the allele frequencies in the initial population or the current population.  Deviations from the 

reference point are denoted z = X - p , and products of those deviations over sets of 

positions, , are denoted compactly by z .  We set E@z D  = D .  The set of all relevant 

positions in an individual is denoted .  

For example, for a trait determined by two loci in a haploid, = 81, 2< ; and a 

population can be described by three variables: D81< , D82< , and D81,2< .  The first two are the 

differences in allele frequency between the population in question and the reference population 

HD81< = Dp1, D82< = Dp2L .  D81,2<  is a measure of linkage disequilibrium, defined with respect 

to the reference allele frequencies.  If we choose to change the reference point to the new allele 

frequencies, then using superscript * to denote the new values, D81<* = 0, D82<* = 0, and 

D81,2<* = D81,2< - Dp1  Dp2  is the standard coefficient of linkage disequilibrium.  For 

compactness, we abbreviate variables such as D8i, j<  by Di j .

In a diploid, there are two positions at each autosomal locus.  Thus, for loci i and j, we 

must consider sets of positions of the form = 8im , jm , i f , j f < .  In a diploid population, the 

state of these two loci is defined by 15 coefficients, corresponding to the 15 non-empty subsets 

of .  However, under random union of gametes and no differences between the sexes, these 

reduce to the same three variables that describe the haploid gamete pool: 

Dim
= Dif

= Dpi , Djm
= Djf

= Dpj , Dim  jm
= Dif  j f

= Di j , whereas 

Dim  i f
= HDpiL2, Djm  j f

= IDp j M
2
, Dim  j f

= Dif  jm
= Dpi  Dp j , 

Dim  jm  i f = Dif  j f  im = Di j  Dpi , Dim  jm  j f = Dif  j f  jm = Di j  Dp j , and Dim  jm  i f  j f = Dij
2 .
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ü Description of epistasis and consequences of changing reference points

In general, a polygenic trait can be written as a polynomial function of the allelic states

(1)z = zê + ‚
« Œ

b  Hz - D L,
where z ª X - p , z ª ¤ œ z , D ª E@z D ,  is the set of all positions in an 

individual, and the sum in Eq. 1 is over all nonempty subsets  of  with only one permutation 

of any subset included in the summation (i.e., we do not count 8im, jm<and 8 jm , im<as separate 

sets) .  As described below, the terms b depend on both the physiological mapping from 

genotypes to phenotypes (i.e., the genotypic values for all genotypes) and the allele frequencies 

used as reference points.  For any specific genotype, e, and assuming two alleles, each X  is 0 

or 1 and Eq. 1 specifies its genotypic value.  We will use the general convention that sums over 

subsets include the null set («), unless it is explicitly excluded (as in Eq. 1).  In the sets , each 

position index appears at most once; and the permutations of the set of indices that appear in a 

particular set do not appear as separate elements of the sum.  Nevertheless, expectations over 

sets involving repeated indices arise in calculations below, but the corresponding moments can 

be calculated simply for diallelic loci (see Eq. 5 of Barton and Turelli 1991). With two alleles, 

D = p  q .   Similarly, for any set  that contains no repeated indices, 

D ª E@¤ œ z2D = ¤ œ p  q .  We denote the product ¤ œ p  q by  pq .

The coefficients b in Eq. 1 depend on the reference allele frequencies.  As shown 

below, it is simple to go from one reference point to another, expressing the new coefficients in 

terms of the old.  By comparing two reference points, we can use our notation to discuss the 

relationship between "physiological" or "functional" epistasis and "statistical" epistasis for any 

number of loci and any pattern of gene interaction.  This distinction has been used in at least 

two distinct ways: by Cheverud and Routman (1995, 1996) to emphasize that epistatic variance 

components may be small even when non-additive interactions among segregating loci are 

extreme (e.g., Crow and Kimura 1970, Table 4.1.3; Keightley 1989) and by Hansen and 

Wagner (2001) to distinguish between non-additive interactions between alleles at different 

loci when effects are measured as i) departures from the mean phenotype produced by a 

reference genotype and ii)  the traditional quantitative genetic definition of epistasis in which 

departures are measured relative to the mean of a population segregating at several loci.  It is 

unquestionably important to realize that both variance components and epistatic effects depend 

on population composition.  However, as made clear by Eq. 3 below and by Hansen and 

Wagner's (2001) Result 2.1, any quantification of epistasis is essentially arbitrary, because a 

specific reference must be used to quantify the departures from additivity.  Once this is 
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appreciated, it makes little difference whether one uses a fixed reference genotype, as proposed 

by Hansen and Wagner (2001), a weighted average of genotypic effects, as proposed by 

Cheverud and Routman (1995), or a segregating population with specific allele frequencies, as 

proposed by Fisher (1918), to quantify epistatic effects.  We will contrast the reference point in 

which all loci are fixed for the 0 allele (equivalent to choosing a reference genotype with all 0 

alleles), so that pi = 0 for all i, with a reference point corresponding to the allele frequencies in 

a polymorphic population.  In the former case, the coefficients b  correspond to Hansen and 

Wagner's (2001) "functional" interactions between the positions in ; whereas in the latter 

case, the b describe statistical effects produced by those interactions and the current allele 

frequencies.  

Our notation shows that the existence of particular levels of interaction, e.g., 

dominance, additive-by-additive versus additive-by-dominance  epistasis, is generally 

independent of the reference point chosen; whereas for a fixed level of biological interaction 

(as revealed by examination of any reference point), the magnitude of lower-order effects must 

be reference-point dependent.  To illustrate this idea simply, consider biallelic haploids, so that 

 = {1, 2, ..., n} and the b have the form bijk... , with all subscripts distinct.  As argued by 

Hansen and Wagner (2001), one way to think about physiological or functional interactions is 

to focus on a specific genotype, then ask how changing each allele in turn (and changing them 

in all combinations) alters the mean phenotype.  Using the reference genotype with 0 alleles at 

all loci corresponds to pi = 0 for all i in (1), and zê  is just the genotypic value for (0, 0, ..., 0), 

denoted G0 .  With this starting point, each bi describes the change in the mean phenotype when 

allele 1 is introduced at locus i and nowhere else.  The terms bij  describe the additional effect 

on the mean phenotype of having 1 alleles at both loci i and j that cannot be explained by 

bi + b j .  Thus, bij  0 if and only if there is additive-by-additive interaction between loci i and 

j.  Similarly, bijk  describes three-way effects not accounted for by lower-order terms (namely, 

bi + b j + bk + bij + bik + b jk ), etc.  This representation applies to any pattern of epistasis.  In the 

haploid case, there are 2n genotypes and our representation has 2n free parameters: the initial 

constant, G0 ; the n allelic effect terms, bi ; the Jn
2
N  pairwise interaction terms, etc. (these 

numbers are simply the terms in the binomial expansion of H1 + 1Ln ).  Nevertheless, the 

specific values obtained for these coefficients have no intrinsic physiological or functional 

meaning because they depend on the reference point. 
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To see this, we show for both haploids and diploids how to find the new set of 

coefficients, b* , that define the relation between genotype and phenotype when the reference 

point is changed from pi to pi
* = pi + Dpi .  The old deviation z = X - p  can be rewritten as 

z = z* + Dp .  Thus, Eq. 1 implies

(2)

z = zê + „
Ø

 b  
i
k
jjjjj‰

œ

Hz* + Dp L - EA‰
iœ

Hz* + Dp LEy
{
zzzzz

= zê + „
Ø

b  ‚
+ =

Hz* - D*L Dp .

Because b* is defined as the coefficient of z* in the expansion of z, this shows that 

b contributes to b* for all  Œ .  It follows that the coefficients obtained from different sets 

of reference allele frequencies are related by

(3)b* = ‚
Œ î

b  Dp

(note that this sum includes  = Ø), where \  denotes the set of elements in  but not  and 

 denotes the union of sets  and .  Expression (3) is analogous to Result 3.2 of Hansen 

and Wagner (2001, p. 65).  They use individual genotypes as reference points; but their 

framework allows for multiple alleles under a "multilinearity" assumption, which states that 

changes in genetic background modify all substitution effects at a locus by the same 

proportionate factor.  In contrast, our analysis is restricted to two alleles; but it uses as 

reference points any set of allele frequencies and HWLE genotype frequencies.  For the class 

of problems we investigate, our notation, which produces the relatively simple expression (3) 

for calculating the new coefficients b when the reference allele frequencies are changed, 

seems to provide more general and transparent solutions.

We will show below that the values of b defined in terms of current allele frequencies 

are proportional to the statistical effects, as traditionally defined, of the specified combination 

of alleles.  Hence, Eq. 3 shows that interactions of any specified order contribute in general to 

statistical effects of the same order and all lower orders when the reference point is changed.  

In particular, three-way interactions in one frame of reference will contribute to both pairwise 

interaction effects and mean effects of individual alleles.  However, if in any frame of 

reference, we find, for instance, no interactions involving more than two alleles, then Eq. 3 

shows that no such interactions will exist in any other frame of reference.  In this sense, the 

existence of a specific level of epistasis is "functionally" defined by the mapping of genotypes 

onto average phenotypes.  The converse, however, is not true.  For instance, if 
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additive-by-additive epistasis exists, the values of lower-order terms, and in particular, whether 

they are non-zero, depend on the reference point chosen.  (Note that we only consider shifts of 

reference point here.  Nonlinear scale transformations generate higher-order interactions, 

giving another sense in which measures of epistasis are arbitrary).

ü Mean effects

Statistical effects of specific combinations of alleles are defined in terms of deviations 

from expectations based on contributions from all subsets of those alleles.  For instance, the 

additive effect of an allele is defined as the difference between the average phenotype of 

individuals carrying that allele and the overall mean; and pairwise effects are defined as the 

difference between the average phenotype of individuals carrying both alleles and the sum of 

the overall mean and the average effects of the individual alleles, etc.  Hence, the general 

calculation of interest in defining statistical effects is the expected value of z conditional on a 

specific set of alleles.  Despite the change in notation, our derivation is a special case of 

Kempthorne's (1957, Ch. 19), which allows multiple alleles.  Like his, our treatment applies 

only for Hardy-Weinberg and linkage equilibrium: with associations among loci HD 0L , our 

b are no longer equivalent to the deviations defined in terms of conditional expectations (see 

Barton and Turelli 1991, p. 249).

To calculate expected deviations for a population in HWLE, first note that 

representation Eq. 1 simplifies when using the current allele frequencies as our reference point 

because D = 0 for all .  Thus, 

(4)z = zê + ‚
« Œ

b  z .

In general, we want to calculate the average deviation from the population mean of individuals 

carrying allele X = 1at the set of positions  œ 1 , and X = 0 for  œ 0 , then ask how much 

of that deviation cannot be explained by the effects of alleles associated with all subsets of 

those positions.  To simplify the notation, for any function f of the X and any disjunct sets of 

positions 0  and 1, we define the conditional expectations

(5)E@f » 0, 1D = E@f » X = 0 for œ 0, X = 1 for œ 1D.
Using (4), 

(6)E@z » 0, 1D - zê = ‚
« Œ

 b  E@z » 0, 1D.
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Under HWLE, all of the elements in the products z are independent with mean zero; hence, 

E@z » 0, 1D= 0 if  contains any positions that are not in  = 0 ‹ 1 ª 0  1 .  For any 

nonempty  Œ , we have   = 0  1 , with 0 Œ 0 , 1 Œ 1 and 0 1 « .  Hence,

(7)E@z » 0, 1D - zê = ‚
0Œ 0

‚
1Œ 1

b  H-pL
0
 q

1
.

Note that this summation involves a highest-order term with 0 = 0  and 1 = 1 , plus terms 

associated with all subsets of positions in 0  1 .  Hence, by definition, the effect term, denoted 

a
o  1

, associated with genotypes identified by  = 0  1 is just the highest-order term, namely

(8)
a

0  1
= b

0  1
 H-pL

0
 q

1
ª b  H-pL

0
 q

1
.

This calculation shows that Eq. 1 provides an immediate decomposition of each 

genotypic value into additive effects of alleles, dominance deviations, and all of the second- 

and higher-order epistatic components.  For instance, the additive allelic effect associated with 

0 = 8im<  is just -bim  pi , the dominance deviation associated with 0 = 8im<, 1 = 8i f < is 

-bim  i f  pi  qi , and the additive-by-additive effect associated with 1 = 8im , j f < is bim  j f  qi  qj . 

Similarly, the effect of a substitution at locus i is just bi , assuming no sex-dependence.

We define the random variable aS as the average effect of genotypes associated with 

the positions in .  It follows simply from our notation that E[aS ] = 0.  To see this, note that 

E[aS ] is an average over all genotypes associated with the positions in , i.e., all disjunct sets 

0 and 1 such that  = 0  1 .  The particular genotype indicated by Eq. 8 occurs with 

frequency q
0

 p
1

; hence, this genotype contributes b H-pqL
0

 HpqL
1

= H-1L 0  b HpqL to 

E[a ].  This shows that each position in  contributes two terms to E[aS ] (corresponding to 

X = 0 or 1) of equal magnitude but opposite sign, producing E[a ] = 0.  Thus, computing 

components of variance reduces to finding E[a2 ] (a simple, general expression is given in  

Appendix 1) and summing over the appropriate sets of positions, .

ü Variance components

The trait mean in the base population is defined in Eq. 1 as E@zD = zê .  Using the current 

allele frequencies as our reference points, the genotypic variance is

(9)

VG = E@Hz - zêL2D = EA ‚
« Œ

‚
« Œ

b  b  z  z E

= ‚
« Œ

‚
« Œ

b  b  D .
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With HWLE, all associations among distinct sets of positions are zero.  Thus, D  is non-zero 

only if  = , in which case D = pq .  Hence,

(10)VG = ‚
« Œ

b2  pq .

Equation 10  applies to both haploids and diploids (this is a special case of the calculations in 

Barton and Turelli (1991) that allow for non-random mating and linkage disequilibrium).  The 

genotypic variance decomposes into components reflecting additive effects, dominance effects, 

and epistasis of different orders.  As shown above, the b defined in terms of the current allele 

frequencies are proportional to the additive, dominance and epistatic effects defined in classical 

quantitative genetics; and, as expected, the components of Eq. 10 correspond to the variance 

components traditionally defined in terms of these effects.  In Appendix 1, we show how the 

individual variance components are identified.

For haploids, we have = 8i, j, k…<. From Appendix 1,

(11)VG = VA + VAA + VAAA  …, where

(12)
VA = ‚

iœ

bi
2 pi  qi, VAA = ‚

i,jœ

i<j

bij
2  pqij, etc.

As noted above, we use the convention that the sums over i j  count only one of 8i, j< , 8 j, i< , 
so that the sum in Eq. 12 for VAA  is over Jn

2
N  terms.  In general, we can let VAHkL  denote the 

kth-order additive interaction HVA = VAH1L , VAA = VAH2L  …L .  Then VAHkL can be compactly 

expressed as

(13)VA HkL = ‚
U: »U» = k

bU
2  pqU,

where |U| denotes the number of elements in U and the sum is over all sets of distinct elements 

of size k, with only one permutation of each such set considered.

For diploids, we have the standard decomposition

(14)VG = VA + VD + VAA + VAD + VDD + VAAA + VAAD + …

In this case, several coefficients contribute to each variance component.  For instance, 

VA = ⁄iœZ Hbim2 + bif
2 L pqi .  If we assume that cis and trans combinations have identical 

effects and that allelic effects do not depend on parental origin, then coefficients such as 
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bim  jm , bim  j f , bi f  jm and bi f  j f  are identical.  With this simplification and our convention about 

not treating permutations of indices separately, we have, as explained in Appendix 1,

(15)

VA = 2 ‚
iœZ

bim
2  pi qi, VAA = 4 ‚

i,jœ

i<j

bim jm
2  pqij ,

VD = ‚
iœZ

bim  if
2  pqi

2, VDD = ‚
i,jœ

i<j

bim  if  jm  jf
2  pqij

2 , and

VAD = 2 ‚
i,jœ

i<j

 bim  if  jm
2  pqi

2  pqj.

The powers of two arise from pooling coefficients that are identical under the assumption that 

cis and trans combinations are equivalent (see Eq. 16 below for further explanation).

To see the general pattern, consider the variance associated with additive effects at k 

loci and dominance effects at l loci, denoted VAHkL DHlL .  This involves summing over sets  

involving k+2l distinct positions where k involve either the maternally or paternally inherited 

genes at distinct loci and the remaining 2l involve both the maternally and paternally inherited 

genes at l other loci.  Let (k,l) denote a set of positions involving only the paternally derived 

genes from k loci and both the paternally and maternally derived genes at l other loci (with all 

k+l loci distinct), and let Sa (k) and Sd (l) denote the sets of loci producing the additive and 

dominance contributions in (k,l).  The general form of the expressions in Eq. 15 is

(16)VA HkL D HlL = 2k  ‚
 Hk,lL

b  Hk,lL2  pqSa  HkL  HpqSd  HlLL2,
where the sum is over all sets of the form (k,l) described above and only one permutation of 

each such set is considered.  The leading term 2k arises because either the paternally or 

maternally derived gene could be considered at the k loci contributing additive terms to the 

interaction.  Using the natural ordering, the first (k,l) in this sum would be 81m , 2m , ..., 

km , Hk + 1Lm , Hk + 1L f , ... Hk + lL f <.   
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Changes in allele frequency

ü Changes in mean and genetic variance

We consider next how the variance components change with allele frequencies.  

Suppose the allele frequencies change to pi
* = pi + Dpi .  This produces a new set of 

coefficients, b* , given by Eq. 3, that define the relation between genotype and phenotype with 

respect to the new reference point, pi
* .  The old deviation zi = Xi - pi  can be rewritten as 

zi = zi
* + Dpi .  Taking the expectation of Eq. 2  over a population with allele frequencies 

pi
* = pi + Dpi , we see that the change in trait mean is just  

(17)D zê = ‚
Ø

b  Dp .

(To see this, note that the only non-zero terms in the expectation of Eq. 2  are those with  = « 

and  = .)  This expression applies to both haploids and diploids; in the latter case, the sets of 

positions  may include two elements from the same locus Him , i f sayL.  We next consider how 

the total genetic variance changes.  If the new population is at linkage equilibrium,  

(18)VG
* = ‚

Ø

b*2  pq* = ‚
Ø

b*2@pq - Dp Hp - qL - Dp2D .

To make further progress, we must specify the distribution of allele frequency fluctuations, Dp.

ü Effects of random drift on allele frequencies

Suppose now that the changes in allele frequency are generated by random drift, with 

net identity coefficient F  describing the expected loss of heterozygosity at each locus.  We will 

denote the expectation over the random fluctuations in allele frequency by X \ to distinguish it 

from the expectation over the genotypes within a population (denoted E[ ]).  In general, we 

have

(19)XDpi \ = 0,   XHDpiL2\ = Fpqi , and Xpi*  qi
*\  = H1 - FL pqi .

As discussed below, we will also show that our diffusion approximation implies

(20)XDp \ = 0

for all sets  in which only one index appears for any locus (i.e., expectations are non-zero 
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only if all loci included in  appear at least twice).  This implies that XD zê\ = 0 for haploids.  In 

general, the expectation of the squared trait mean is

(21)XHD zêL2\ = ⁄ Ø ⁄ Øb  b  XDp  Dp \ .

This expectation depends on moments of the multivariate allele frequency distribution 

within and among loci.  If the diffusion approximation applies, then the distribution of changes 

of allele frequencies at each locus is determined by the single parameter, F.  However, 

distributions at different loci may not be statistically independent if recombination and drift 

occur at similar rates.  This is because transient linkage disequilibria cause correlations 

between the magnitudes of changes at different loci.  For example, even if the initial and final 

populations are at linkage equilibrium, there will be a correlation between XDpi
2\ and YDp j

2] .  
Moreover, the extent of these correlations will depend on the detailed pattern of population size 

during the bottleneck, rather than on the single parameter F.  In Appendix 2, we give a general 

expression for the moments of the multilocus allele frequency distribution, assuming a constant 

rate of inbreeding (relative to recombination).  Correlations between loci are strongest when 

drift is faster than recombination, and at intermediate levels of inbreeding 

H2 Nr <è
1ÅÅÅÅ2 , F~ 1ÅÅÅÅ4  to 1ÅÅÅÅ2 L , but even then, associations between pairs of loci are weak: the ratio 

YDpi
2  Dp j

2 ]
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅXDpi

2 \ YDpj
2 ]  is never more than 1.13 (Fig. 1).  The analogous ratio can be larger for three or four 

loci (maximum 1.46, 2.13 respectively, Fig. 2), and so it is possible that associations among 

large numbers of loci could have substantial cumulative effects on higher-order variance 

components, provided that linkage is tight relative to the rate of drift.  However, in the 

following we will ignore such effects of linkage disequilibrium, and assume statistical 

independence across loci.  In particular we assume that

(22)
XHDpi L2  HDp jL2\ = F2 pqij .

We present below numerical results based on full multilocus dynamics that support this 

approximation.

‡ Haploids

ü Changes in mean

For haploids, Eq. 21 simplifies drastically.  With statistical independence across 

loci, XDpU DpV\ 0  only when U = V.  Thus, 
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(23)Var(zê ) = XHD zêL2\ = ⁄U Ø
bU
2 F»U»  pqU = ⁄k=1

n Fk  VA HkL ,

where the last step follows from Eq. 13.  Remarkably, for arbitrary epistasis, the variance in 

mean depends only on the variance components in the base population.  Unless F is large, 

higher-order epistasis makes a small contribution.  Nevertheless, nonadditive components do 

contribute: in the limit F = 1, a random genotype is fixed, and so necessarily the variance of 

population means is equal to the variance of genotypic values, VG = ⁄k=1
n VAHkL .  

As a concrete example, consider the following two-locus haploid model: 

J 1 + e 1

1 1 + e
N .  In terms of indicator variables X1 and X2 , the genotypic value of HX1, X2L  

is 1 + e@X1  X2 + H1 - X1L H1 - X2LD .  For this model, b1 = eHp2 - q2L , b2 = eHp1 - q1L , and 

b12 = 2 e .  At LE, the mean is 1 + eHp1  p2 + q1  q2L , and so the change in mean at LE is 

eHHp1 - q1L Dp2 + Hp2 - q2L Dp1 + 2 Dp1  Dp2L .  With independent changes across loci,  

XDzê2\ = e2@FHp1 - q1L2  pq2 + FHp2 - q2L2  pq1 + 4 F2  pq12D .  The first two terms equal F VA , 

and the last term equals F2  VAA .

ü Changes in variance

The expected genotypic variance is given in a similar way

(24)

XVG*\ = [ „
U «

i
k
jjjjjj ‚
VŒZîU

bUV  DpV
y
{
zzzzzz
2

 pqU
*_

= „
U «

H1 - FL»U»  pqU ‚
VŒZîU

bUV
2  XHDpVL2\

= „
U «

H1 - FL»U»  ‚
VŒZîU

F»V» bUV
2  pqUV.

This follows because XDpV  DpW \ = 0 unless V = W.  Summing over all sets UV = W, then 

partitioning the W by size, we can rewrite this as 
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(25)

XVG*\ = „
W «

 bW
2 pqW ‚

UV=W

U›V=«

U «

H1 - FL»U» F»V»

= „
k=1

n

 „
»W»=k

 bW
2  pqW ‚

UV=W

U›V=«

U «

H1 - FL»U» F»V»

= „
k=1

n

 VA HkL ‚
j=1

k

 Jk
j
N@H1 - FLj Fk-jD

= ‚
k

VA HkL H1 - FkL = VG - ‚
i=1

n

Fk  VA HkL,

where the binomial coefficient arises from the number of ways in which sets W of size k can be 

partitioned into the components U (  «) and V.  We are now expressing the new total 

genotypic variance as a sum over the original variance components.  We see that the original 

additive variance is deflated by 1 – F, but the higher-order components contribute relatively 

more of their initial values to the final expected genetic variance. (For example, 

VAH2L contributes a fraction 1 - F2 of its initial value to XVG*\ while VA contributes only 1 – F.)  

Next we consider the individual components of variance.  SplittingXVG*\  into 

components, we have for |U| = j, 

(26)XVA HjL* \ = H1 - FLj ‚
»U»=j

‚
VŒZîU

F»V»  bUV
2  pqUV.

Proceeding as in our derivation of XVG*\ , we can write 

(27)
XVA HjL* \ = H1 - FLj ‚

»W»¥j

 J » W »
j

N F»W»-j bW
2 pqW,

where the binomial coefficient counts the number of ways in which a specific set W can arise 

from different sets U and V.  Collecting the terms corresponding to specific values of |W|, we 

see that
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(28)
XVA HjL* \ = H1 - FLj ‚

k=0

n-j

 Jk + j

j
N Fk  VA Hj+kL.

It is easy to see that summing Eq. 28 over j  reproduces Eq. 25.  This expression provides some 

justification for the idea that drift "converts" higher-order epistatic variances into lower-order 

variance components.  (For instance, VAAA  contributes to both XVA*\and XVAA* \).  However, 

note that this direct relationship applies only in expectation, and only in the absence of 

dominance.

Figure 3 shows how the variance components change under drift with an extreme model 

of epistasis, for a haploid population with 5 loci.  Genotypic values were drawn randomly from 

a normal distribution with variance 1 (see Appendix 3).  Throughout, most genetic variance is 

additive (upper heavy curves); this increases slightly with drift up to a maximum at F~0.5, 

while higher-order epistatic components decline (lower curves).  The predictions from Eq. 28 

(dashed curves) agree well with the averages over 100 simulations.  This provides a check on 

our assumption that allele frequencies fluctuate independently, despite transient linkage 

disequilibria.  However, as illustrated below, individual simulations are typically well away 

from the expectation shown in Fig. 3.

For j = 1,  Eq. 28 shows that

(29)
XVA*\ = H1 - FL HVA + 2 F VAA + 3 F2 VAAA + …L.

Thus epistasis always inflates XVA* \ above the value, VAH1 - FL , expected with additivity.  

Similarly,  Eq. 28 shows that the expected value of every component of variance is inflated by 

contributions from higher-order epistatic components.  Eq. 25 shows that drift erodes 

higher-order variance components more slowly than lower-order components, and  Eq. 28 

shows that these higher-order components contribute to the expected post-bottleneck values of 

all lower-order components.  This interaction of drift and epistasis remains true with diploidy, 

but its effects are confounded by dominance, which as discussed below can either increase or 

decrease XVA* \ from the additive expectation. 

Although some effort is required to get the exact expression describing how epistasis 

inflates XVA* \, our notation provides a simple way to understand the origin of this effect.  Note 

that by definition
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XVA* \ = X⁄i=1
n Hbi*L2  Hpi*  qi

*L\

From  Eq. 3, we see that bi
* = ⁄ Œ îi bi  Dp = bi + ⁄« Œ îi bi  Dp ª bi + Dbi , where 

Dbi depends on changes in allele frequencies only at loci other than i.  Hence, our 

approximation that changes in allele frequencies at disjunct loci are independent implies that 

XDbi\ = 0 and 

XVA* \ = X⁄i=1
n  Hbi + Dbi L2  Hpi* qi

*L\

        = ⁄i=1
n bi

2  Xpi*  qi
* \ + ⁄i=1

n  X HDbi L2\ Xpi*  qi
* \

        

        > ⁄i=1
n bi

2  Xpi*  qi
* \ = H1 - FL ⁄i=1

n bi
2  pi  qi = VAH1 - FL .

        

Here we see explicitly how drift "converts" epistatic interactions into an expected increase in 

VA .  This conversion depends critically on XDbi\ = 0 and the independence of Dbi  and pi
*  qi

* .  

A similar inequality (and derivation) holds for all components of variance, the expected value 

of each is inflated by contributions from higher-order variance components.  In contrast, these 

inequalities do not hold with dominance, because XDbi \ 0 and Dbi  and pi
*  qi

*  are not 

independent.

Eq. 29 shows that VA increases on average, i.e., XVA* \ > VA , only if

(30)
VA < H1 - FL H2 VAA + 3 FVAAA + 4 F2  VA H4L + ...L.

For small F, this reduces to VA < 2 VAA.  For any F  2/3, a necessary condition for VA  to 

increase on average is that 

(31)2 HVG - VAL > VA or
VAÅÅÅÅÅÅÅ
VG

<
2
ÅÅÅÅ
3
.

Thus, although epistasis always inflates XVA* \, additive variance can actually increase on 

average only if the epistatic components constitute at least one-third of the total genetic 

variance.

From Eq. 29 and Eqs. 23 and 25 we see that there is a simple relation between the 

variance in mean and the expected new additive variance:

(32)XHD zêL2\ §
F

ÅÅÅÅÅÅÅÅÅÅÅÅ
1 - F

 XVA*\ ,
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with equality in general only if there is no epistatic variance.  However, approximate equality 

holds if epistatic components are relatively small.  For low levels of inbreeding, 

XHD zêL2\ @ F XVA
* \ , implying that the variance in the change of the mean is proportional to the 

new additive variance, averaged over realizations.  Thus, even if the initial population has no 

additive variance, the mean may still change as a result of nonadditive components.  This 

change, however, is proportional to the expected additive variance generated by drift.  Note 

that this relation is between expectations over many realizations.  The correlation between Dzê  

and VA
*  in any particular realization may be weak.  For the model discussed below in which 

diploid genotypic values are chosen at random (to produce extreme epistasis), we found that 

this correlation declines from ~0.5 for small F to near zero for strong inbreeding (results not 

shown). 

‡ Diploids

ü Changes in mean

In diploids, even when the changes across loci are independent, the expected change in 

mean may be non-zero because of dominance.  To understand these effects, it is useful to 

distinguish coefficients b in which positions corresponding to both paternally and maternally 

acting alleles at a locus appear.  For each set  that includes only distinct positions, we can 

write 

(33)= A » B,

where A and B do not overlap, A contains the indices for the loci that appear only once in , 

and B contains the loci that appear as both im and i f .  For instance, in this notation, 

b8im ,i f < ª b«»8i< .  Because XD pi \ = 0 and the fluctuations are assumed to be independent, only 

sets  in which all loci belong to B contribute nonzero terms to XD zê\ .  Assuming statistically 

independent loci, the expected change in mean is 

(34)
XD zê\ = ⁄ f b  XDp \ = ⁄V « b«»V F»V»  pqV ,

where the sum is over all nonempty sets V of distinct loci.  Note that the mean changes only 

through pure dominance components, b«»V , because only then do terms Dpi
2  appear in the 

product Dp .  The coefficient b8im ,i f < ª b«»8i<  is negative if recessive alleles tend to reduce the 

trait (see the example described in Eq. 46 below).  Similarly, b8im ,i f , jm , j f < ª b«»8i, j< is negative if 

two recessive alleles at loci i and j , or two dominant alleles, tend to reduce the trait, and so on 
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for higher-order terms.  It is the sign of these pure dominance coefficients that determines 

whether the trait will decrease as a result of drift — that is, whether there will be inbreeding 

depression.

Next, consider the variance of the trait mean, varHD zêL .  This is given by subtracting the 

square of the mean (Eq. 34) from the mean square (Eq. 21).  Because a locus i  can now appear 

up to four times in the expectation XDp  Dp \that appears in Eq. 21, we must consider third- 

and fourth-order moments.  Before treating this complication, we first consider the much 

simpler case in which there are no dominance effects.  In this case, XD zê\ = 0.  Moreover, 

because bA»B = 0 if B  «, we need consider only terms in Eq. 21 that involve at most one 

position from each locus.  Thus, we can replace the sum in Eq. 21 over positions with a sum 

over loci, but terms corresponding to sets of k loci must be multiplied by 2k to account for the 

fact that either paternally or maternally inherited alleles could have been chosen at each locus.  

Hence,  Eq. 21 becomes

(35)Var(zê ) = XHD zêL2\ = ⁄U « ⁄V «  2»U»+»V »  bU  bV  XDpU  DpV \ .

As in the haploid case, our assumption that changes are independent across loci implies 

that XDpU DpV\ = 0  if U  V, whereas XHDpUL2\ = F»U»  pqU .  Applying this simplification 

and the definition of VAHkL for diploids, we see that

(36)

Var HzêL = XHD zêL2\ = ‚
U «

H2 FL»U» 2»U»  bU
2  pqU

= ‚
k=1

n

H2 FLk  VA HkL.

This differs from the haploid case only by the appearance of 2F rather than F, and it serves as a 

simple check for the more complex calculation below with dominance.

With dominance, we need approximations for XDpi
k\up to k = 4.  From 7.4.32 and 

7.4.33 of Crow and Kimura (1970),

(37)

XDpi
2\ = F pqi,

XDpi
3\ =

F2
ÅÅÅÅÅÅÅ
2

H3 - FL pqi  Hqi - piL, and

XDpi
4\ =

F2
ÅÅÅÅÅÅÅ
5

pqi HA + B pqiL
where A = F @15 H1 - FL + 6 F2 - F3D, and
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B = 5 H3 - 16 F + 15 F2 - 6 F3 + F4L = 5 H3 - F - AL.

Because XDpi
3\and XDpi

4\  are not proportional to the pqi , XHD zêL2\  cannot be expressed solely in 

terms of variance components, which depend only on sums of terms of the form pqU (see Eq. 

16).  (The complication would also arise in the haploid case if we had not assumed statistical 

independence across loci: then, YDpi
2  Dp j

2]  would contribute complicating terms in the same 

way that XDpi
3\ and XDpi

4\ do here.)  The leading terms in the expression for the variance in trait 

mean, obtained by substituting for allele frequency moments from Eq. 37, are given in Appendix 

4. 

Assembling the pieces from Appendix 4, and writing terms that involve sums of the form 

⁄ b2  pq  as variance components, we obtain

(38)

var HD zêL = 2 FVA - F2 VD + 4 F2 VAA - F4  VDD +

+ F2ÅÅÅÅÅ5  VD  Î AÅÅÅÅÅÅpq + BÏD + 4 F3ÅÅÅÅÅÅÅÅ5  VAD  Î AÅÅÅÅÅÅpq + BÏAD

+ F4ÅÅÅÅÅÅ25  VDD  Î I AÅÅÅÅÅÅpq + BM2  ÏDD

+2 F2  H3 - FL ⁄i b8i<»« b«»8i< pqi Hqi - piL
+F2 ⁄i j H8 b8i<»« b8i<»8j< - b«»8i< b«»8j<L pqij

+2 F3 H3 - FL 

⁄i j H4 b8i,j<»« b8j<»8i< + b«»8i<  b8i<»8j< + b8i<»«  b«»8i,j<L 

Hqi - piL pqij

+F4 H3 - FL2  ⁄i j Hb8i,j<»«  b«»8i,j< + b8i<»8j<  b8j<»8i<L 

Hqi - piL Hqj - pjL pqij

+ 2 F3ÅÅÅÅÅÅÅÅ5  ⁄i j b«»8i<  b«»8i,j<  pqij  HA + HB - 5LpqiL
+ 2 F4ÅÅÅÅÅÅÅÅÅ5  H3 - FL 

⁄i j b8i<»8j<  b«»8i,j< Hqi - piL pqij HA + BpqjL + ...

where Î AÅÅÅÅÅÅpq + BÏD indicates an average across loci, weighted by contributions to the 

dominance component (e.g., ‚
i
b«»8i<

2  pqi =VD  Î 1ÅÅÅÅÅÅÅÅpq  ÏD ).  Similar definitions apply to other 

variance components, with VDD  Î I AÅÅÅÅÅÅpq + BM2 ÏDD , for instance, a shorthand for an average 

involving products of terms in which two different loci appear (see Appendix 4 for the full 

expressions).  There are two reasons why the variance in trait mean does not depend solely on 

variance components.  First, as shown by Eq. 16, variance components depend on allele 

frequencies only through products of the form pq , whereas higher moments such as Dpi
3  and 

Dpi
4 do not depend solely on pqi .   This leads to weighted averages of allele frequency, such as 
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F2ÅÅÅÅÅ5  VD  Î AÅÅÅÅÅÅpq + BÏD  above.  Second, and more seriously, Eq. 38 includes many cross-terms, 

such as b8i<»« b«»8i< , that can be interpreted as weighted covariances between different sorts 

of effects (e.g., covariances between additive effects and dominance interactions).  Such terms 

cannot be expressed in terms of variance components.  

Equation 38, like Eq. 36, shows that the additive variance components contribute to 

changes in the mean in the same way as in the haploid case, except that the contribution of 

VAHkL  is inflated by 2k .  There is also a contribution from the dominance variance, which may 

be relatively large if rare alleles are involved (i.e. if pq << 1, so that Î AÅÅÅÅÅÅpq + BÏD is large).  

However, the dominance variance itself cannot be large in that case, because it is proportional 

to the squared heterozygosity at each locus.  The complications attributable to dominance are 

elaborated below when we discuss its effects on expected changes in additive variance. 

Figure 4 shows a numerical example using the model of randomly chosen diploid 

genotypic values discussed in Appendix 3.  This model generates extreme epistasis.  We 

assume complete dominance at each locus, with homozygous phenotypes chosen randomly 

from a Gaussian with mean zero and variance one.  Allele frequencies in the base population 

were intermediate (see figure legend), which allows a relatively high proportion of nonadditive 

variance (initially, VA = 0.40 and VG = 1.16).  The variance in the change of the mean, 

averaged over 1000 replicates, is close to that predicted by Eq. 38.  Part of the discrepancy is 

due to deviations of the distribution of allele frequencies from the expected values (Eq. 37).  If 

the actual moments, calculated from the 1000 replicates, are used, the fit is closer (Fig. 4).  The 

remaining discrepancy arises from chance correlations between fluctuations at different loci.  

As shown in Appendix 2, the effects of these correlations, which are ignored in our 

approximations, are very slight, unless F is extremely large.

The first term in Eq. 38 is 2 FVA , and so dominates for small F (straight line in Fig. 4).  

For large F, however, the variance in mean is greater than predicted by this leading term, 

because of contributions from the nonadditive terms.  These contributions are shown separately 

in Fig. 5, which shows both positive and negative terms.  Table 2 shows the terms that make the 

largest contributions.  Note, however, that at least for F < 0.5, these additional contributions 

are never large, and the fluctuations of the trait mean are predicted well from VA  in the base 

population.
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ü Changes in variance

We first obtain the expected values of the total genetic variance and the individual 

additive components assuming no dominance.  This yields simple diploid analogs of our 

haploid results.  We then find the expected additive variance in the general case with 

dominance.

Using the general expression for VG ,  and substituting for the new b  from Eq. 3, we 

obtain:

(39)

XVG*\ = ‚
« Œ

YHb*L2  pq*]

= ‚
« Œ

‚
, Œ î

b  b  XDp  Dp  pq*\

= ‚
« Œ

‚
, Œ î

b  b  XDp  Dp  pq*\.

Assuming no dominance, b  b = 0 unless each set , ,  contains each locus at most 

once.  For all of the remaining sets, in which each locus appears at most once, there are 2k ways 

in which a set of k positions can be allocated to the maternal or paternal genomes.  Allowing 

for this factor, we can sum over all sets of loci, rather than all sets of positions (i.e., our 

reference now is as in the haploid case, Z = {1, 2, ... n}).  This yields

(40)
XVG*\ = ‚

« UŒZ

‚
V,WŒZîU

2»UVW»  bUV  bUW  XDpV DpW pqU
*\,

where now bUV  refers to one of the 2»UV »  sets of coefficients b involving the set of loci UV .  

Because U is disjunct from V and W, our independence assumption implies that 

XDpV DpW  pqU
*\= XDpV  DpW \XpqU

* \ .  Similarly, the expectation over allele frequency changes 

is nonzero only when V = W.  Substituting for the allele frequency moments in terms of F ,

(41)

XVG*\ = ‚
« UŒZ

‚
VŒZîU

2»UVV»  bUV
2  XHDpVL2\ XpqU*\

= ‚
« UŒZ

‚
VŒZîU

2»UV» bUV
2  pqUV H1 - FL»U» H2 FL»V».
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Following our calculation in the haploid case, we rearrange the sum to run over sets 

UV = W , partition this sum into terms ordered by |W|, and use the additive, diploid expression 

VAHkL = 2k  ⁄»U»=k bU2  pqU , to obtain

(42)

XVG*\ = „
« W

 2»W»  bW
2  pqW  ‚

UV=W

U›V=«

U «

H1 - FL»U»  H2 FL»V»

= „
k=1

n

 VA HkL ‚
j=1

k

 Jk
j
N@H1 - FLj H2 FLk-jD

= ‚
k=1

n

@H1 + FLk - H2 FLkD VA HkL.

(This agrees with the expression given in Walsh and Lynch 1998, Ch. 3.)  As in the haploid 

case, the binomial coefficient arises from the number of combinations of V and non-empty U 

that can produce a specific set W.  As expected, the contribution from the additive variance 

(k=1) is H1 - FL VA .

Next we consider the expected values for the individual components of additive 

variance without dominance.  Following the derivations above, we have 

(43)

XVA HjL* \ = H1 - FLj ‚
»U»=j

‚
VŒZîU

2»UV»  bUV
2  pqUV  H2 FL»V»

= H1 - FLj ‚
»W»¥j

 J » W »
j

N 2»W»  bW
2  pqW  H2 FL»W»-j

= H1 - FLj ‚
k=0

n-j

 Jk + j

j
N H2 FLk  VA Hj+kL.

This differs from the haploid result (Eq. 28) only in that 2F replaces F.  In particular, the 

expected additive variance is  

(44)
XVA*\ = H1 - FL ‚

k=0

n-1

Hk + 1L H2 FLk VA Hk+1L > H1 – FL VA.
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Thus, just as in the haploid case, epistatic interactions, in the absence of dominance, always 

inflate the expected additive variance after a bottleneck above that expected with purely 

additive allelic effects.  Equation 44 also shows that we expect the additive variance to increase 

on average with small F only if

(45)
4 VAA > VA.

 In Appendix 4, we derive the expected additive genetic variance after the bottleneck for 

the general case with dominance.  As found for the variance of the mean, the expected change 

in additive variance cannot be expressed in terms of variance components in the base 

population: the outcome depends on weighted variances and covariances among different kinds 

of effects.  Before discussing the general expression, we first consider dominance in the 

absence of interactions across loci: as illustrated by the simple expressions derived with "pure" 

epistasis, dominance is the source of the complications.  Suppose that the genotypic value is 

determined by additive contributions from n loci with dominance within each locus described 

as follows:

(46)

z = ‚
i=1

n

gi, with

gi  HXif , Xim L = ai Xif  Xim +

di@Xim  H1 - XifL + Xif  H1 - Xim LD - ai  H1 - Xif L H1 - Xim L,

so that homozygosity for allele 1 (0) at locus i contributes ai H-aiL  to z and the heterozygosity 

contributes di .  Thus, if diª 0 we have pure additivity.  Under Eq. 46, the only non-zero b  are

(47)
bim = bif = ai + Hqi - piL di and
bif  im ª b«»8i< = di.

In this case, the general expression in Appendix 4 reduces to 

(48)

XVA*\ = H1 - FL 
i
k
jjjjjVA + 2 FVD +

F
ÅÅÅÅ
5

 VD  HD - 10L + 2 F H2 - FL

‚
i

pqi  bim if  bim  Hqi - piL +
F
ÅÅÅÅ
5

 VD  Î 
C

ÅÅÅÅÅÅÅÅÅÅ
pqi

 ÏD
y
{
zzzzz,

where C = F H15 - 20 F + 10 F2 - 2 F3L ¥ 0  and 

D = 10 H1 - 8 F + 10 F2 - 5 F3 + F4L .  The first term is the standard additive result.  The 
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second term is a positive contribution from dominance variance; but the third term, which 

involves higher powers of F, is always negative.  The fourth and fifth terms cannot be 

expressed in terms of variance components.  The fifth term is always positive, but it is 

proportional to F2 for small F.  The fourth term can be thought of as a weighted covariance 

between the additive and dominance effects at each locus.  If the 1 alleles are rare Hpi << 1L , 
this term will be positive if these alleles tend to be recessive (i.e., bi f  im = di < 0) but negative 

if they are generally partially dominant Hdi > 0L .  Note that if the 1 alleles are all rare and F is 

small, this "covariance" term dominates the deviation from the additive prediction (because it 

depends on pi , whereas dominance variance depends on pi
2 ).  Thus, unlike pure epistasis, 

dominance can either increase or decrease the expected additive variance.  The fact that drift 

can inflate additive variance with rare recessive alleles was first noted by Robertson (1952) and 

elaborated by Willis and Orr (1993) as a possible explanation of the experimental results of 

Bryant et al. (1986).

 In Appendix 4, we show that in general

(49)

XVA*\ =

H1 - FL 
i
k
jjjjjjVA + 2 FVD +

F
ÅÅÅÅ
5

 VD  Î 
C

ÅÅÅÅÅÅÅÅÅÅ
pqi

+ HD - 10L ÏD + 4 F VAA +

2 
F2
ÅÅÅÅÅÅÅ
5

 VAD Î 
C

ÅÅÅÅÅÅÅÅÅÅ
pqi

+ DÏ AD

+ 2 F H2 - FL ‚
i

pqi bim if  bim  Hqi - piL
+ 8 F 2 H2 - FL ‚

i j

pqij  Hbim if  jm  bim jm L Hqi - piL

+ 4 F ‚
i j

pqij  Ibim jm  jf  bim +
F
ÅÅÅÅÅ
2

H2 - FL 

Hbim if jm  jf  bim + bim jm  jf  bim  if L Hqi - piL +

F
ÅÅÅÅÅÅÅ
10

 HC + D pqiL bi i j  j  bi i M + ...
y
{
zzzzzz,

where C and D are as in Eq. 48.  Thus, in diploids, because of the complications introduced by 

dominance, there is no simple relation between the expected components of genetic variance 

after drift and the variance components in the base population.  
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Figure 6 shows how the expected additive variance changes under drift, for the same 

genotypic values as in  Fig. 4.  The prediction from Eq. 49 fits with the average of 1000 replicate 

simulations.  On average, VA increases up to F~0.3, and is much greater than expected under 

additivity (straight line in Fig. 6).  However, as shown in Fig. 7, there is a great deal of variation 

among individual realizations. 

‡ Slight inbreeding

Some insight can be gained by finding how the additive genetic variance changes as 

inbreeding increases from zero.  That is, we consider F XVA* \  at F = 0.  The expressions then 

simplify drastically, because higher-order moments of allele frequency are proportional to F2  

(Eq. 37) and so can be neglected.   

For haploids, differentiating Eq. 29 gives

(50)
XVA*\ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
F

= -VA + 2 VAA.

Thus, the additive genetic variance is expected to increase with drift if 2VAA > VA .  

For diploids, the leading terms in F are all included in the terms shown in Eq. 49. 

Differentiating and setting F to zero,

(51)

XVA*\ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
F

= -VA + 2VD + 4 VAA + 2 CAD,

where CAD =

2 ‚
i

pqi  Hqi - piL bi i  bi + 2 ‚
i j

pqij  bim jm  jf  bim .

Thus, dominance variance contributes to an increase in the additive genetic variance in the 

same way that additiveµadditive epistasis does.  In contrast, there is no leading-order 

contribution from the higher-order variance components such as VAAA nor from pairwise 

components that involve dominance, such as VAD and VDD .  The last term, CAD , in Eq. 51 is 

difficult to interpret.  The first sum involves associations between dominance interactions and 

additive effects, while the second involves associations between additive-by-dominance 

interactions and additive effects.  The first sum in CAD , called sADI
2  in Walsh and Lynch's 

(1998) discussion of Cockerham and Tachida (1988) (see  Eqs. 74, 76 in Appendix 5), can be 

most easily interpreted if we think of the trait as a fitness component.  The contribution of a 

locus to inbreeding depression is bim if pqi .  For a fitness trait, we expect that inbreeding at 

the locus reduces the trait, so that bim if < 0.  Now, if bim is positive, then the '0' allele is 
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deleterious and we expect it to be rare (i.e. qi  << pi ).  Hence, Hqi - piL bi  is expected to 

be negative if the trait is under positive selection.  On this argument, we expect the first 

contribution to CAD  to be positive if the trait is a fitness component which shows inbreeding 

depression.  However, the term may still be positive even if there is no overall inbreeding 

depression.  Suppose that alleles at each locus influence fitness, and also have a random 

pleiotropic effect on the trait.  Then, we will on average see no inbreeding depression for the 

trait, but the first term in CAD will nevertheless be positive.

The rate of change of XVA* \  near F = 0 should be a good guide to whether inbreeding 

can, on average, increase the additive genetic variance.  However, it is possible that 

higher-order terms will change the gradient, so that XVA* \ > VA  for some intermediate F , even if 

F XVA* \ < 0 at F = 0.  In the haploid case, for example, Eq. 29 shows that this would be the case 

if 2VAA < VA , but VAAA  were sufficiently large.

Discussion

We have shown that for haploids, and for diploids without dominance, there is a simple 

relation between variance components in the base population and the variance of the trait mean 

and the expected values of variance components after a population bottleneck.  With no 

dominance, therefore, the idea that drift "converts" nonadditive to additive variance makes 

sense: one can identify the contribution of each initial variance component to the expected 

value of each variance component after drift (Eq. 28).  Without dominance, the expected value 

of every variance component is inflated by contributions from higher-order epistatic 

interactions (e.g., third-order interactions add to the expected value of VAA ).  However, 

dominance (even without epistasis) can reduce expected variances.  For instance, the expected 

additive variance can fall below VAH1 - FL , the value expected with purely additive allelic 

effects.  Covariances among different kinds of effects contribute and no explicit formula for the 

additive variance after drift is possible in terms of variance components in the base population 

(see Eq. 49).  Thus, it is generally misleading to think of "conversion" of nonadditive variance 

components into additive variance. 

Our results generalize Cockerham and Tachida's (1988) two-locus analysis to 

arbitrarily many loci.  Although our expressions include the terms that they identify (Appendix 

5), we find extra contributions even for small F and only two loci.  In particular, the rate of 

change of expected additive variance with F near 0 H F XVA* \L includes Cockerham and 

Tachida's expression (1988, p. 1565), but has an extra term that arises from additiveµdominance 

interactions (Eq. 51).  Our derivation is more restrictive than Cockerham and Tachida's (1988) 
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because it assumes two alleles per locus, and because it neglects linkage disequilibrium 

throughout.  We believe that our results can be extended to multiple alleles by using multilocus 

identity probabilities (defining F  as the probability that alleles at positions in the set  are 

identical by descent).  Our neglect of linkage disequilibrium is also unlikely to cause 

significant error.  Linkage disequilibrium makes no significant contribution for slight 

inbreeding, and Tachida and Cockerham (1989) showed that with two loci, identity disequilibria 

(that is, correlations of identity-by-descent across loci) have negligible effects.  We extend 

their analysis of identity disequilibria by showing that correlations between allele frequency 

fluctuations (e.g., YDpi
2  Dp j

2]) have little effect, at least up to four loci.  Correlations across loci 

become stronger with more loci, and so might contribute if both inbreeding and higher-order 

interactions are substantial: only then will moments such as YDpi
2  Dp j

2  Dpk
2  Dpl

2  …]  be 

significant.

 The contribution of dominance to the increase in additive variance for small F (Eq. 51) 

comes through two terms, 2 VD  and 2 CAD ; the latter consists of two sums.  The first sum in 

2 CAD is 4C = 4⁄i pqi  Hqi - piL bi i  bi  (Cockerham and Tachida (1988) denote C by 

di ).  We can set bounds on the contribution of 4C by assuming complete dominance, with the 

Xi = 1 allele recessive.  Then, bi = pi bi i  (Eq. 8), and we have 

4 C = 4 ⁄i pi
2 qi Hqi - piL bi i

2 .  If recessive alleles are rare Hpi  << 1L , then this is 

approximately 4 VD .  Thus, this term can contribute up to twice the direct contribution of 

dominance H2 VDL  if recessive alleles are rare.  This does not require any overall inbreeding 

depression: ⁄i pqi bi i  could be zero if the sign of bi i  fluctuates across loci.  Thus, 

even for small F, the relative contributions of dominance and epistasis to the increase in 

additive variance are difficult to predict.  They depend on the relative magnitudes of VAA and 

VD  as well as the terms in CAD that can be comparable to VD .

Experiments to date do not distinguish between dominance and epistasis as causes of 

increased additive variance after bottlenecks.  Bryant et al. (1986) have argued that because they 

observed additive variance to increase most with intermediate inbreeding, epistasis is more 

likely to have been responsible than dominance.  However, Willis and Orr (1993) point out that 

dominance is consistent with their observations, given the large sampling and evolutionary 

variances.  Moreover, our analytical results show that there is no simple relationship between F 

and the relative contributions of different variance components.  More recently, Wang et al. 

(1998) have argued that the results of mutation accumulation experiments in Drosophila 

melanogaster imply that dominance alone can account for increased additive variance in 

viability after bottlenecks. 
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 Our theoretical results show that even in the simplest case of small F ,  the expected 

change in variance cannot be predicted from the additive, dominance and epistatic variance 

components in the base population.  Moreover, higher-order variances and covariances that are 

undetectably weak could make a large contribution to the expected additive variance with 

strong inbreeding.  (This is because in diploids, the contribution of kth-order epistasis is 

multiplied by a factor 2k ; see Eq. 44.)  Empirical attempts to understand the relationship 

between F and either Var(Dzê ) or XVA* \  are inherently extremely difficult because the effects of 

drift on trait means and additive variances are highly variable (Whitlock 1995).  

Drift-induced inflation of additive genetic variance has received considerable attention, 

because it might allow populations that survive bottlenecks to adapt more readily to new 

conditions or facilitate movement to new "adaptive peaks."  However, there are several 

difficulties with these conjectures.  First, estimates of genetic variance are notoriously 

inaccurate, and the effects of drift on genetic variance are highly variable (Avery and Hill 1977, 

Bulmer 1980, Lynch 1988).  Thus, increases in additive variance can occur even if allelic effects 

are purely additive (Whitlock 1995).  Indeed, if one uses as a baseline the expected variance 

from a purely additive model, then about half the time, the observed additive variance will 

exceed this expectation.  For example, Cheverud et al. (1999) observed that after 55 replicate 

populations of mice were reduced to N = 4 individuals for four generations, the average 

additive genetic variance was essentially the same as in control populations and significantly 

larger (75%) than the reduced value expected with purely additive allelic effects.  However, 

they pointed out that there is a 3% chance that such an apparent increase would be seen even if 

the true additive variance remained constant.  Moreover, even with additivity, the underlying 

additive variance might by chance increase with drift (Whitlock 1995, Whitlock and Fowler 

1999). 

Second, if the increased variance is due to an increased frequency of rare recessive 

alleles, those alleles are likely to have been rare because they are deleterious.  If so, one would 

expect selection to eliminate the excess variance, so that there would be no long-term 

consequences.  Finally, an increased genetic variance will make little long-term difference to 

the population if selection favors a single optimal phenotype.  Heritable variation is usually 

high enough for the response to selection to be rapid; and even if additive genetic variance is 

very low, the population will eventually reach the adaptive peak.  A bottleneck will have 

long-term effects only if it takes the population into the domain of attraction of a new 

equilibrium.  Thus, we should be concerned not with the genetic variance alone, but with the 

distribution of the trait mean and variance, plus whatever other variables determine the 

dynamics of the population.  The choice may be between alternative adaptive peaks, or it may 
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be between adaptation to new conditions and extinction (Lande and Shannon 1996, Holt and 

Gomulkiewicz 1997).  In either case, the effect of a bottleneck should be judged by whether it 

leads to a new stable state, rather than whether it leads to an immediate increase in additive 

variance.  Given the many alternative ways in which populations can reach different adaptive 

peaks (reviewed in Coyne et al. 1997, 2000) — most obviously through changes in the 

environment – and the many speciation-facilitating effects that may be experienced by isolated 

populations (Turelli et al. 2001), it is unclear why so much attention has been lavished on 

drift-induced changes. 

For some evolutionists, descriptions of epistasis and its possible consequences have 

achieved almost mystical status.  Several authors seem to believe that if epistasis can be 

demonstrated to be pervasive and to contribute plausibly to increased additive variance after 

population bottlenecks, this will make theories of adaptation and speciation that have no 

significant empirical or theoretical support more credible (e.g., Cheverud 2000, Templeton 2000, 

Wade 2000).  As noted in our introduction, there is plenty of empirical and theoretical evidence 

that epistasis is pervasive.  Moreover, as we and others have shown, there are plausible 

circumstances under which epistasis can contribute to increases in additive variance after a 

population bottleneck.  However, these are necessary but far-from-sufficient  conditions for the 

shifting balance theory to be a credible explanation of adaptation or for drift-based theories, 

such as Mayr's (1963) "genetic revolutions," to be credible explanations for the origin of 

species.  Indeed, these arguments are no more convincing than claiming that pigs can fly, 

because parts of pigs (e.g., American footballs) have been seen in the air.  As we have 

repeatedly stressed (e.g., Coyne et al. 1997, 2000), there are no serious models of selection on 

polygenic traits that ignore epistasis for fitness.  One of the simplest models, namely stabilizing 

selection on an additive polygenic trait, shows all of the central characteristics that devotees of 

epistasis extol: namely, the fitness effects of alleles depend both quantitatively and 

qualitatively on the genetic background, many equilibria are possible, and both initial 

conditions and the effects of drift are frequently decisive in determining the genotypes 

prevalent near equilibria.  In general, “peak shifts” may require changes in the mean, changes 

in the variance, both or neither.  We don’t know enough about fitness landscapes or their 

temporal dynamics to say.  Hence, the enthusiasm for increases inVA seems misplaced.  There 

are several fundamental areas in evolution in which epistasis clearly plays a central role, such 

as the genetics of postzygotic isolation (Turelli and Orr 2000) and theories of the evolution of 

sexual reproduction (Peters and Lively 2000).  It is time to move beyond claims that 

theoreticians ignore epistasis and that the existence of epistasis somehow buttresses theories 

that are untenable for other reasons. 
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The methods that we have used to understand the effects of random drift on 

quantitative traits may be useful for problems of wider evolutionary significance.  We have 

used a general representation of epistasis (Barton and Turelli 1991, Kirkpatrick et al.  2002) that 

makes no assumptions about the pattern of gene interaction.  In the tradition of quantitative 

genetics, we show that, at least for small levels of inbreeding, observable quantities depend on 

just a few parameters.  (For haploids, or diploids with no dominance, the outcome depends 

solely on the variance components, while for diploids in general, the outcome also depends on 

interaction terms related to the distribution of inbreeding depression across loci.)  We believe 

that our description of epistasis will facilitate progress on other questions – for example, why 

the additive model gives an accurate description of most quantitative variation, how epistasis 

affects the maintenance of variation (cf. Hermisson et al. 2003) or how epistasis influences the 

response to selection (cf. Hansen and Wagner 2001).
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Appendix 1: Conditional expectations

As demonstrated in the text, the effect associated with the genotype carrying 0 alleles at 

positions œ 0 and 1 alleles at positions œ 1 , denoted a
0  1

, is b H-pL
o

 q
1

 with  = 

0  1 .  Because this genotype has frequency q
0

 p
1

and E[a ] = 0, we see that

(52)

Var Ha L = E@a2D = ‚
0  1=

 @b  H-pL
0
 q

1
D2 q

0
 p

1

= b2  HpqL  ‚
0  1=

p
0
 q

1
= b2  HpqL  ‰

œ

Hp + q L
= b2  HpqL

for every set .  Given this simple form and our general expression for VG , it follows that 

finding the components of variance reduces to identifying the sets  that contribute to the 

component in question.

For example, with haploids, VA is simply the sum of the variances associated with each 

individual locus, i.e.,

(53)VA = ‚
iœ

bi
2  pi qi.

Similarly, VAA is the sum of VarHa8i, j< L for all pairs of distinct elements {i,j}.  The only 

complication introduced by diploidy is recognizing that additive effects can be associated with 

either paternally or maternally inherited alleles.  This introduces factors of 2, as discussed in 

the text.

Appendix 2: Multilocus moments 

The effect of genetic drift on genotype frequencies in a population can be described by 

the  DU , defined relative to the initial allele frequencies pi .  The Di  give the change in allele 

frequency, while higher-order Ds describe the linkage disequilibria.  Assuming k diallelic loci, 

the sets U  run over all 2k - 1distinct subsets of loci, Z = {1, 2, ..., k}; for instance, they might 

be ordered {{1}, {2}, ..., {k}, {1,2}, {1,3}, ..., {k-1,k}, {1,2,3}, ..., {1,2,3,...k}}.  To produce a 

simple recursion for the moments of the multilocus associations under recombination and drift, 

define 
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(54)M@aêD ª XDêaê\, where Dê
aê ª ‰

UŒZ

DU
aU .

Here, aêê  is a vector of 2k - 1integers that gives the power to which each DU  is raised in the 

moment M , according to a natural ordering of the subsets U, such as the one specified above.  

For example, the variance in allele frequency at locus i is XDi2\ = M@aêêD  with 

aU = 2 forU = 8i< and aU = 0 forU 8i< .  Let » a » ª ⁄UŒZ aU . The rate at which 

recombination brings together a set of genes S  from one genome and T  from the other is rS»T .  

We scale recombination rates relative to the rate of random drift, using  RS»T = 2 NrS»T .  

A differential equation for the moments can be derived from the multilocus diffusion 

approximation.  The forward diffusion for the multivariate distribution of Dêêê , y@DêêêD ,  is (Ewens 

1979)

(55)
t y = „

UŒZ

ÅÅÅÅÅÅÅÅÅÅ
DU

 
i
k
jjjjj-MU y +

1
ÅÅÅÅ
2

 ‚
VŒZ

ÅÅÅÅÅÅÅÅÅÅ
DV

 HCUV yLy
{
zzzzz,

where the expected change in DU due to recombination is MU = ⁄ST=U RS»T HDS  DT - DU L,  
and the covariance between fluctuations in DU and DV  is CUV = DUV - DU  DV  (Turelli and 

Barton, 1990, Eq. A1.22).  Substituting into  Eq. 55, multiplying by Dêêê
aêê , and integrating over 

Dêêê , we obtain

(56)

t M@aêD = ‡ „
UŒZ

Dê
aê ÅÅÅÅÅÅÅÅÅÅ

DU
 
i
k
jjjjj- ‚

ST=U

RS»T HDS  DT - DUL y +

1
ÅÅÅÅ
2

 ‚
VŒZ

ÅÅÅÅÅÅÅÅÅÅ
DV

 HHDUV - DU DVL yLy
{
zzzzz d Dê.

Integrating by parts, using Da

ÅÅÅÅÅÅÅÅÅÅÅDU
= aU  D

a

ÅÅÅÅÅÅÅÅÅDU
, we obtain

(57)

t M@aêD = „
UŒZ

‡ aUÅÅÅÅÅÅÅ
DU

 Dê
aê 
i
k
jjjjj ‚
ST=U

RS»T  HDS  DT - DUL y -

1
ÅÅÅÅ
2

 ‚
VŒZ

ÅÅÅÅÅÅÅÅÅÅ
DV

 HHDUV - DU DVL yLy
{
zzzzz d Dê
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= „
UŒZ

aU ‚
ST=U

RS»T JZDêaê 
DS  DTÅÅÅÅÅÅÅÅÅÅÅÅÅ
DU

^ - M@aêDN -

1
ÅÅÅÅ
2

 „
UŒZ

‡ aUÅÅÅÅÅÅÅ
DU

 Dê
aê ‚
VŒZ

ÅÅÅÅÅÅÅÅÅÅ
DV

 HHDUV - DU  DVL yL d Dê.

Integrating by parts again to simplify the second term, we obtain

(58)

t M@aêD = „
UŒZ

aU  ‚
ST=U

RS»T JZDêaê 
DS DTÅÅÅÅÅÅÅÅÅÅÅÅÅ
DU

^ - M@aêDN +

1
ÅÅÅÅ
2

 ‚
U,VŒZ

aU HaV - dU,VL JZDêaê 
DUVÅÅÅÅÅÅÅÅÅÅÅÅÅ
DU  DV

^ - M@aêDN.

with all M  zero initially.  The expectations in Eq. 58 are moments with different indices.  The 

first expectation, for example, has aS , aT  each incremented by 1, and aU  decremented by 1, 

and could be written M@aêê + dêêS + dêêT - dêêU D  where dêêU  is a vector with dU = 1 and all other 

entries zero.  The second expectation must be simplified using the assumption of two alleles 

per locus.   

We can apply Eq. 5 of Barton and Turelli (1991), to see that if A, B and C are disjunct 

sets without repeated indices, 

(59)DABCC = XzAB  ¤iœC Hpqi - Di  ziL\ = ⁄XY=C pqX H-DLY  DABY ,

with Di = pi - qi .  For any sets U and V, we can apply this reduction with C = U›V, A = UîC, 

and B = VîC (so that U = AC and V = BC ).  Hence,

(60)

t M = „
U

aU 
i
k
jjjjj ‚
ST=U

RS»T  ZDêaê 
DS DTÅÅÅÅÅÅÅÅÅÅÅÅÅ
DU

^ - M
y
{
zzzzz +

1
ÅÅÅÅ
2

 „
U,V

aU HaV - dU,VL 
i
k
jjjjjj ‚
XY=U›V

pqX  H-DLY ZDêaê 
DABYÅÅÅÅÅÅÅÅÅÅÅÅÅ
DU DV

^ - M
y
{
zzzzzz.

We can show from this recursion that moments are non-zero only when every locus 

appears more than once.  To see this, consider the two terms in Eq. 58  due to recombination 

and drift.  The first term relates moments involving sets of multiple loci to moments with 

elements that are partitions of these sets (for example, XD8i, j,k<  D8i<\  is related to 

XD8i, j<  D8k<  D8i<\).  The second term involves contributions from associations between Ds 
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involving unions of two sets (for example, XD8i, j,k<  D8i<\  is related to XD8i,i, j,k<\).  In both cases, 

the set of loci involved remains the same (8i, i, j, k<  in these examples).  Non-zero 

contributions can arise only from disequilibria in which all indices are repeated (for example, 

D8i,i, j, j< ), and these reduce to expressions involving products of pqs.  This reduction process 

can eliminate multiple entries of loci, but cannot eliminate loci that appear only once.  Thus, 

any moment in which any locus appears just once must depend only on other moments in 

which that locus appears just once, and since all such moments are initially zero, they will 

remain zero.  

To illustrate the method, we set out the recursions required to solve for YDpi
2  Dp j

2] .  
These recursions depend on all other moments that involve the same set of loci, {i,i,j,j}: XDi j

2 \ , 

YDi j  Dpi  Dp j] , YDii  Dp j
2], XDj j  Dpi

2\, XDii j j\ .  The last three reduce down to depend on 

XDpi
2\, YDp j

2] , as well as moments such as XDii j\  which will be zero.   We thus have recursions 

for five non-zero moments:

(61)

T XDpi
2\ = pqi - XDpi

2\
T XDpj

2\ = pqj - XDpj
2\

T XDpi
2 Dpj

2\ = 4 HXDij Dpi Dpj\ - XDpi
2 Dpj

2\L - 2 XDpi
2  Dpj

2\
+XDpj

2\ pqi + XDpi
2\ pqj

T XDij  Dpi  Dpj\ = XDij2 \ - 3 XDij Dpi  Dpj\ + pqi  XDpj
2\

+pqj  XDpi
2\ + R HXDpi

2  Dpj
2\ - XDij  Dpi Dpj\L

T XDij2 \ = pqi  pqj - XDij2 \ + 2 R HXDij  Dpi  Dpj\ - XDij2 \L,

where R is the scaled recombination rate between loci i, j . 

To understand how Eqs. 61 follow from Eq. 60, consider the simplest, for T XDpi
2\ .  

This corresponds to a8i< = 2, and aU = 0 " U 8i< .  Since XDpi
2\only involves a single locus, 

the first term, representing recombination, does not contribute.  (Formally, there is only one 

partition of 8i< , with rate R«»8i< = 1; since YDêaê 
D«  D8i<ÅÅÅÅÅÅÅÅÅÅÅÅÅD8i< ] = XDêaê\ = M , this term contributes 

nothing.)  The second term represents the effect of drift. Because only U = V = 8i<  contribute, 

and a8i< = 2, the factor 1ÅÅÅÅ2  ⁄U,V aU HaV - dU,VL= 1ÅÅÅÅ2  2 µ H2 - 1L = 1 .  The sum is over all 

partitions XY  of U › V={i}.  Recall that C = U›V={i}, so that A = UîC=«, and B = VîC=«.  

Therefore, for X={i},Y=«, the sum is pq8i<  H-DL« XDêaê D«ÅÅÅÅÅÅÅÅÅÅDU  DV
\ = pqi .  For X=«, Y={i}, 

the sum is pq« H-DL8i<  XDêaê 
D8i<ÅÅÅÅÅÅÅÅÅÅDU  DV

\ = 0.   Putting all this together, we have 

T XDpi
2\ = pqi - XDpi

2\ , as in the first of Eqs. 61.
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It is simplest to solve for the Laplace Transform with respect to time, 

M
è

= Ÿ
0

¶

Me-zT  dT, in which case t M  is replaced by -z M
è

 in Eq. 60, and constant terms are 

multiplied by 1ÅÅÅÅz .   For a pair of loci, an explicit solution can be found:  

(62)

‡
0

TXDpi
2  Dpj

2\ e-zT  dT =
2 HB + 2 z H1 + zLL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
z H1 + zL H2 + zL B

pqi  pqj

‡
0

TXDpi  Dpj Dij\ e-zT  dT =

H3 B - Ri,j H13 + 3 zL H2 + zL - 2 Ri,j
2  H2 + zLL

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
z H1 + zL H2 + zL B

 pqi pqj

‡
0

TXDij2 \ e-zT dT =
HB - 2 z H6 + zL Ri,j - 2 z Ri,j

2 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

z H1 + zL B
pqi pqj

where B = H1 + zL H3 + zL H6 + zL +

Ri,j H2 + zL H13 + 3 zL + 2 Ri,j
2 H2 + zL.

As R Ø ¶, Ÿ0TXDpi
2  Dpj

2\ e-zT  dT  tends to 2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅz H1+zL H2+zL .  As R Ø 0, it tends to 
2 H9+zLÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅz H1+zL H3+zL H6+zL .  These limiting forms transform back to

(63)

XDpi
2 Dpj

2\
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅXDpi

2\ XDpj
2\ = 1 as R Ø ¶

XDpi
2 Dpj

2\
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅXDpi

2\ XDpj
2\ = 1 +

F H1 - FL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

15
H6 + 3 F + F2 L as R Ø 0,

where F = 1 - e-T .  Thus, when recombination is fast relative to drift (RØ¶), the squared 

fluctuations are independent across loci (XDpi
2  Dpj

2\=XDpi
2\ XDpj

2\).  When linkage is tight, 

we are effectively following the random drift of a single multiallelic locus, but with the 

constraint that the initial genotype frequencies are those of a population at linkage equilibrium.  

The maximum is only 1.13 at T = 0.829 (F = 0.563) (Fig. 1).  

Explicit formulae for more than two loci are cumbersome.  However, solutions can be written 

down for complete linkage: 
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XDpi
2  Dpj

2  Dpk
2\

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅXDpi
2\ XDpj

2\ XDpk
2\ =

1 +
F H1 - FL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

315
H630 + 756 F - 3738 F2 + 5892 F3 - 5763 F4 +

3977 F5 - 2002 F6 + 728 F7 - 182 F8 + 28 F9 - 2 F10 L
XDpi

2  Dpj
2 Dpk

2  Dpl
2\

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅXDpi
2\ XDpj

2\ XDpk
2\ XDpl

2\ = 1 +

F H1 - FL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
45045

 H180180 + 582582 F - 369798 F2 - 11804793 F3 +

55233607 F4 - 144969539 F5 + 274747213 F6 -

410742592 F7 + 505345868 F8 - 523438072 F9 +

462108348 F10 - 349755705 F11 + 227246175 F12 -

126455355 F13 + 59932665 F14 - 23976342 F15 +

7992270 F16 - 2179710 F17 + 473850 F18 -

78975 F19 + 9477 F20 - 729 F21 + 27 F22L.

Associations among squared fluctuations increase substantially as more loci are involved (Fig. 

2).

 Mathematica code for automatic generation and solution of recursions such as these is 

available from http://helios.bto.ed.ac.uk/evolgen/

Appendix 3: Random genotypic values

ü Haploids

We have very little idea as to plausible values for the coefficients b .  At one extreme, 

we could assume complete additivity, and set all nonlinear terms to zero.  At the other extreme, 

we can assign random trait values independently to each genotype.  When genotypic values are 

chosen independently, we expect all levels of epistasis.  To produce a normal distribution of 

phenotypes, we assume a normal distribution of genotypic values.  In a subsequent paper, we 

will analyze the resulting distribution of the coefficients b  and present analytical results that 

illuminate the simulations presented by Naciri-Graven and Goudet (2003).  Here we use this 

model simply to illustrate some general properties of components of genetic variance and the 

consequences of bottlenecks.  
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ü Diploids

A model of gene interaction in diploids must satisfy the condition that cis and trans 

combinations give the same trait values.  One way to ensure this is to assume that the i th locus 

has an effect Yi  which takes values - pi + pi  qiH2 di - 1L , 
- 1ÅÅÅÅ2  HHpi - qiL + H2 di - 1L H1 - 2 pi  qiLL, qi + pi  qiH2 di - 1L  for the three genotypes 

8Xim
, Xif

< = 80, 0<, 80, 1<, 81, 1< .  This choice of scaling gives pure additivity with di = 1ÅÅÅÅ2 . 

With di = 0, the 0 allele  is recessive; and with di = 1, the 1 allele is recessive.  The 

relationship is scaled such that E@YiD = 0 so that the difference between homozygotes is 1 for 

all di . Note that this model is restrictive, in that the additive and dominance effects of each 

locus must participate in interactions with other loci in the same way (i.e., via a single 

dominance coefficient di ).  

We assign values to diploid genotypes by drawing the homozygous values at 

random,from a Gaussian distribution with mean zero and variance sz
2 .   To find an expression 

for the cU  in terms of these randomly drawn homozygous values, we construct a hypothetical 

population which contains only homozygotes.  Genotype frequencies are at linkage 

equilibrium, and allele frequency at locus i  is set to Pi = piH1 - H2 di - 1L qiL .  This choice 

ensures that E
è @YiD = 0, where E

è @D  denotes an expectation over the hypothetical population of 

homozygotes.  The coefficient cU is the regression of the trait on the product YU .

Appendix 4: Changes in trait mean and genetic variance in diploids

ü Variance of the trait mean

After a bottleneck, the average of the squared change of the trait mean is 

XHD zê2L\ =⁄ Ø ⁄ Ø
b  b  XDp  Dp \  (Eq. 21).  However, the sum is now over all sets of 

diploid positions , ; and these may contain one or two contributions from each locus (e.g.,  

= 8im , i f , jm< .  We seek sets ,  for whichXDp  Dp \  is non-zero, making the 

approximation of statistical independence across loci, and assuming XDpi\ = 0.  To simplify the 

accounting, let b = bA»B , where A is the set of loci for which only one of im or i f appears and 

B is the set of loci for which both  im and i f appear.  Enumerating terms of successively higher 

order in Eq. 21, and invoking the assumption that there is no difference between cis and trans:
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(65)

XHD zêL2\ =  4 ⁄i b8i<»«
2  XDpi

2\
+4 ⁄i b8i<»« b«»8i< XDpi

3\ + ⁄i b«»8i<2  XDpi
4\

+8 ⁄i j Hb8i<»« b8i<»8j< + b8i,j<»«
2 L XDpi

2\ XDpj
2\

+4 ⁄i j H4 b8i,j<»« b8j<»8i< + b«»8i< b8i<»8j<
+ b8i<»«  b«»8i,j<L XDpi

3\ XDpj
2\

+4 ⁄i j Hb8i,j<»«  b«»8i,j< + b8i<»8j<  b8j<»8i<L
XDpi

3\ XDpj
3\

+2 ⁄i j H2 b8j<»8i<2 + b«»8i<  b«»8i,j<L XDpi
4\ XDpj

2\
+4 ⁄i j b8j<»8i<  b«»8i,j<  XDpi

4\ XDpj
3\

+⁄i j b«»8i,j<2  XDpi
4\ XDpj

4\
…

All terms involving one or two loci are shown.  The factors of 2k  are tricky to work out.  One 

must count all equivalent coefficients (e.g. bim  jm
, bim  j f , bi f  jm , bi f  j f  etc.) and also count 

asymmetric sums such as  ⁄i bim  bim,if  twice, because we could have = 8im< , = 8im , i f <  
or the converse.  Also, when the terms being summed are symmetrical in i and j, the double 

sum over i  j effectively introduces a factor of 2.  (Here, for compactness, we allow both 

b8i,j<»«  and b8j,i<»«  to appear in the double sum and assign them the same value.  This can 

cause some confusion in the accounting, because now, for instance, VAA = 2 ‚
i j

b8i, j<»«
2  pqij , 

instead of the expression given in (15).)  As a check on our bookkeeping, all 462 distinct 

components for five loci were generated symbolically, in terms of arbitrary Dpi ; these summed  

correctly to the total squared change in mean for a particular choice of Dpi .  

Substituting for the moments of allele frequency from Eq. 37,
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(66)

XHD zêL2\ = 4 F ⁄i b8i<»«
2  pqi

+2 F2  H3 - FL ⁄i b8i<»« b«»8i< pqi Hqi - piL
+ F2ÅÅÅÅÅ5  ⁄i b«»8i<2  pqi HA + B pqiL
+8 F2  ⁄i j Hb8i<»« b8i<»8j< + b8i,j<»«

2 L pqij

+2 F3 H3 - FL 

⁄i j H4 b8i,j<»« b8j<»8i< + b«»8i<  b8i<»8j< + b8i<»«  b«»8i,j<L 

Hqi - piL pqij

+F4 H3 - FL2  ⁄i j Hb8i,j<»«  b«»8i,j< + b8i<»8j<  b8j<»8i<L 

Hqi - piL Hqj - pjL pqij
+2 F3ÅÅÅÅÅÅÅÅÅÅ5 ⁄i j H2 b8i<»8j<2 + b«»8i<  b«»8i,j<L pqij  HA + BpqiL

+ 2 F4ÅÅÅÅÅÅÅÅÅ5  H3 - FL ⁄i j b8j<»8i<  b«»8i,j< Hqj - pjL pqij HA + BpqiL
+ F4ÅÅÅÅÅÅ25  ⁄i j b«»8i,j<2  pqij HA + BpqiL HA + BpqjL
…

where A = FH15 H1 - FL + 6 F2 - F3L , B = 5H3 - 16 F + 15 F2 - 6 F3 + F4L .  Some, but 

not all, terms in this expression can be written in terms of the variance components (Eq. 38).

Finally, we set VarHD zêL = XHzêL2\ - Xzê\2 , where Xzê\ is given by (34).  Keeping only the 

terms involving one or two loci, we have

(67)

XD zê\ = F ‚
i

b«»8i<  pqi + F2  ‚
i j

b«»8i, j<  pqij + ..., so that

XD zê\2 = F2  ‚
i

b«»8i<
2  pqi

2 + F2  ‚
i j

b«»8i<  b«»8 j<  pqij +

2 F3  ‚
i j

b«»8i<  b«»8i, j<  pqi  pqij + F4  ‚
i j

b«»8i<
2  pqi

2 + ...

Note that the first term in XD zê\2 is F2  VD and the fourth term is F4  VDD .  Subtracting (81) from 

(80) and identifying variance components, we obtain (38).

ü Change in additive genetic variance

Our expressions for the additive variance (15) and for the effects of allele frequencies 

changes on the b (3) imply that the expected additive genetic variance after a bottleneck is

(68)XVA*\ = ‚ ‚
, Œ î

b  b  Xpqi* Dp  Dp \.
The sets ,  can each contain at most one copy of the locus i. (For example, if  = im , each of 

the sets ,  can contain i f ).  This can be rearranged by choosing arbitrarily the case = im , 
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and noting that the complementary case = i f  will give the same contribution.  We also 

separate out the cases where the sets ,  do not contain the locus i , where one or the other 

does, and finally where both do and substitute pqi
* = Hpqi + Hqi - piL Dpi - Dpi

2L  to 

obtain

(69)

XVA*\ = 2‚
i

‚
, Œ î8im,if<

Hb8im<  b8im<  XHpqi - Dpi
2L\ +

Hb8im<  b8im,if< + b8im,if<  b8im< L 

XHqi - piL Dpi
2 - Dpi

3\ +

b8im,if<  b8im,if<  Xpqi  Dpi
2 + Hqi - piL Dpi

3 - Dpi
4\L 

XDp  Dp \

= 2 H1 - FL „
i

pqi  ‚
, Œ î8im  if<

XDp  Dp \

Ibim  bim +

Hbim if   bim + bim  bim  if L 
F
ÅÅÅÅÅ
2

H2 - FL Hqi - piL +

bim if   bim  if   
F

ÅÅÅÅÅÅÅ
10

 HC + D pqiLM,

where C = F H15 - 20 F + 10 F2 - 2 F3Land D = 10 H1 - 8 F + 10 F2 - 5 F3 + F4L .  

This expression is still complicated, because there can be contributions whenever the sets ,  

contain loci that appear two, three or four times.  Just as for the variance in trait mean, there 

will be terms that do not depend solely on the variance components.

The first few terms, corresponding to the lowest powers of F, contributed by { , 

}={«,«}, 88 jm<, 8 jm<<, 88 jm , j f <, «<  are:

(70)

XVA*\ =

2 H1 - FL ‚
i

pqi  Ibim2 + bim if  bim  F H2 - FL Hqi - piL +

bim if
2  

F
ÅÅÅÅÅÅÅ
10

 HC + D pqiLM
+8 H1 - FL F ‚

i j

pqij  Ibim  jm
2 +

bim if  jm  bim jm  F H2 - FL Hqi - piL +

bim if  jm
2  

F
ÅÅÅÅÅÅÅ
10

 HC + D pqiLM
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+4 H1 - FL F‚
i

pqij  Ibim jm  jf  bim +

Hbim if jm  jf  bim + bim jm  jf  bim  if L
F
ÅÅÅÅÅ
2

H2 - FL Hqi - piL +

bim if jm  jf  bim if  
F

ÅÅÅÅÅÅÅ
10

 HC + D pqiLM + …

Identifying those terms that can be expressed as variance components leads to Eq. 48.

Appendix 5: Relation with two-locus analyses

Walsh and Lynch (1998, Ch. 3, Table 2) summarize Cockerham and Tachida's (1988) 

results for two loci.  The expected additive genetic variance is:

(71)

XVA*\ = H1 - fL sA
2 + 2 Hf - g - 2 HD - dLL sD

2 +

2 Hf - gL sADI
2 + 2 Hg - dL sDI

2 +

2 Hg - DL i* + 2 Hgê - D
êL Hi2 - i*L

+H4 f - f
ê

- 2 gê - D
êL sAA

2 ,

where f  is equivalent to our F , and g, D and d are identity coefficients among three and four 

genes at a single locus.  Coefficients with an overbar involve two loci; assuming linkage 

equilibrium throughout, these all reduce to F2 .  Walsh and Lynch (1998, Ch. 3, Eq. 2.3) gives 

the single-locus coefficients as functions of time.  Rewriting these in terms of F, and neglecting 

terms of order 1 êNe2  or smaller, we have:

(72)
g =

F2
ÅÅÅÅÅÅÅ
2

 H3 - FL D =
2 g + d
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

3
d =

F2
ÅÅÅÅÅÅÅ
5

 A

where A = F H15 - 15 F + 6 F2 - F3L.

Equation 71 includes only additive, dominance and additiveµadditive effects - in our notation, 

only coefficients of the form bi , bi  i , bi  j .  Thus, it does not include contributions from 

VDD  or VAD  that would enter even with just two loci.  The coefficients sA
2 , sD

2 , sAA
2  are the 

usual variance components, which we write as VA , VD , VAA ; for two alleles per locus, 

i* = VD .  We relate the remaining quantities to our notation below.

Substituting i* = sD
2 , gêê = f

êê
= D

êêê
= F2  in Eq. 71, 
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(73)
XVA*\ = H1 - FL sA

2 + 2 HF - 3 D + 2 dL sD
2 +

2 HF - gL sADI
2 + 2 Hg - dL sDI

2 + 4 F H1 - FL sAA
2 .

Substituting for the identity coefficients from Eq. 72 into Eq. 71,

(74)

XVA*\ =

H1 - FL sA
2 +

2
ÅÅÅÅ
5

 F H1 - FL H5 - 10 F + 10 F2 - 5 F3 + F4L sD
2 +

F H1 - FL H2 - FL sADI
2 +

F2
ÅÅÅÅÅÅÅ
5

 H1 - FL H15 - 20 F + 10 F2 - 2 F3L sDI
2 + 4 F H1 - FL sAA

2 .

We must now relate the quantities sD
2 , sADI

2 , sDI
2  as defined by Walsh and Lynch (1998) to 

our notation.  Walsh and Lynch (1998) define these in terms of additive deviations of the jth 

allele at the ith locus, ai j , and dominance deviations di jk between alleles j and k at the ith locus.  

The three quantities are, respectively, the variance of dominance deviation, sD
2 ; the covariance 

between additive and homozygous dominance deviations, sADI
2 ; and the variance of 

homozygous dominance deviations, sDI
2 :

(75)

sD
2 = ‚

i

‚
j,k

pij  pik  d2ijk,

sADI
2 = 2 ‚

j

pij  aij  dijj, and

sDI
2 = „

i

i
k
jjjjjj
i
k
jjjjjj‚

j

pij  dijj
2

y
{
zzzzzz - ii

2
y
{
zzzzzz, where ii = ‚

j

pij  dijj

and pi j  is the frequency of the jth allele at the ith locus.  The expressions printed in Walsh and 

Lynch (1998, Ch. 3, Table 2) are incorrect in two ways.   First, there is a factor of  2 in the 

expression for VADI , because additive effects of each of the two copies of the allele contribute, 

but there is no such factor of 2 in the expressions for sD
2  and sDI

2 , since there is only one 

dominance deviation per locus.  Second, the sum is over all pairs of alleles j, k  in the 

expression for sD
2 , not just over distinct alleles.  The definitions above agree with those given 

by Cockerham (1984, Table 9.1).

In our notation, ai j = bim
 zim  j and dijk = bim  i f

 zim j  zi f k , where zim j  is the effect of allele 

j.  We assume that genes have the same effects across the sexes, so that we can write 

ai j = bi»«  zim  j , dijk = b«»i  zim j  zi f k .  The two alleles are at frequencies qi , pi  for Xj = 0, 1  
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respectively, and the effects are zim  j = zi f  j = -pi , +qj  for Xj = 0, 1  respectively.  

Substituting for pi j , ai j , di jk  we have

(76)

sD
2 = ‚

i

b«»i2  pqi
2,

sADI
2 = 2 ‚

j

bi»« b«»i  pqi  Hqi - piL, and

sDI
2 = ‚

i

b«»i2  pqi - 4 sD
2.

Substituting these expressions into Eq. 74 gives a formula corresponding to Eq. 76, though 

without terms arising from associations amongst more than two genes Hbim  jm  i f etc.L .

Tables
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‡ Table 1.  Summary of notation

Table 1

Symbol Meaning

Loci, contexts, and positions

i, j
U = 8i, j…<

loci
a set of loci

= im a gene at locus i that was inherited from the male parent
Hdouble - struck font indicates positions such as thisL

= 8 , , …< a set of positions

î the set with the elements of the set removed; only defined
when is a subset of

Summations

⁄ œ a sum over all positions in the set

⁄ Œ a sum over all subsets of the set , including the set
itself and the empty set«

Allele frequencies and associations
X indicator variable that labels the allelic state of position
p reference value for position
z = X - p deviation of an individual at position from the reference value
p = E@X D frequency of allele X = 1 at position

pq p  H1 - p L
pq = ¤ œ  pq product of allele frequencies over the set of positions

z = ¤ œ z product of deviations over the set of positions

D = E@z D association between the set of positions

Phenotypes

z
zê

value of a phenotypic trait
trait mean
set of all positions influencing trait Z

b contribution of the set of positions to the phenotype z

Varianceêêêêêêêêêêêêê componentsêêêêêêêêêêêêêêêêê
VG total genotypic variance
VA additive genetic variance
VD dominance variance
VAADDD = VA H2L D H3L higher - order components

Expectationsêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêê
E@g HXim  Xjf LD expectation over genotype frequencies

XDpi
2 \ expectation of Dpi

2 over effects of random drift

VD  Î AÅÅÅÅÅÅÅpq + BÏ
D

average of Î AÅÅÅÅÅÅÅpq + BÏ, weighted by dominance variance
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‡  Table 2. Components of the expected variance in mean that contribute more than 5% at 
F=0.5, under the random genotype model.

Table 2

Component < D zê2 >

at F = 0.5
< D zê2 >

4 ⁄i b8i<»«
2  XDpi

2\ 0.399 0.799 F

16 ⁄i j b8i,j<»«
2  XDpi

2\ XDpj
2\ 0.147 0.587 F2

64 ⁄i j k b8i,j,k<»«
2  XDpi

2\ XDpj
2\ XDpk

2\ 0.115 0.917 F3

8 ⁄i j
b8i<»«  b8i<»8j<  XDpi

2\ XDpj
2\ 0.087 0.437 F2 - 0.197 F3 +

0.052 F4 - 0.021 F5 + 0.003 F6

32 ⁄i j k
b8i,j<»«  b8i,j<»8k<  XDpi

2\ XDpj
2\ XDpk

2\ -0.072 -0.578 F3

4 ⁄i j
b8i<»8j<2  XDpi

2\ XDpj
4\ 0.065 0.717 F3 - 0.497 F4 +

0.259 F5 - 0.103 F6 + 0.017 F7

‚
i
b«»8i<2  IXDpi

4\ - XDpi
2\2M 0.051 0.291 F2 - 0.197 F3 +

0.052 F4 - 0.021 F5 + 0.003 F6
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Figure legends

Figure 1.  The covariance between squared fluctuations at two loci, 
XDpi

2  Dpj
2\

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅXDpi
2\ XDpj

2\ , plotted against 

F, for R = 2 Nr = 0, 0.5, 1, 2, 4 (top to bottom).

Figure 2.  The ratio X¤Dpi
2\

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ¤XDpi
2\  for 2, 3, 4 loci (bottom to top), plotted against F, for complete 

linkage.

Figure 3.  Changes in variance components with degree of drift for a haploid population. 

Genotypic values were assigned randomly with sz
2 = 1; there are five unlinked loci, with initial 

allele frequencies 0.1, 0.3, 0.45, 0.6, 0.7.  Dashed lines show theoretical expectations from Eq. 

28 (VGHkL  with k = 1 to 5 from top to bottom at right). The additive variance Hk = 1L  is shown by 

the thicker lines.  Solid curves show the average over 100 simulations, iterating genotype 

frequencies for a population of 50 haploid individuals for 200 generations.

Figure 4. Variance in zê , plotted against F. The dots show the average over 1000 replicate diploid 

populations of size 2 N = 50, iterated for 200 generations and held at linkage equilibrium 

throughout.  The smooth curve shows the prediction from Eq. 38 (a sum over 462 terms).  The 

dashed curve shows the prediction based on the actual moments of allele frequency, but 

assuming statistical independence across loci; these are barely distinguishable.  The lower 

straight line shows the prediction 2 FVA based on additive variance alone; this is the leading 

contribution for small F .   The trait is determined by five loci with complete dominance; 

homozygous phenotypes are chosen independently from a standard normal distribution.  Initial 

frequencies of the recessive allele were {0.1, 0.3, 0.45, 0.6, 0.7}.

Figure 5. The contributions of the separate terms in Eq. 38 to the expected variance in trait mean, 

plotted against inbreeding, F .  The same genotypic values are used as in the diploid five-locus 

example of Fig. 4.  The upper straight line shows the leading term, 2 FVA .  Components that 

contribute more than 7% at F = 0.5 are shown by thicker lines, and are tabulated in Table 2.

Figure 6.  Dots show the expected additive genetic variance, averaged across 1000 replicates; 

parameters as for Fig. 4.  This fits closely with the expected relation, from Eq. 48.  Deviations 

are not statistically significant.  The straight line shows the contribution from the additive 

genetic variance in the base population, VAH1 - FL . 

Figure 7.  The average change in additive genetic variance across 1000 replicates, shown with 

10 individual sample paths.  Parameters are as in Fig. 4.
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2\
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Figure 2
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Figure 3

0.5 1
F

0.2

0.4

VG HkL

60



Figure 4
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Figure 5
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Figure 6
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Figure 7
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