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Theorem (Sz.-Nagy - Foias - Gohberg - Kreĭn). Let L be a maximal dissipative
operator such that σ(L) ⊂ R. Then the following are equivalent

(i) L is similar to a self-adjoint operator1;
(ii) The resolvent of L satisfies the estimate

∥∥(L − z)−1
∥∥ ≤ C

Im z
, Im z > 0; (1)

(iii) L generates a uniformly bounded group Zt = eiLt: supt<0 ‖Zt‖ < ∞.
For a dissipative operator, L, with absolutely continuous spectrum (see Glossary),

E ∈ R is a spectral singularity [2] if

lim sup
z↘E

(
Im z

∥∥(L − (E + iε))−1
∥∥)

= ∞.

Thus, a bounded dissipative operator L with absolutely continuous spectrum has no
spectral singularities if and only if the semigroup Zt = eiLt, t < 0, is bounded.

General problem: analyze in detail the impact of spectral singularities on asymp-
totic behaviour of Zt as t → −∞.

Specific task: the problem of localization of spectral singularities in terms of the
asymptotic in the ”simplest” case of finitely many singularities of finite power order, that
is, of calculating their orders and locations from the asymptotics of Zt.

1that is, there exists a bounded operator U with bounded inverse such that L = UAU−1 for some

self-adjoint A.

1



Background: In the self-adjoint theory, if a self-adjoint operator, A, has an absolutely
continuous spectrum and finitely many eigenvalues, {λj}, then the similar problem of
calculating the λj’s from the asymptotic of eiAt is solved trivially because of the spectral
theorem. Namely, we fix arbitrary u and v such that (u, ej) 6= 0, (v, ej) 6= 0 for all ej, the
eigenvectors of A, and consider f(t) = (eiAtu, v). Then

f(t) =

∫
eiλtdρ(t) +

N∑

j=0

cje
iλj t,

where ρ is an absolutely continuous measure, and cj = (u, ej)(ej, v) 6= 0 for all j. The
first term is o(1) as t → ±∞ by the Riemann-Lebesgue lemma, and one can determine
the λj’s from the finite sum in the right hand side, provided that we know f(t) at large t.

The nonself-adjoint problem above is considerably more complicated since for an oper-
ator with spectral singularities we do not have a spectral decomposition converging in the
topology of the original Hilbert space [8]. This makes it natural to consider first the case of
finitely many spectral singularities. The analysis of an operator with isolated power sin-
gularities still constitutes a highly nontrivial problem, which has important applications.
For instance, the Schrödinger operator on the real axis with complex potential decreasing
like O (exp(−C

√
x)) studied in [4], is of the class under consideration.

Previously known:
In the following theorem L is a maximal dissipative operator with real spectrum sat-

isfying
∥∥(L − z)−1

∥∥ ≤ (Im z − ω)−1 for some ω > 0 and all z with Im z > ω. The latter
condition guarantees that Zt = eiLt exsists for all t as a bounded operator.

Theorem 1. [1] Assume that the estimate

∥∥(L − z)−1
∥∥ ≤ C (Im z)−p−1 (2)

holds for all z in a strip 0 < Im z < ε0. Then

∥∥Z−1

t

∥∥ ≤ C ′ (1 + tp) . (3)

for all t ≥ 0.
Remark: In fact this theorem can be generalized so as to allow any monotone function

instead of power, see [5].

I. RESULTS (informal description).

• Sharpness of the upper estimate (3) in the power scale.

• An upper estimate for local norm of PωZ−t where Pω is the spectral projection of
the real part of the operator L corresponding to the interval ω ⊂ R.

• An algorithmic solution of the localization problem for singularities of the orders
greater than p− 1/2 where p is the maximal order, in terms of the asymptotic of Zt

as t → −∞.
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• An application: the three - dimensional Boltzmann operator [6].

II. RESULTS (precise formulations).
The definition of what we call a spectral singularity of the real order p is best given

in terms of the boundary behaviour of the characteristic function [3] of the operator.
We assume throughout that L is a maximal dissipative operator in a Hilbert space

H with bounded imaginary part V = Im L such that σess(L) ⊂ R. Denote by E the
subspace E = Ran V ⊂ H. By the characteristic function of L we call the contractive
analytic function S(z): E → E, z ∈ C+, defined by the formula

S(z) = I + 2i
√

V (L∗ − z)−1
√

V .

The set C+

⋂
ρ(L) coincides with the set of such z ∈ C+ that the operator S(z) has

bounded inverse defined on the whole of E. Moreover, the following estimate is valid,

‖S−1(z)‖ � Im z
∥∥(L − z)−1

∥∥ . (4)

This estimate shows that for an operator with absolutely continuous spectrum E ∈ R is
a spectral singularity if and only if lim supz↘E ‖S−1(z)‖ = ∞.

In applications, it often happens that the characteristic function is analytic on the real
axis, and S(k) − I is compact, which implies that the spectral singularities are exactly
the real poles of S−1. Examples include the Schrödinger operator with exponentially de-
creasing potential [7, 10] and the Friedrichs model with rank 1 analytic perturbation, and
the one-velocity transport operator considered below. The following definition provides
the simplest natural abstract generalization of this situation.

A point k0 ∈ R is said to be a spectral singularity of the order p > 0, p ∈ R, in the
strict sense, if for some nonzero e0 ∈ E

‖S(k)e0‖E ≤ C |k − k0|p , (5)

‖S−1(k)‖ ≤ C |k − k0|−p (6)

for a. e. k in a vicinity of k0 on the real axis.
The ”in the strict sense” clause is inserted in this definition to indicate that it is not

merely the requirement of exactness of the estimate (6): the vector e0 in (5) does not
depend on k.

We now proceed to study the local behaviour of the semigroup Zt with respect to the
spectral representation of the real part of the operator L. For an interval ω ⊂ R define
Pω to be the spectral projection of A = Re L for the ω.

Introduce the following
Assumption P. The dissipative operator L has at most finitely many spectral singular-

ities, kj, such that for each kj there exists a pj > 0 such that the estimate

∥∥S−1(k)
∥∥ ≤ C |k − kj|−pj
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holds for a. e. k in a vicinity of kj on the real axis, and ess sup|k|>M‖S−1(k)‖ is finite
for some M (no spectral singularity at infinity).

Let p = maxj pj.
Corollary 2. If the assumption P is satisfied, then for all t > 0

∥∥Z−t|Ne

∥∥ ≤ C (1 + tp)

with some C > 0.
The proof consists in verification of the assumption of theorem 1 on the basis of a

uniqueness theorem.
Theorem 3. Let the assumption P be satisfied with p 6= 1/2, and let

√
V is ReL -

smooth in the sense of Kato. Then for any closed interval ω ⊂ R we have

∥∥PωZ−t|Ne

∥∥ ≤ Cω


1 + tp−1/2 +

∑

j:kj∈ω

tpj


 , t > 0. (7)

In particular, ∥∥PωZ−t|Ne

∥∥ ≤ Cω

(
1 + tp−1/2

)
, t > 0, (8)

if ω does not contain spectral singularities.
Remark. (8) holds for p ≥ 1 and an interval ω not containing the singularities

without the smoothness assumption.
Hints on the proof. The proof is independent of the functional model and combines

three ingredients:
1. An integral representation of Z−tu via smoothed resolvent through Doimelle for-

mula.
2. The following fundamental identity, first established in [9]. Let D be an arbitrary

dissipative operator with a bounded imaginary part V , and α =
√

2 V . Then for all ε > 0
and u ∈ H ∫

R

∥∥α (D − k + iε)−1 u
∥∥2

dk ≤ π ‖u‖2 . (9)

3. Transformation of integration contours and an elementary case of the Carleson
embedding theorem.

The problem of detecting the spectral singularities can now be formulated as follows.
Suppose we are given an operator with finitely many spectral singularities, each of a finite
power order in the strong sense. How to calculate their orders, pj, and locations, kj, in
terms of the norms ‖PωZ−t‖ ? To advance in this direction we need results on exactness
of the upper estimate (7).

Theorem 4. Assume L has a spectral singularity of order p in the strict sense. Then
for any sufficiently small ε > 0 there exists such a u ∈ Ne that

‖Z−tu‖ = tp−ε(1 + o(1)), t → +∞. (10)
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The proof consists in an explicit construction of the required Cauchy data u for the
Szökefalvi- Nagy - Foias functional model of the operator. In the following theorem we
give an asymptotic expression for the evolution of the vector u.

Theorem 5. Assume L is a dissipative operator, and
√

V is Re L - smooth. Then for
any spectral singularity k0 ∈ R of a real order n > 1/2 and any ε > 0 small enough there
exists a u ∈ Ne satisfying (10) and such that for any closed interval ω, k0 /∈ ω,

PωZ−tu = e−ik0ttn−1/2−εΨk0
+ O

(
tmax{0,n−3/2−ε}

)
(11)

where Ψk0
= (Aω − k0)

−1 Pωαe0, Aω = APω, e0 is defined in (5), and the O-symbol refers
to the norm in H.

Example (Friedrichs model). Let I be a compact interval, H = L2(I) and a vector
ϕ ∈ L∞(I) is given. Define L = A+i〈·, ϕ〉ϕ where (Af)(s) = sf(s). Then the smoothness
assumption of theorem 5 is satisfied, and the asymptotics (11) takes in this case the form

Z−tu = e−ik0ttn−1/2−εΨk0
+ rt

where

Ψk0
(s) =

ϕ(s)

s − k0

,

the function rt satisfies

(∫

|s−k0|>δ

|rt(s)|2ds

)1/2

≤ Cδ

(
1 + tn−3/2−ε

)

for any δ > 0, and the equality holds for each t > 0 for a. e. s ∈ I. The function Ψk0

makes sense of a regular part of the generalized eigenfunction of L corresponding to the
point k0: any formal solution to Lu = k0u coincides with Ψk0

for s 6= k0. Thus, the
improper eigenfunction of the spectral singularity appears as a leading term coefficient
in the asymptotic expansion outside arbitrary small vicinity of the singularity in the
spectral representation of the real part of the operator. This matches the expectation
coming from consideration of the discrete spectrum case, and can be considered as a
rigorous justification of the idea that spectral singularity is a kind of resonance which has
been drawn into the continuous spectrum.

This theorem shows, in particular, that the contribution of arbitrary small neighbor-
hood of the spectral singularity in the asymptotic of Z−tu is of the maximal order, tn−ε,
in norm.

Corollary. If p = maxj pj ≥ 1/2, then the estimate (8) is exact in the power scale,
that is,

lim sup
t→+∞

ln
∥∥PωZ−t|Ne

∥∥
ln t

= p − 1

2

for any interval ω and any operator L of the class under consideration.

5



Combining the results obtained, we now give a solution to the localization problem
for singularities of higher orders. First, we determine the maximal order as the least p
such that

∥∥Z−t|Ne

∥∥ = O (tp) at large t. Then the following assertion is valid.
Proposition 6. Let a dissipative operator L = A + iV , V ≥ 0, have at most finitely

many spectral singularities, each of a finite power order in the strict sense, and p be the
maximal order. Suppose that

√
V is A - smooth. For a closed interval ω ⊂ R define the

number p(ω) = infs≥0{s :
∥∥PωZ−t|Ne

∥∥ ≤ Cs (1 + ts)}. Then
(i) ω contains a singularity of the order p(ω) if p(ω) > p−1/2, provided that p(ω) 6= 0,
(ii) The interior of ω does not contain a singularity of an order greater than p(ω).
This result allows to localize singularities of orders greater than max{0, p− 1/2}. The

separation of singularities of lower orders cannot be achieved in this way since, as it is seen
from (11), the norm estimate for an interval containing such singularities is determined
by the contribution of singularities outside the interval.

III. EXAMPLE: transport operator. Let dΩp be the Lebesgue measure on the
unit sphere S2. Given a nonnegative compactly supported function c ∈ L∞ (R3), define
the operator, T , in the Hilbert space H = L2(R3 × S2) by the formula (q ∈ R3, p̂ ∈ S2)

T = ip̂ · ∇q + ic(q)K, K =
1

4π

∫

S2

· dΩp

on the natural domain of its real part. This operator arises in the one - speed neutron
transport theory, see [6, 11] for details. Then T is a maximal dissipative operator, and the
essential spectrum of T coincides with the real axis. Let Hess be the invariant subspace of
T corresponding to σess(T ). Define the set E ⊂ L∞ (R3) as E = {c : ker(I + Q(0)) 6= 0}
where Q(0) is the integral operator in L2(R3) with the kernel − 1

4π

√
c(q) 1

|q′−q|2

√
c(q′).

Theorem. [6] The completely nonself-adjoint part of the restriction, Tess, of T to Hess

has absolutely continuous spectrum and satisfies the condition of corollary 2. If c /∈ E then
the operator Tess is similar to a self-adjoint operator. If c ∈ E then the operator T has
the unique spectral singularity of the order 1 located at the point 0.

Corollary. [6] Let Ze
t = exp(−iT t)|Hess

, t ≥ 0. If c ∈ E then

‖Ze
t ‖ ≤ C(1 + t),

and this estimate is exact in the sense given by theorem 3.

GLOSSARY

The notation z ↘ E for real E means that z tends to E from the upper half plane.
Let H ′ be the minimal reducing subspace of L containing E, then Lpure := L|H′ is the

completely nonselfadjoint part of the operator L. Let H2
±(E) stand for the Hardy classes of

E-valued functions f analytic in C±, respectively, and such that supε>0

∫
R
‖f(k ± iε)‖2

E dk
is finite.

The absolutely continuous subspace Ne of the operator Lpure [2, 9] is defined as follows,

Ne = Ñe, Ñe ≡
{
u ∈ H ′ :

√
V (L − z)−1 u ∈ H2

+(E)
}

.
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Elements of the linear set Ñe are called smooth vectors of the operator L.
If L is completely nonself-adjoint (L = Lpure), then it is referred to as having absolutely

continuous spectrum if H = Ne.
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