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1 Introduction

large 1-dim lattices, lattice sites i. Dynamics given by

Φi
n+1 = (1 − a)T (Φi

n) +
a

2
(T (Φi−1

n ) + T (Φi+1
n ))

i: discrete spatial coordinate (periodic boundary conditions)
n: discrete time
a: coupling constant
T : local map, e.g. T (Φ) = 2Φ2 − 1 (negative Ulam map)
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i: discrete spatial coordinate (periodic boundary conditions)
n: discrete time
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Φi
n+1 = (1 − a)T (Φi

n) +
a

2
(T (φi−1

n ) + T (Φi+1
n ))

i → n ↓

a=0
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(larger lattice) a=0

5



(larger lattice) a=0
Ulam map conjugated to tent map, iterates satisfy a Central Limit Theorem for a=0:

1√
M

∑M
n=1 Φi

n → Gaussian (M → ∞)
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(larger lattice) a=0
Ulam map conjugated to tent map, iterates satisfy a Central Limit Theorem for a=0:

1√
M

∑M
n=1 Φi

n → Gaussian (M → ∞)

But there are complicated higher-order correlations, see C.B., Nonlinearity 4, 1131 (1991)
n-point functions 〈Φi

n1
Φi

n2
· · · Φi

nr
〉 do not factorize, even for a = 0.

These correlations are ’scaled away’ for M → ∞.
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Φi
n+1 = (1 − a)T (Φi

n) +
a

2
(T (φi−1

n ) + T (Φi+1
n ))

a = 0.375
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a = 1
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a=0.5, 2-dim lattice

(snapshot at fixed time n)
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2 Diffusively coupled Tschebyscheff maps

Lots of results for CMLs consisting of hyperbolic (uniformly expanding) maps
(hyperbolicity in 1-d case: |slope| > 1) (e.g. work by Keller, Kuenzle, Jarvenpaa,

Baladi, Rugh, MacKay, Bunimovich, Just, Pesin,...)
but much less is known for nonhyperbolic situations, though some promising steps have

been made (Chaté, Torcini, Ruffo, ...)
We are particularly interested in cases where the local map exhibits strongest possible

chaotic behaviour and small coupling, e.g. Tchebyscheff maps TN of N -th order:

T2(Φ) = 2Φ2 − 1 (1)

T3(Φ) = 4Φ3 − 3Φ (2)

... = ... (3)

TN(Φ) = cos(N arccos Φ) (4)

conjugated to a Bernoulli shift of N symbols (generalized tent maps with |slope| = N
having ∼ N/2 maxima).

9
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2 Diffusively coupled Tschebyscheff maps

Lots of results for CMLs consisting of hyperbolic (uniformly expanding) maps
(hyperbolicity in 1-d case: |slope| > 1) (e.g. work by Keller, Kuenzle, Jarvenpaa,

Baladi, Rugh, MacKay, Bunimovich, Just, Pesin,...)
but much less is known for nonhyperbolic situations, though some promising steps have

been made (Chaté, Torcini, Ruffo, ...)
We are particularly interested in cases where the local map exhibits strongest possible

chaotic behaviour and small coupling, e.g. Tchebyscheff maps TN of N -th order:

T2(Φ) = 2Φ2 − 1 (1)

T3(Φ) = 4Φ3 − 3Φ (2)

... = ... (3)

TN(Φ) = cos(N arccos Φ) (4)

conjugated to a Bernoulli shift of N symbols (generalized tent maps with |slope| = N
having ∼ N/2 maxima).

This conjugacy is ’destroyed’ for finite coupling a > 0 in the CML.
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3 Observed scaling behavior of invariant density

Single Tchebyscheff map: Invariant density given by ρ0(x) = 1

π
√

1−φ2
.

CML with a = 0: The invariant density for all M lattice sites is (of course) given by

ρ0(Φ
1, Φ2, . . . , ΦM) =

M∏
i=1

1

π
√

1 − (Φi)2
(5)
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3 Observed scaling behavior of invariant density

Single Tchebyscheff map: Invariant density given by ρ0(x) = 1

π
√

1−φ2
.

CML with a = 0: The invariant density for all M lattice sites is (of course) given by

ρ0(Φ
1, Φ2, . . . , ΦM) =

M∏
i=1

1

π
√

1 − (Φi)2
(5)

Note that this is like a generalized canonical ensemble (product of q-exponentials ) in
nonextensive statistical mechanics with q = 3, energy ε = 1

2
Φ2, β = 1.

(recall eq(x) := (1+ (q − 1)x)− 1
q−1 , hence ρ0(φ) = 1

π
e−βε

q (formal analogy only))
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3 Observed scaling behavior of invariant density

Single Tchebyscheff map: Invariant density given by ρ0(x) = 1

π
√

1−φ2
.

CML with a = 0: The invariant density for all M lattice sites is (of course) given by

ρ0(Φ
1, Φ2, . . . , ΦM) =

M∏
i=1

1

π
√

1 − (Φi)2
(5)

Note that this is like a generalized canonical ensemble (product of q-exponentials ) in
nonextensive statistical mechanics with q = 3, energy ε = 1

2
Φ2, β = 1.

(recall eq(x) := (1+ (q − 1)x)− 1
q−1 , hence ρ0(φ) = 1

π
e−βε

q (formal analogy only))
For finite a > 0 the density changes and is not a product of single-site densities any

more.
Still one can define the 1-point density ρa(Φ) at each lattice site as a marginal density

(integrating the joint density over all but one lattice site).
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We are interested in averages of arbitrary single-site test functions h(Φi):

〈h(Φ)〉a = lim
M→∞,J→∞

1

MJ

M∑
n=1

J∑
i=1

h(Φi
n). (6)
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We are interested in averages of arbitrary single-site test functions h(Φi):

〈h(Φ)〉a = lim
M→∞,J→∞

1

MJ

M∑
n=1

J∑
i=1

h(Φi
n). (6)

For a → 0 one numerically observes the scaling behaviour

〈h(Φ)〉a − 〈h(Φ)〉0 =
√

a · F (N)(log a) (7)

where F (N) is a periodic function of log a with period log N2.
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We are interested in averages of arbitrary single-site test functions h(Φi):

〈h(Φ)〉a = lim
M→∞,J→∞

1

MJ

M∑
n=1

J∑
i=1

h(Φi
n). (6)

For a → 0 one numerically observes the scaling behaviour

〈h(Φ)〉a − 〈h(Φ)〉0 =
√

a · F (N)(log a) (7)

where F (N) is a periodic function of log a with period log N2.

chosen test functions in the above plot :
h(Φ) = Φ − 2

3
Φ3 (N = 2) , h(Φ) = 3

2
Φ2 − Φ4 (N = 3)
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Not only scaling behaviour in the parameter space but also in the phase space:
Near the left edge of the interval [−1, 1] we may write Φ = ay − 1 and observe the

scaling behaviour
ρa(ay − 1) = a−1/2g(y) (8)

where the function g is independent of a for small a.
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Not only scaling behaviour in the parameter space but also in the phase space:
Near the left edge of the interval [−1, 1] we may write Φ = ay − 1 and observe the

scaling behaviour
ρa(ay − 1) = a−1/2g(y) (8)

where the function g is independent of a for small a.
At the right edge, writing Φ = 1 − ax, one observes

ρa(1 − ax) = ρ0(1 − ax) +
1

2
a−1/2x−1f(x) (9)

where f is independent of a for small a. Moreover, f exhibits log-periodic oscillations

f(N2x) = f(x) (10)

over a large region of the phase space.
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4 Perturbative results for the invariant 1-point density

Final result of a longer calculation (N = 2):
Left edge: In leading order in a

ρa(−1 + ay) =
1

π
√

2a

∫ 1

1−y

ρ00(z)dz
√

y − 1 + z
(11)

ρ00(z) =
2

π2
K(

√
1 − z2)θ(1 − z2) (12)

where K(x) is the complete elliptic integral of the first kind.
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right edge:

ρa(1 − ax) =
∞∑

p=1

ρ(p)
a (1 − ax) (13)

where

ρ(p)
a (1 − ax) =

1

4pπ
√

2a

∫
ρ0(φ+)dφ+ρ0(φ−)dφ−√
x/4p + rp

2(φ+) + rp
2(φ−)

. (14)

Here the function rp
2(φ) is defined as follows:

rp
2(φ) =

1

2

p∑
q=0

T2q(φ) − 1

22q
. (15)

Limits of the two integrations in Eq. (14) given by the condition that |φ±| ≤ 1 and
that the argument of the square root should always be positive.
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right edge:

ρa(1 − ax) =
∞∑

p=1

ρ(p)
a (1 − ax) (13)

where

ρ(p)
a (1 − ax) =

1

4pπ
√

2a

∫
ρ0(φ+)dφ+ρ0(φ−)dφ−√
x/4p + rp

2(φ+) + rp
2(φ−)

. (14)

Here the function rp
2(φ) is defined as follows:

rp
2(φ) =

1

2

p∑
q=0

T2q(φ) − 1

22q
. (15)

Limits of the two integrations in Eq. (14) given by the condition that |φ±| ≤ 1 and
that the argument of the square root should always be positive.

Techniques: Start from perturbed 1-dimensional map, apply Perron-Frobenius and con-
volution techniques, iterate result

S. Groote, C.B., nlin.CD/0603397 (2006)
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Comparison with numerics:
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Along similar lines, we obtain for N = 3

ρ(p)
a (1 − ax) =

2

9p3π
√

2a

∫
ρ0(φ+)dφ+ρ0(φ−)dφ−√
x/9p + rp

3(φ+) + rp
3(φ−)

, (16)

with

rp
3(φ) =

1

2

p∑
q=0

T3q(φ) − 1

9q
. (17)

The density is symmetric, i.e.

ρ(p)
a (ax − 1) = ρ(p)

a (1 − ax). (18)

For general N :

ρ(p)
a (1 − ax) ∼

1
√

a

∫
ρ0(φ+)dφ+ρ0(φ−)dφ−√

x/N2p + rp
N(φ+) + rp

N(φ−)
, (19)

with

rp
N(φ) =

1

2

p∑
q=0

TNq(φ) − 1

N2q
. (20)
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a (1 − ax) =
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9p3π
√

2a

∫
ρ0(φ+)dφ+ρ0(φ−)dφ−√
x/9p + rp

3(φ+) + rp
3(φ−)

, (16)

with

rp
3(φ) =

1

2

p∑
q=0

T3q(φ) − 1

9q
. (17)

The density is symmetric, i.e.

ρ(p)
a (ax − 1) = ρ(p)

a (1 − ax). (18)

For general N :

ρ(p)
a (1 − ax) ∼

1
√

a

∫
ρ0(φ+)dφ+ρ0(φ−)dφ−√

x/N2p + rp
N(φ+) + rp

N(φ−)
, (19)

with

rp
N(φ) =

1

2

p∑
q=0

TNq(φ) − 1

N2q
. (20)

Using these results, one can prove the existence of the log-periodic oscillations both in
phase and parameter space.
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5 Physical applications for nonhyperbolic CMLs in quantum field theories and cos-

mology

How can chaotic coupled map lattices be relevant in quantum field theories?
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5 Physical applications for nonhyperbolic CMLs in quantum field theories and cos-

mology

How can chaotic coupled map lattices be relevant in quantum field theories?
Stochastic Quantization.
Consider classical field decribed by an action S[ϕ]. Classical field equation:

δS

δϕ
= 0 (21)

meaning: Action has an extremum.
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5 Physical applications for nonhyperbolic CMLs in quantum field theories and cos-

mology

How can chaotic coupled map lattices be relevant in quantum field theories?
Stochastic Quantization.
Consider classical field decribed by an action S[ϕ]. Classical field equation:

δS

δϕ
= 0 (21)

meaning: Action has an extremum.
Parisi-Wu (1981): Obtain 2nd quantized equation of motion by considering a Langevin

equation in fictitious time s:

∂

∂s
ϕ(x, s) = −

δS

δϕ
(x, s) + L(x, s) (22)

x = (x1, x2, x3, x4) = xµ point in Euclidean space-time
x4 = t physical time
L(x, s) spatio-temporal Gaussian white noise

18



〈L(x, s)〉 = 0 (23)

〈L(x, s)L(x′, s′)〉 = 2δ(x − x′)δ(s − s′) (24)

Parisi and Wu: Quantum mechanical expectations = expectations of Langevin process
for s → ∞.

Example: ϕ4-theory
Action:

S[ϕ] =

∫
d4x

(
1

2
∂µϕ∂µϕ −

1

2
m2ϕ2 −

λ

4
ϕ4

)
(25)

Classical field equation:

(−∂2 + m2)ϕ(x) + λϕ3(x) = 0 (26)

2nd quantized version:

∂

∂s
ϕ(x, s) = (∂2 − m2)ϕ(x, s) − λϕ3(x, s) + L(x, s) (27)

19



Now construct a chaotic dark energy model based on a stochastically quantized scalar
field (C. B., Phys. Rev. D 69, 123515 (2004))
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Now construct a chaotic dark energy model based on a stochastically quantized scalar
field (C. B., Phys. Rev. D 69, 123515 (2004))

Quantized scalar field ϕ in Robertson-Walker metric:

∂

∂s
ϕ = ϕ̈ + 3Hϕ̇ + V ′(ϕ) + L(s, t), (28)

where H is the Hubble parameter, V is the potential under consideration and L(s, t) is
Gaussian white noise t physical time, s fictitious time. Discretize

s = nτ (29)

t = iδ (30)

τ : fictitious time lattice constant, δ: physical time lattice constant. We obtain

ϕi
n+1 − ϕi

n

τ
=

1

δ2
(ϕi+1

n −2ϕi
n+ϕi−1

n )+3
H

δ
(ϕi

n−ϕi−1
n )+V ′(ϕi

n)+noise (31)

20



This can be written as the following recurrence relation for the field ϕi
n

ϕi
n+1 = (1−α)

{
ϕi

n +
τ

1 − α
V ′(ϕi

n)

}
+3

Hτ

δ
(ϕi

n−ϕi−1
n )+

α

2
(ϕi+1

n +ϕi−1
n )+τ ·noise,

(32)
where a dimensionless coupling constant α is introduced as

α :=
2τ

δ2
. (33)
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This can be written as the following recurrence relation for the field ϕi
n

ϕi
n+1 = (1−α)

{
ϕi

n +
τ

1 − α
V ′(ϕi

n)

}
+3

Hτ

δ
(ϕi

n−ϕi−1
n )+

α

2
(ϕi+1

n +ϕi−1
n )+τ ·noise,

(32)
where a dimensionless coupling constant α is introduced as

α :=
2τ

δ2
. (33)

Introduce dimensionless field variable Φi
n by writing ϕi

n = Φi
npmax, where pmax is

some (so far) arbitrary energy scale. =⇒

Φi
n+1 = (1−α)T (Φi

n)+
3

2
Hδα(Φi

n−Φi−1
n )+

α

2
(Φi+1

n +Φi−1
n )+τ ·noise, (34)

where the local map T is given by

T (Φ) = Φ +
τ

pmax(1 − α)
V ′(pmaxΦ). (35)

21



Note that a symmetric diffusively coupled map lattice (Kaneko 1984)

Φi
n+1 = (1 − α)T (Φi

n) +
α

2
(Φi+1

n + Φi−1
n ) + τ · noise (36)

is obtained if Hδ << 1, equivalent to

δ << H−1 (37)
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Note that a symmetric diffusively coupled map lattice (Kaneko 1984)

Φi
n+1 = (1 − α)T (Φi

n) +
α

2
(Φi+1

n + Φi−1
n ) + τ · noise (36)

is obtained if Hδ << 1, equivalent to

δ << H−1 (37)

The main result of our consideration is that iteration of a coupled map lattice of the
form (36) with a given map T has physical meaning: It means that one is considering the
second-quantized dynamics of a self-interacting real scalar field ϕ with a force V ′ given
by

V ′(ϕ) =
1 − α

τ

{
−ϕ + pmaxT

(
ϕ

pmax

)}
. (38)

Integration yields

V (ϕ) =
1 − α

τ

{
−

1

2
ϕ2 + pmax

∫
dϕ T

(
ϕ

pmax

)}
+ const. (39)

In terms of the dimensionless field Φ this can be written as

V (ϕ) =
1 − α

τ
p2

max

{
−

1

2
Φ2 +

∫
dΦT (Φ)

}
+ const. (40)

Lattice constant τ should be small, in order to approximate the continuum theory, which
is ordinary quantum field theory. Typical choice τ ∼ 1/m2

Pl.
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Distinguished example of a ϕ4-theory generating strongest possible chaotic behaviour:

Φn+1 = T−3(Φn) = −4Φ3
n + 3Φn (41)

on the interval Φ ∈ [−1, 1]. T−3 is the negative third-order Tchebyscheff map, a standard
example of a map exhibiting strongly chaotic behaviour. It is conjugated to a Bernoulli
shift. The corresponding potential is given by

V−3(ϕ) =
1 − α

τ

{
ϕ2 −

1

p2
max

ϕ4

}
+ const, (42)

or, in terms of the dimensionless field Φ,

V−3(ϕ) =
1 − α

τ
p2

max(Φ
2 − Φ4) + const. (43)

We obtain by second quantization a field ϕ that rapidly fluctuates in fictitious time on
some finite interval, provided that initially ϕ0 ∈ [−pmax, pmax].

23



Of physical relevance are the expectations of suitable observables with respect to the
ergodic chaotic dynamics. For example, the expectation 〈V−3(ϕ)〉 of the potential is a
possible candidate for vacuum energy in our universe. One obtains

〈V−3(ϕ)〉 =
1 − α

τ
p2

max(〈Φ
2〉 − 〈Φ4〉) + const. (44)

For uncoupled Tchebyscheff maps (α = 0), expectations of any observable A can be
evaluated as the ergodic average

〈A〉 =

∫ +1

−1

A(Φ)dµ(Φ), (45)

with the natural invariant measure being given by

dµ(Φ) =
dΦ

π
√

1 − Φ2
(46)

From eq. (46) one obtains 〈Φ2〉 = 1
2

and 〈Φ4〉 = 3
8
, thus

〈V−3(ϕ)〉 =
1

8

p2
max

τ
+ const. (47)

24



Alternatively, we may consider the positive Tchebyscheff map T3(Φ) = 4Φ3 − 3Φ.
This basically exhibits the same dynamics as T−3, up to a sign. Repeating the same
calculation we obtain

V3(ϕ) =
1 − α

τ

{
−2ϕ2 +

1

p2
max

ϕ4

}
+ const (48)

and

V3(ϕ) =
1 − α

τ
p2

max(−2Φ2 + Φ4). (49)

For the expectation of the vacuum energy one gets

〈V3(ϕ)〉 =
1 − α

τ
p2

max(−2〈Φ2〉 + 〈Φ4〉) + const, (50)

which for α = 0 reduces to

〈V3(ϕ)〉 = −
5

8

p2
max

τ
+ const. (51)

Symmetry considerations between T−3 and T3 suggest to take the additive constant const
as

const = +
1 − α

τ
p2

max

1

2
〈Φ2〉. (52)

25



One obtains the fully symmetric equation

〈V±3(ϕ)〉 = ±
1 − α

τ
p2

max

{
−

3

2
〈Φ2〉 + 〈Φ4〉

}
, (53)

which for α → 0 reduces to

〈V±3(ϕ)〉 = ±
p2

max

τ

(
−

3

8

)
. (54)
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One obtains the fully symmetric equation

〈V±3(ϕ)〉 = ±
1 − α

τ
p2

max

{
−

3

2
〈Φ2〉 + 〈Φ4〉

}
, (53)

which for α → 0 reduces to

〈V±3(ϕ)〉 = ±
p2

max

τ

(
−

3

8

)
. (54)

The simplest model for dark energy in the universe, as generated by a chaotic ϕ4-theory,
would be to identify 3

8
p2

max/τ = ρΛ, the constant vacuum energy density corresponding
to a classical cosmological constant Λ, which stays constant during the expansion of the
universe.

For a more sophisticated model (including late-time symmetry breaking due to structure
formation, and tracking behaviour in the early universe) see C.B., Phys. Rev. D 69, 123515
(2004)
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Some interesting aspects of this model

• Vacuum fluctuations underlying dark energy are produced by a deterministic chaotic
noise field (a CML) evolving in fictitious time

• Field (almost) conjugated to a Bernoulli shift today. Dynamics given by a CML of
diffusively coupled 3rd-order Tchebyscheff map, coupling a ∼ (m/mPl)

2 ∼ 10−50.
In the very early universe, coupling can be significantly larger.
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Some interesting aspects of this model

• Vacuum fluctuations underlying dark energy are produced by a deterministic chaotic
noise field (a CML) evolving in fictitious time

• Field (almost) conjugated to a Bernoulli shift today. Dynamics given by a CML of
diffusively coupled 3rd-order Tchebyscheff map, coupling a ∼ (m/mPl)

2 ∼ 10−50.
In the very early universe, coupling can be significantly larger.

• Could these chaotic noise fluctuations help to ’derive’ ordinary statistical mechanics, by
coupling them as a small Langevin-like noise term to ordinary matter?

• Could these or similar types of fluctuations produce measurable effects in laboratory
experiments (C.B., M.C.Mackey, Phys. Lett. B 605, 295 (2005))?

27



Statistical mechanics of nonhyperbolic coupled map lattices 1 2 3 4 5 6

6 Summary

• Behaviour of nonhyperbolic CMLs much more complicated than that of hyperbolic ones.

• Scaling with
√

a, logperiodic oscillations , ...

• Analytical perturbative treatment possible for diffusively coupled Tchebyscheff maps of
N -th order

S. Groote, C.B.,nlin.CD/0603397

• Diffusively CMLs do have interesting applications in stochastically quantized field the-
ories, in particular for theories that require a cutoff.

C.B., Spatio-temporal Chaos and Vacuum Fluctuations of Quantized Fields, World
Scientific (2002)

• A chaotic dark energy model, leading to finite vacuum energy, is based on a CML of
diffusively coupled 3rd-order Tchebyscheff maps

C.B., Phys. Rev. D 69, 123515 (2004)
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