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Protein structure and AA polymorphisms

Central dogma:

DNA → RNA → protein

Triplets of bases (codons) in coding regions of the DNA

... GTG CAC CTG ACT CCT GAG GAG ...

are translated to a sequence of amino acids in a protein

... Val His Leu Thr Pro Glu Glu ...

which folds spontaneously to a three-dimensional structure.
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Protein structure and AA polymorphisms

There are 20 different possible amino acids (AA) that vary in their
physico-chemical properties.

DNA variants that change amino acid sequence (nsSNP) may
change protein structure and hence function

Example: sickle cell anæmia:

GAG (GLu) → GTG (Val) mutation in β-globin

introduces an hydrophobic patch on the surface of the
molecule

major changes to its properties.

Any nsSNP which disrupts structure is a strong candidate in
disease/pharmacogenetic studies
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Objective

Identify nsSNPs likely to disrupt function in a novel protein, based
on training data where the functionality of nsSNPs is known.

Explanatory variables:

structural data: hydrophobicity, relative B factor, surface
accessibility of native amino acid.

sequence-based data: conservation of native amino acid in
table of multiple sequence alignment.
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Objective

Lots of recent interest in this (Gunther et al, 2003; Stitziel et al,
2003; Wang and Moult, 2001; Terp et al, 2002; del Sol Mesa et al,
2003; Ng and Henikoff, 2002; Chasman and Adams, 2001;
Sunyaev et al, 2000,2001; Saunders and Baker, 2002)

None of these use statistical models: we will build a probabilistic
model for protein function.
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Data

Data from site-directed mutagenesis experiments on proteins with
known 3D structures, specifically Lac repressor (Markiewicz et al,
1994) and Lysozyme (Rennell et al 1991) proteins.

the native, wild-type, amino acids are replaced, one at a time,
by non-native amino acids.

Effect on protein functionality recorded.

For our data:

Roughly 12 substitutions per site

Outcome is binary indicator of functionality

We will train on the Lac repressor and validate on Lysozyme (and
vice-versa).
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Lac Repressor

Lac repressor controls the synthesis of various enzymes.

In the absence of lactose it binds to the DNA double helix
upstream of the genes that code for enzymes necessary for E.

coli to use lactose as a source of energy, preventing their
synthesis.

Amino acids at 264 sites (out of 360) mutated to give total of
3245 observations.

Lysozyme molecule from T4 phage:

synthesised from the phage DNA once it has infected a
bacterium and digested the bacteria cell wall, allowing
replicated copies of the phage to escape.

Amino acids at 143 sites (out of 162) mutated to give a total of
1632 observations.
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Predictive features used
Feature Description

Accessibility Solvent accessible area of native AA

Relative accessibility Accessibility relative to maximum accessibility in

training set

Relative phylogenetic entropy Normalised phylogenetic entropy of native AA

Neighbourhood rel. Phylogenetic entropy of structural neighbourhood of

phylogenetic entropy native AA

Relative B-factor Normalised B-factor of native AA

Neighbourhood relative Normalised B-factor of structural neighbourhood of

B-factor native AA

Unusual AA Mutant AA is not in phylogenetic profile

Buried charge Mutant is charged AA at buried site

Turn breaking Mutant AA occurs at glycine or proline in a turn

Helix breaking Mutant AA occurs in helical region and involves

glycine or proline

Conserved Native AA is at conserved position in phylogenetic

profile
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Methods

Prediction problem; lots of ’standard’ classification tools could be
tried.

Logistic regression

Classification trees

Support vector machines
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Multivariate Adaptive Regression Splines

Extension of logistic regression, with logit(p) = η where

η = β0 +
K
∑

k=1

βkBk(x)

with basis functions Bk(x) defined as

Bk(x) =

Jk
∏

j=1

[

skj(xwkj
− tkj)

]

+
k = 1, . . . , K
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Multivariate Adaptive Regression Splines

Extension of logistic regression, with logit(p) = η where

The linear predictor of a MARS model is

η = β0 +
K
∑

k=1

βkBk(x)

with basis functions Bk(x) defined as

Bk(x) =
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Multivariate Adaptive Regression Splines

Extension of logistic regression, with logit(p) = η where

η = β0 +
K
∑

k=1

βkBk(x)

with basis functions Bk(x) defined as

Bk(x) =

Jk
∏

j=1

[skj(xwkj
− tkj)]+ k = 1, . . . , K

where Jk is the degree of interaction, [·]+ = max[0, ·]+, skj ∈ {±1}, wkj

indexes the predictor included and tkj are knot points.
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Multivariate Adaptive Regression Splines
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Methods

However, note we have multiple observations on each site:
therefore clustered data.

Need a method that allows for this.

We extend the Bayesian Multivariate Adaptive Regression Spline
model (Holmes and Denison, 2003) to clustered training data.

Accounts for clustering in the data

Deals with potentially nonlinear effects of predictors

Uses Bayesian model averaging to make predictions

Fitted via MCMC
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Hierarchical BMARS

For amino acid site i and mutation m assume

p(yim = 1|β,xim, bi) = Φ

(

β0 +

K
∑

k=1

βkBk(xim) + bi

)

= Φ(ηim+bi)

with bi ∼ N(0, σ2).

Probit link for technical reasons—allows us to work out full
conditionals for regression parameters and hence we can use
gibbs sampling to update these

Reversible jump MCMC to add, delete or modify a basis function
at each iteration.
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Application to mutagenesis data

Fitted values given by

ŷnew = I

[

1

N

N
∑

t=1

Φ(B(t)(xnew)β(t)) > α

]

.

Predictive performance assessed by calculating area under ROC
curves, where ROC curves plot sensitivity versus specificity as α

varies in [0, 1].

sensitivity: proportion of mutations affecting function correctly
classified

specificity: proportion of mutations not affecting function
correctly classified
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Application to mutagenesis data

Train on Lac repressor/ Test on Lysozyme

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

— H-BMARS (0.82) - - BMARS (0.79) · · ·MARS (0.78)
- · - SVM (0.76) – – Tree (0.77)

Cardiff 11/06/04 – p.16/26



< > - +

Application to mutagenesis data

Train on Lysozyme/ Test on Lac repressor

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

— H-BMARS (0.83) - - BMARS (0.80) · · ·MARS (0.79)
- · - SVM (0.73) – – Tree (0.75)

Cardiff 11/06/04 – p.17/26



< > - +

Application to mutagenesis data: SVM caveat

SVM used the radial kernel.

Need to tune this to control the smoothness of the decision
boundary: 5 fold CV used.

CV misclassification surface is rather flat: taking minimum gives
poor performance on test data

Current analysis uses the smoothest decision boundary leading to
acceptable CV misclassification rate

Cardiff 11/06/04 – p.18/26



< > - +

Application to mutagenesis data: SVM caveat

SVM used the radial kernel.

Need to tune this to control the smoothness of the decision
boundary: 5 fold CV used.

CV misclassification surface is rather flat: taking minimum gives
poor performance on test data

Current analysis uses the smoothest decision boundary leading to
acceptable CV misclassification rate

Cardiff 11/06/04 – p.18/26



< > - +

Application to mutagenesis data: SVM caveat

SVM used the radial kernel.

Need to tune this to control the smoothness of the decision
boundary: 5 fold CV used.

CV misclassification surface is rather flat: taking minimum gives
poor performance on test data

Current analysis uses the smoothest decision boundary leading to
acceptable CV misclassification rate

Cardiff 11/06/04 – p.18/26



< > - +

Application to mutagenesis data: SVM caveat

SVM used the radial kernel.

Need to tune this to control the smoothness of the decision
boundary: 5 fold CV used.

CV misclassification surface is rather flat: taking minimum gives
poor performance on test data

Current analysis uses the smoothest decision boundary leading to
acceptable CV misclassification rate

Cardiff 11/06/04 – p.18/26



< > - +

Application to mutagenesis data
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Application to mutagenesis data
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Application to mutagenesis data
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Application to mutagenesis data

The posterior main effect of generic predictor p may be quantified as

Ê[Φp(x)] =
1

L

L
∑

l=1

∑

k:Jk=1
w1k=p

β
(l)
k B

(l)
k (x)

from a posterior sample of size L.
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Application to mutagenesis data
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Application to mutagenesis data
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Summary

Hierarchical BMARS achieves better out-of-sample specificity and
sensitivity than competing methods here.

Heterogeneous misclassification rates of less than 20% compared
to 27 − 35% reported by other authors using the same data.

Acknowledging clustered nature of data leads to enhanced
interpretability and improved mixing.

Allowing higher degree of interaction gave very similar results

Solvent accessibility and molecular rigidity (B-factor) are good
predictors of functionality.

Code available as R package.
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Discussion

Improved performance more likely to come from improved model
inputs than more sophisticated modelling

In particular, need more mutant AA-specific covariates (as
opposed to cluster-specific)

Lysozyme very different to Lac repressor: consider prediction
in specific protein families?

How useful is this?

Predictions will be weak in general

But functional biology is hard and expensive

Will nsSNPs disrupting function be interesting for genetic
epidemiology/pharmacogenetics?
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