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Consider boundary value problem

−∆u + F (x, u,∇u) = 0 on Ω

u = 0 on ∂Ω

or

∆∆u + F (x, u,∇u, . . . ) = 0 on Ω

u =
∂u

∂ν
= 0 on ∂Ω

Ω ⊂ Rn domain with some regularity, F given nonlinearity with some

smoothness

AIM: Derive conditions for existence of a solution in some

“close” and explicit neighborhood of some approximate solution

“Conditions”: either of general type, to be verified analytically, or

more special, to be verified automatically on a computer
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General concept:

Transformation into fixed-point equation

u = Tu

and computation of appropriate set U such that

TU ⊂ U

and moreover, T has certain properties (e.g. contractivity

or compactness)

Application of some Fixed-Point Theorem (Banach, Schauder, . . . )

 Existence of a solution u∗ ∈ U

The set U provides enclosure
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Abstract formulation

Let (X, 〈·, ·〉X), (Y, 〈·, ·〉Y ) Hilbert spaces

Let F : X → Y continuously (Fréchet) differentiable mapping

problem : u ∈ X, F(u) = 0

Aim now (first): Existence and bounds for this abstract problem
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Let ω ∈ X approximate solution,

L := F ′(ω) : X → Y (linear, bounded)

Suppose that constants δ and K, and a nondecreasing function

g : [0,∞) → [0,∞) have been computed such that

a) ‖F(ω)‖Y ≤ δ,

b) ‖u‖X ≤ K‖Lu‖Y for all u ∈ X,

c1) ‖F ′(ω + u) −F ′(ω)‖B(X,Y ) ≤ g(‖u‖X) for all u ∈ X,

c2) g(t) → 0 as t → 0+
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Need in addition (note that L is one-to-one by b))

d) L : X → Y onto

Here, two ways for obtaining d):

1) X̂ ⊃ X Banach space, embedding EX̂
X : X ↪→ X̂ compact

F = L0 + G , L0 : X → Y linear , bounded , bijective

G : X̂ → Y continuously differentiable

Then Lu = r ⇔ u = −L−1
0 G′(ω)EX̂

X︸ ︷︷ ︸
compact!

u + L−1
0 r  Fredholm
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2) Y = X ′ dual space, Φ : X → X ′ canonical isometric isomorphism

i.e. (Φu)[v] = 〈u, v〉X for u, v ∈ X

Assume that Φ−1L : X → X is symmetric (i.e. (Lu)[v] = (Lv)[u]

for all u, v ∈ X)

Then Φ−1L selfadjoint, one-to-one ⇒ range (Φ−1L) dense

⇒ range (L) dense

Moreover,

D(L) = X closed
L bounded

}
⇒ L closed

L one-to-one

}
⇒ L−1 closed

L−1 closed

L−1 bounded by b)

}
⇒ D(L−1) closed ⇒ range (L) closed
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Transformation of F(u) = 0 into fixed-point problem:

F(u) = 0 ⇔ F ′(ω)[u − ω] = −F(ω) −
[
F(u) −F(ω) −F ′(ω)[u − ω]

]

⇔ F ′(ω)︸ ︷︷ ︸
=L

[v] = −F(ω) −
[
F(ω + v) −F(ω) −F ′(ω)[v]

]
, v = u − ω

⇔ v = −L−1
{
F(ω) +

[
F(ω + v) −F(ω) −F ′(ω)[v]

]}
=: Tv

Let V := {v ∈ X : ‖v‖X ≤ α}, α > 0 to be chosen

Then T (V ) ⊂ V if δ ≤
α

K
− G(α) , G(t) :=

∫ t

0
g(s)ds
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Need either i) T compact ( Schauder’s Fixed-Point Theorem)

or ii) T contractive ( Banach’s Fixed-Point Theorem)

ad i) X̂ ⊃ X, EX̂
X compact, F = L0 + G as before

ad ii) additional contraction condition

Kg(α) < 1

Theorem: For some α ≥ 0, let δ ≤
α

K
− G(α) , and let i) or ii) hold.

Then, there exists a solution u ∈ X of F(u) = 0 satisfying

‖u − ω‖X ≤ α
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Applications to second-order boundary value problems

−∆u + F (x, u) = 0 on Ω, u = 0 on ∂Ω

A) strong solutions: Ω ⊂ Rn (n ≤ 3) bounded and

H2-regular (Poisson’s problem uniquely solvable), F given C1-function

X = H2(Ω) ∩
◦
H 1(Ω), Y = L2(Ω),

L0 = −∆, G(u)(x) := F (x, u(x)) (X̂ = C(Ω))

a) ‖ − ∆ω + F (·, ω)‖L2 ≤ δ explicitly or by verified quadrature

b) ‖u‖H2 ≤ K‖Lu‖L2 (u ∈ X) :

eigenvalue bounds, Sobolev embeddings, a priori estimates

c)

∣∣∣∣
∂F

∂u

(
x, ω(x) + y

)
−

∂F

∂u

(
x, ω(x)

)∣∣∣∣ ≤ g̃(|y|)
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−∆u + F (x, u) = 0 on Ω, u = 0 on ∂Ω

B) weak solutions: Ω ⊂ R
n Lipschitz

X =
◦
H 1(Ω), 〈u, v〉X := 〈∇u,∇v〉L2 + σ〈u, v〉L2, Y = H−1(Ω) = X ′

Fréchet differentiability requires growth conditions on F , allowing

however exponential growth if n ≤ 2.

a) ‖−∆ω+F (·, ω)‖H−1 ≤ ‖−div(∇ω−ρ)‖H−1+‖divρ−F (·, ω)‖H−1

≤ ‖∇ω − ρ‖L2 + ĉ‖divρ − F (·, ω)‖L2,

ρ ∈ H(div;Ω) approximation to ∇ω, ‖u‖L2 ≤ ĉ‖u‖X for u ∈ X
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b) Lu = −∆u + cu, c(x) =
∂F

∂u

(
x, ω(x)

)

Let Φ : X → Y, Φu := −∆u+σu canonical isometric isomorphism

Φ−1L is symmetric, so

‖u‖X ≤ K‖Lu‖Y = K‖Φ−1Lu‖X for u ∈ X

⇐⇒ K ≥
[
min

{
|λ| : λ ∈ spectrum of Φ−1L

}]−1

 need bounds for essential spectrum (analytically) and

eigenvalue bounds:

Φ−1Lu = λu ⇐⇒ −∆u + σu =
1

1 − λ

(
σ − c(x)

)
u ,

choose σ > c(x) (x ∈ Ω)
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∆∆u + µ∆u + F (x, u) = 0 on Ω, u = ∂u
∂ν

= 0 on ∂Ω

Ω ⊂ R
n Lipschitz, F given C1-function, µ ≥ 0

X :=
◦
H2(Ω), 〈u, v〉X := 〈∆u,∆v〉L2+σ〈u, v〉L2, Y = H−2(Ω) = X ′

a) ‖∆∆ω + µ∆ω + F (·, ω)‖H−2 ≤ ‖∆(∆ω + µω − ρ)‖H−2+

+ ‖∆ρ + F (·, ω)‖H−2

≤ ‖∆ω + µω − ρ||L2 + ˆ̂c‖∆ρ + F (·, ω)‖L2,

ρ ∈ L2(Ω) s.t. ∆ρ ∈ L2(Ω), ρ approximation to ∆ω + µω,

‖u‖L2 ≤ ˆ̂c‖u‖X for u ∈ X.
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b) Lu = ∆∆u + µ∆u + cu, c(x) = ∂F
∂u

(
x, ω(x)

)

Let Φ : X → Y, Φu := ∆∆u+σu canonical isometric isomorphism

Φ−1L is symmetric, so

‖u‖X ≤ K‖Lu‖Y = K‖Φ−1Lu‖X for u ∈ X

⇐⇒ K ≥

[
min

{
|λ| : λ ∈ spectrum of Φ−1L

} ]−1

 need bounds for essential spectrum (analytically)

and eigenvalue bounds:

Φ−1Lu = λu ⇐⇒ ∆∆u + σu = 1
1−λ

(
− µ∆u + (σ − c(x))u

)
,

choose σ > c(x) (x ∈ Ω)
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Eigenvalue bounds

weak EVP 〈u, v〉X = λb(u, v) for all v ∈ X

where b bounded, Hermitian, positive bilinear form on X

Upper eigenvalue bounds: Rayleigh-Ritz

Let ũ1, . . . , ũN ∈ X linearly independent. Define N × N-matrices

A0 := (〈ũi, ũj〉X), A1 := (b(ũi, ũj))

Λ1 ≤ Λ2 ≤ · · · ≤ ΛN eigenvalues of the matrix EVP

A0x = ΛA1x.

Then, if ΛN < σess := inf{ essential spectrum }, there are

at least N eigenvalues λ1 ≤ · · · ≤ λN below σess, and

λi ≤ Λi (i = 1, . . . , N)
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Lower eigenvalue bounds: Temple-Lehmann

Let ũ1, . . . , ũN and Λ1, . . . ,ΛN < σess as before.

Let w1, . . . , wN ∈ X satisfy

〈wi, v〉X = b(ũi, v) for all v ∈ X (∗)

and let ρ ∈ R be such that

ΛN < ρ ≤

{
λN+1 , if λN+1 < σess exists

σess , otherwise

}
(∗∗)

Define, besides A0 and A1,

A2 := (〈wi, wj〉X),

and let µ1 ≤ µ2 ≤ · · · ≤ µN < 0 be the eigenvalues of

(A0 − ρA1)x = µ(A0 − 2ρA1 + ρ2A2)x.

Then, λi ≥ ρ
(
1 − 1

1−µN+1−i

)
(i = 1, . . . , N)

(∗) often difficult in practice; considerable improvement by Goerisch

(∗∗) homotopy method
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homotopy method for obtaining ρ such that

ΛN < ρ ≤ λN+1 .

Let (bt)t∈[t0,t1] family of bilinear forms on X such that

i) for s ≤ t : bs(u, u) ≥ bt(u, u) (u ∈ X)

ii) for each t: The eigenvalue problem 〈u, v〉X = λbt(u, v) for all v ∈ X (EVPt)

has at least N + 1 eigenvalues λ
(t)
1 ≤ · · · ≤ λ

(t)
N+1 below its essential spectrum

iii) for t = t0, the eigenvalues of (EV Pt), or at least bounds to them, are known

iv) for t = t1, problem (EV Pt) is the given one

Consequences: By i), ii), and the min-max-principle λ
(t)
k increasing in t, for each

fixed k ∈ {1, . . . , N + 1}.

In particular, λ
(t0)
N+1 ≤ λ

(t1)
N+1 = λN+1.

Thus, ρ := λ
(t0)
N+1 can be chosen if ΛN < λ

(t0)
N+1.

The last condition requires that problem (EV Pt0) (solvable in closed form!) and the
given one are sufficiently close.
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