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1. Introduction

T homogeneous tree, degree g+ 1 > 3.

Lamp at each vertex, states 0 (off) and 1 (on).

A Lamplighter performs random walk on T. Makes random moves
and / or changes of state of the lamp at current position (or nearby).




Configuration on X : function 7n:X — {0,1} with finite support

suppn ={x € X :n(x) #0}.

At each step, we have to observe the pair (n,z), where n is the
current configuration of the lamps and z is the current position of the

lamplighter.

Let C = {configurations}.
The state space of our random process is C x X .

Let p((n,:r:), (77/,:15’)) be the transition probabilities of the lamplighter
random walk Z, = (Y, Xn).

Assumed to be irreducible and space homogeneous:
F group of isometries of T that acts transitively
(e.g. free group, or affine group of T).

C is also (commutative) group, pointwise addition mod 2.



F actson C by translation
Tgn(x) :T}(g_lx)a 96}_, rxeT.
Semidirect product
g=CxF

acts transitively on our state space by

(¢7g)(nax):(¢+Tgnagx)a QEF,¢€C

Space homogeneity:

p((¢,9)(n, ), (¢, 9) (")) = p((n,2), (0, 2))

Basic example: (Xn) simple random walk on T.

“Walk or switch”™ At each step, lamplighter tosses coin.

“Heads” — (s)he walks, lamps unchanged;

“tails” — (s)he modifies lamp at current position, does not move.
Underlying graph L: lamplighter graph over T. (— graph metric)
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2. Behaviour at infinity

Under above assumptions: (Xy) is Markov chain on T, factor chain
p(z,z") =Y p((n,2), ()
77/

space homogeneous (invariant under F).

Known to be transient (visits any finite set only finitely often).

= There is a random limit configuration
Yoo = lim Yo €C={¢: X — {0,1}]
(not necessarily finitely supported).

Yoo(x) is the definite state of the lamp at =x.



Proposition. If (X,) has finite first moment
mr = ZdT(xax/) p(xa 33/)
X

then X, converges a.s. to a random end X € O0T.

Due to [Cartwright & Soardi 1989] when F fixes no end (no moment
condition needed), [Cartwright, Kaimanovich & Woess 1994] when F
fixes an end.

Ends (boundary points) u € 9T are represented by geodesic rays
u= [o==x0,21,...] starting from a root o T.

Convergence of zp, €T to ue dT:
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end compactification of tree
compactification of C (pointwise convergence)
— Cx T is natural compactification L of the lamplighter graph L.

QN =)

Theorem. [Karlsson & Woess, 2006-07] If the lamplighter random walk
Zn = (Yn, Xn) has finite first moment

mp =Y di((m,2),(®,2)) p((n2), (,2"))
(n',2’)
then (Z,) converges a.s. to a limit random variable
o = (Yoo, Xoo) € OL =L\ L.

If Xoo =uecdT then the limit configuration Yso = ¢ € C accumulates
only at u.

(i.e.: wp, € supp ¢ all distinct = wp, — u.)



3. Poisson boundary

n = (Yn, Xn) is transient = goes off to .

Topology of L  provides model OL at infinity for a finer way to
distinguish how Z,, goes off.

Is this the finest model 7

Preliminaries:

Set N= [J Cux{u}, where Cy={¢€C:¢accumulates only atu}.
ueoT

Cy is densein C. Closure of M is subset C x 8T of dL.

V(n.2) distribution of Zs given that lamplighter random walk starts
at (n,z). Probability measure on T (resp. C x dT).



V(p ) IS the image of v =y, under group element (n,g9) € G,
where ge F with go==x.

AN

Here, action of G > (n,g9) extendsto L by

(777 g)(Ca U) — (77 + TQC? QU) .

Leaves Borel set Il C L invariant.

Indeed, if ¢ € Cy, where uec 9T, then n+ Ty € Cqu, since adding 7
modifies T3¢ only in finitely many points.

Our boundary is the probability space (M,v)  [equivalently (L,v)].

Is it the Poisson boundary 7
that is, the finest model of a probability space at infinity of L  for
distinguishing the possible limiting behaviour of (Z,) 7



Various rigorous equivalent definitions, see [Kaimanovich & Vershik,
1983] (for r.w. on discrete groups).

o The space of ergodic components in the trajectory space of the
random walk.

o The Martin boundary of the random walk together with the har-
monic measure(s).

e Every bounded harmonic function h on L with respect to the
transition matrix has a unique integral representation

h(n,x) = /I'I o dvi, 2y, € L>®(N,v).

Answer (yes) relies on strip criterion of [Kaimanovich, 2000], adapted to
space-homogeneous random walks by [Kaimanovich & Woess, 2002].
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Lemma. [Woess, 1989; 2000] The measure on L defined by

m(n,z) = |Fzol|/|Foxl

IS invariant for the random walk.
(If F is discrete, e.g. free group, then m is counting measure.)

The m-reversal of the random walk is

m(n, ') p((0,2"), (n, )
m(n, )

p((n ), (. 2")) =

Theorem. [Karlsson & Woess, 2006-07] (for F discrete),

[Sava, 2007] (for general F)
If both the lamplighter random walk and its m-reversal have finite first
moments on L, then (M,r) is the Poisson boundary of the LL walk.
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4. Strip criterion

We have boundaries (M,v) for the LL random walk and (M =,7)
for its m-reversal.

Proposition. Suppose that there is a measurable G-equivariant map
S assigning to (v x v)-almost every pair of points (8,8) e Mx N a
non-empty “strip” S(3,8) c L such that for the ball B(o,n) of
radius n in the metric of L,

1 ~
—IOg|S(6,ﬁ) ﬁB(o,n)’ — 0 as n— oo,
n

then (M,v) and (MN,7) arethe Poisson boundaries of the LL random
walk and its m-reversal, respectively.

G-equivariant means: if g= (n,9) € G then g-S(3,8) = S(g8,903).
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Application of strip criterion:

o distribution of Xs on 0T given ; Xg =0 image of v under
projection [1— OT.

Known. (0T, u) is Poisson boundary of the random walk X, on T.

Case 1. F fixes noend of T
(in particular: F discrete, e.g. free)

Proposition. [Woess, 1989], argument going back to [Furstenberg,
1972].

supppu =0T and u(u) =0 VuedT.
Same holds for u corresponding to reversed random walk.
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Now let 8= (¢,u), B=((u)ecrn.
By above,

yxﬁ({(ﬁ,ﬁ)él’lxl‘l:uzﬁ})zo.

May assume u # u.
Let «x € [u,u] be a vertex on the geodesic in T between the two

ends.
Let C(x,u) be component of u in T\ {x}, analogously C(z,u).
Then

Nz = Cloen) T Clo@u) €C
since (¢ acccumulates only at u and 5 only at 1u.

S(8,8) = {(nz, ) : w € [u, 1]}

fulfills all requirements of strip criterion.
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Case 2. F fixesanend w of T

Natural projection onto Z.

base walk X,, projects to
random walk h(X,) on Z.

Let a be the drift of
h(Xn) .

The reversed random walk
has drift a = —a.
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Proposition. [Cartwright, Kaimanovich & Woess, 1994],
[Brofferio, 2004]
Suppose X,, on T has finite first moment.

(1) If a>0 then X, — Xo € 0*T a.s., the distribution p of X
satisfies suppu = 0*T and pu(u) =0 YVueo*T .

The Poisson boundary of X, is (0*T,pu).

(2) If a<0 then X, — w a.s.

The Poisson boundary of X, is ({w},dw).
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Back to application of strip criterion for LL walk

(i) If a> 0 then the candidate for Poisson boundary of the LL walk is
more precisely

N = J Cux{u}

uco*T
with the limit measure v (as a measure on [1*).

The candidate for Poisson boundary of the reversed LL walk is

with the limit measure v supported by that set.

Thus, strips S(3,8) have to be constructed for 3 = (¢,u) and
B=((,w) with ued*T ,(eCi and ¢ € Cw.
The construction is exactly as above.

(ii) If a < 0 then we just have to exchange roles of LL walk and reversed
LL walk.
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(iii) If a =0 then both candidate boundaries are Cx x {w} with the
corresponding limit measures v and v.

Let 8= ((,w) and B=({,w) with both (¢, (e Cwx (distinct).
Let C*(z,w) be the complement of C(z,w) . Define

Then

fulfills all requirements, since the set of all =z with n; #=0 is a subtree
of T with the only end w. Hence it has linear growth in T , and so
has S(8,8) in L.
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