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Introduction

Species is the basic unit for taxonomy, ecology
and conservation biology. Traditionally, we can
distinguish two species as genetically distinct
organisms, whose offspring would be inviable.

Speciation is the process by which a species
splits into two.
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In recent years there has been an increased
interest in studies of speciation.

However, there is not a general framework under
which we can identify the genetical mechanisms
which leads towards reproductive isolation.

Most of the recent literature is based on
simulations. Although a great deal of progress
has been made, this kind of studies have not
helped to a general understanding.
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It seems clear that to understand speciation, we
need to disentangle the genetic mechanisms
leading to divergence between species.

For speciation to occur, the species must have
already some degree of reduced gene flow, so
that they can evolve different combinations of
genes. Furthermore, some ecological or
geographical isolation is required, such that
these different combinations can coexist.
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Allopatric speciation occurs when a population is
separated by a geographical barrier into two
subpopulations. Lack of gene flow due to
geographic isolation together with different
selective forces leads to two different species.

Sympatric speciation occurs within the range of
dispersal of the species (ie, without geographic
isolation). Disruptive selection leads to reduced
gene flow by reproductive isolation.
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Assortment

By assortment, we mean assortative mating
generated by an ecological constraint, such as
body size, host choice or flowering time in plants.

This mechanism generates frequency-dependent
selection.

Specifically, we think of individuals mating
according to their similarity in a trait z, such that
the mating probability is proportional to |z − z′|
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Modifiers of weak effect

A modifier is a locus which is not under direct
selection. Its effect is to alter the associations or
selection in the other loci in which we are
interested.

The importance of a modifier of weak effect is
that it will generate simple linear equations, and
thus we can decompose and study separately
the different effects that the modifier may have.

It has proved of extreme use in describing the
evolution of recombination.
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Multilocus formalism

Barton and Turelli (1991), and later on Kirkpatrick
et al (2002), developed a framework which allows
a complete study of multilocus systems.

It provides exact solutions for all the relevant
variables via recursion equations, in a population
described by multiple alleles and multiple loci.

Relevant variables: frequencies of each allele
and associations between loci.
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Following Kirkpatrick et al (2002), fitness can be
defined as

w

w̄
= 1 +

∑

U,V

aU,V (ζUζ∗V − DUDV ), (1)

where aU,V is the selection coefficient acting on
the set of loci U on females and the set of loci V

on males.
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The ζ ’s are such that ζj = Xj − pj is the deviation
from a reference value pj, and ζU =

∏
j∈U ζj, and

ζ∗V =
∏

j∈V ζ∗j .

DU is the association between the set of loci U ,
defined as DU = E [ζU ].
Note D∅ = 1.

The natural reference value pj is the frequency of
the allele j in the population pj, and that is the
one we will use in this work.
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Selection and recombination

The effect of selection on the association DA is

D′
A = DA +

∑

U⊆W

aU (DAU − DADU), (2)

and after transmission

D′′
A =

∑

S+T=A

r̃S,TD′
S,T , (3)

where r̃S,T is the proportion of gametes produced with the
set S from the mother and T from the father.
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A model for evolution of assortment

Our interest lies on the effect that a small
perturbation (modifier of weak effect) on the
selection for assortment will have on the
equilibrium of the population.

The accumulation of small effects may lead to
speciation, which we will measure according to
D.
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A model for evolution of assortment

Assortment is “regulated” by a trait z which is
characterised by two biallelic loci j and k. Both
loci have the same contribution to the trait.

Individuals mate according to their similarity in z.
For simplicity, we assume the loci j and k are in
equilibrium, and at frequencies pj = pk = 1

2
, and j

and k are symmetric.
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In general, we would have to consider all the
selection coefficients.

However, we start by the simpler case in which
the following selection coefficients are not zero:
aj,j, ãj,k, ak,k, ãjk,∅, ajk,jk.

If j and k are exchangeable, then
aj,j = ak,k = ãj,k = a1,1. Similarly, a2,0 = ãjk,∅, and
a2,2 = ajk,jk.
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On a’s and Djk

If the trait in consideration regulates body size:

• ajk,∅: viability selection.
Selects for extreme/intermediate sizes

• aj,j, ãj,k and ak,k: assortative mating.
Preferential mating between similar sizes.

• ajk,jk: selection due to assortative mating and epistatis

Djk is our measure of reproductive isolation:

• panmictic population: Djk = 0

• complete isolation(speciation): Djk = 1

4
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Djk
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A modifier i

We then introduce a modifier locus i, which will
affect the selection acting on j and k.

Thus, it will perturb the already existing selection
by ãij,j, ãij,k, ãik,j, ãik,k, ãijk,jk.

We assume the modifier to have a small effect,
such that aiU,V ∼ ε and DiU,V ∼ ε, and we keep
leading orders in ε.

Evolution of assortative mating – p.19/26



From here, we can study the change in
frequency of the modifier ∆pi and its association
with j and k, Dijk.

This will allow us to know whether the modifier
can invade or not, and whether it can go to
fixation.

Ultimately, our interest is to know whether the
modifier increases the association Djk, since it is
our measure of the degree of reproductive
isolation between emerging species.
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Change in frequency of the modifier

The change in frequency of the modifier can be
written as

∆pi

pqi

= λi1,1ai1,1 + λi2,2ai2,2, (4)

where the λ’s are functions of the selection
coefficients affecting j and k, and the different
recombination rates.

As the modifier is of weak effect, so long as its
frequency increases, it will go to fixation.
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Study of λ’s
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Invasion?

Contribution from λi1,1 for free recombination
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Contribution from λi2,2 for free recombination
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Note this is the smallest contribution.
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Summary and conclusions

An accumulation of n modifiers of small effect
may lead to complete reproductive isolation

• Multilocus formalism allows us to describe
our system exactly

• Modifiers of weak effect lead to linear
equations, which allow us to analyse
separately the different contributions

• A modifier of assortment can lead to higher
values of Djk, to a greater reproductive
isolation
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