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Linear systems associated with semigroups

H a complex Hilbert space, (Tt)t≥0 a strongly con-

tinuous semigroup of bounded operators,

i.e., Tt+u = TtTu and t 7→ Ttx is continuous.

A the infinitesimal generator, defined on domain

D(A) ⊆ H.

Ax = lim
t→0

1

t
(Tt − I)x.

A continuous-time linear system in state form:

dx(t)

dt
= Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

with x(0) = x0, say.
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Here u is the input, x the state, and

y the output.

Often we take D = 0. In general B and C (the

control and observation operators) are unbounded.

Note that

ẋ(t) = Ax(t), x(0) = x0

is said to have mild solution

x(t) = Ttx0.

(Infinite-time) admissibility

There is a duality here between control and ob-

servation. We discuss just observation operators.
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Admissibility of observation operators.

Consider
dx(t)

dt
= Ax(t),

y(t) = Cx(t),

with x(0) = x0, say.

Let C : D(A) → Y, Hilbert, be an A-bounded

‘observation operator’, i.e.,

‖Cz‖ ≤ m1‖z‖ + m2‖Az‖

for some m1, m2 > 0.

C is admissible, if ∃m0 > 0 such that

y(t) = CTtx0 satisfies y ∈ L2(0,∞;Y) and

‖y‖2 ≤ m0‖x0‖.
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The Weiss conjecture

Suppose C admissible, take Laplace transforms,

ŷ(s) =

∫ ∞

0

e−sty(t) dt,

= C(sI − A)−1x0.

Now if y ∈ L2(0,∞;Y), then ŷ ∈ H2(C+,Y),

Hardy space on RHP (Paley–Wiener), and

‖ŷ(s)‖ =

∥

∥

∥

∥

∫ ∞

0

e−sty(t) dt

∥

∥

∥

∥

≤ ‖y‖2√
2 Re s

,

by Cauchy–Schwarz.

Thus admissibility, i.e.,

‖CTtx0‖L2(0,∞;Y) ≤ m0‖x0‖,
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implies the resolvent condition: ∃m1 > 0 such

that

‖C(sI − A)−1‖ ≤ m1√
Re s

, ∀s ∈ C+.

George Weiss (1991) conjectured that the two con-

ditions are equivalent.

This would imply several big theorems in function

theory in an elementary way.

1. The case dimY < ∞.

Weiss proved it for normal semigroups and right-

invertible semigroups.

A decade later, other special cases were considered.
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Jacob–JRP (2001). Contraction semigroups.

Le Merdy (2003). Bounded analytic semigroups.

Jacob–Zwart (2004). Not true for all semigroups.

Example 1

H = L2(C+, µ),

(Tt(x))(λ) = e−λtx(λ),

(Ax)(λ) = −λx(λ).

For a Borel measure µ on C+ take C defined by

Cf =

∫

C+

f(λ) dµ(λ).
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Easily checked that the Weiss conjecture for the

above A and C is equivalent to the Carleson–

Vinogradov embedding theorem:

Let kλ(s) = 1/(s + λ). If

‖kλ‖L2(C+,µ) ≤ M ‖kλ‖H2 ,

for each λ ∈ C+, then a similar inequality holds

for all H2 functions.

Example 2

Take the right shift semigroup on H = H2(C+):

(Tt(x))(λ) = e−λtx(λ),

(Ax)(λ) = −λx(λ).
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Now C : D(A) → C is A-bounded iff it has the

form

Cx =

∫ ∞

−∞

c(iω)x(iω) dω,

where c(z)/(1 + z) ∈ H2(C+) (easy).

Consider the Hankel operator:

Γc : H2(C−) → H2(C+), Γcu = Π+(c.u),

where Π+ is the orthogonal projection from

L2(iR) = H2(C+) ⊕ H2(C−)

onto H2(C+).
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Now the Weiss conjecture for this semigroup is

equivalent to a theorem given by Bonsall (1984):

the Hankel operator Γc is bounded if and only if

it’s bounded on normalized rationals of degree 1

(reproducing kernel thesis).

2. The case dimY = ∞.

Weiss conjecture fails even for the shift semigroup

on L2(0,∞) – Jacob–JRP–Pott (2002).

No straightforward analogue of Bonsall’s theorem.

* Some positive results on this case are known.

* Several open questions remain in this area.
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Volterra systems

ẋ(t) = Ax(t) +

∫ t

0

k(t − s)Ax(s) ds, t ≥ 0,

y(t) = Cx(t), with x(0) = x0,

where A generates a C0 semigroup and

k ∈ W 1,2(0,∞).

Note that for the choice k(t) ≡ 0 we obtain the

Cauchy system

ẋ(t) = Ax(t), t ≥ 0,

y(t) = Cx(t), with x(0) = x0.

For Volterra systems we write

x(t) = Stx0, t ≥ 0.
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Now S. is not a semigroup, but still turns out to

be exponentially bounded in this case, i.e.,

‖St‖ ≤ Meωt, (t ≥ 0)

for some constants M and ω.

Can use Laplace transform methods again. Let

H(s)x0 = Ŝ(s)x0

= (sI − (1 + k̂(s))A)−1x0

for Re s > ω.

12



A larger Cauchy system

Idea of Engel and Nagel. Consider

ż(t) = Az(t), t ≥ 0,

w(t) = Cz(t).

State space H = H × L2(R+, H), and

A





x0

f0



 =





A δ0

φ d
dτ









x0

f0



 ,

where (φx)(τ) = k(τ)Ax, x ∈ D(A), τ > 0, and

C





x0

f0



 = Cx0.

Then A generates a C0 semigroup T., say.

Indeed S. = T (1,1)
. in a natural way.
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Finite-time admissibility is easier to handle here.

This means for some K, γ we have

‖CS.x0‖L2(0,t;Y ) ≤ Keγt‖x0‖

for every x0 ∈ H and t > 0.

Theorem (Jacob–JRP, 2005) Suppose α > 0

and A generates a semigroup T. with

‖Tt‖ ≤ eαt for each t ≥ 0. Then TFAE:

1. C finite-time admissible for Volterra system S..

2. C finite-time admissible for Cauchy system T..

3. There are constants M > 0 and β ∈ R with

‖CH(s)‖ ≤ M√
Re s−β

for Re s > β.
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Proof uses the fact that finite-time admissibility

is equivalent to infinite-time admissibility for expo-

nentially stable semigroup systems* plus fact that

the Weiss conjecture holds for contraction semi-

groups.

*Not true for Volterra systems. Hence all our woe.

Natural Weiss-type conjecture: for infinite-time

admissibility, is it enough to check the usual resolvent-

type condition (e.g. if A generates a contraction

semigroup)?
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NO!

Example with H = Y = C, A = −I, C = I

and k defined by

k̂(s) = −1 +

√

s

s + 1
(s ∈ C+).

Exercise for audience: k ∈ W 1,2(0,∞).

Then

CH(s) =
1

s +
√

s
s+1

,

a function not in H2(C+) that still satisfies

‖CH(s)‖ ≤ M√
Re s

(s ∈ C+)

for some M > 0.
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Summary and conclusions

* Weiss conjecture for semigroup systems subsumes

classical results on Hankel operators and Carleson

embeddings.

* For Volterra systems, a natural generalization,

finite-time admissibility can be analysed by em-

bedding in a bigger semigroup.

* Infinite-time admissibility does not generalize as

expected.
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