Introduction
Weighted MAX-SAT
Encoding BN model selection as weighted CNF
Pre-computing scores
Experiments
Results
Recent work

Bayesian network learning by compiling to weighted MAX-SAT

James Cussens, University of York

Mathematical Aspects of Graphical Models, Durham, 2008-07-07

Introduction

Weighted MAX-SAT

Encoding BN model selection as weighted CNF

Pre-computing scores

Experiments

Results

Model selection as combinatorial optimisation

- Model selection for Bayesian networks (using a decomposable score) is combinatorial optimisation.
- In this work the score is marginal likelihood with a Dirichlet parameter prior.

$$P(D|G) = \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(n_{ij} + \alpha_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(n_{ijk} + \alpha_{ijk})}{\Gamma(\alpha_{ijk})}$$

- ► Score(G) $\stackrel{\text{def}}{=}$ log $P(D|G) = \sum_{i=1}^{n} \text{Score}_{i}(\text{Pa}_{i}(G))$.
- ► For each variable choose high-scoring parents subject to the constraint that no cycle is formed.

Introduction
Weighted MAX-SAT
Encoding BN model selection as weighted CNF
Pre-computing scores
Experiments
Results
Recent work

The basic idea

► Given that BN model selection is combinatorial optimisation . . .

The basic idea

- ▶ Given that BN model selection is combinatorial optimisation
- ...we can use state-of-the-art algorithms for combinatorial optimisation ...

The basic idea

- ► Given that BN model selection is combinatorial optimisation . . .
- ... we can use state-of-the-art algorithms for combinatorial optimisation ...
- ...if we are prepared to do a little encoding.

Introduction

Weighted MAX-SAT

Encoding BN model selection as weighted CNF

Pre-computing scores

Experiments

Results

The SAT problem

Is a given set of propositional clauses (a CNF formula) satisfiable?

$$\overline{x_{12}} \lor \overline{x_{23}} \lor x_{13}$$

 $x_{12} \lor x_{23} \lor \overline{x_{13}}$ OK: $(x_{12}, x_{23}, x_{13}), (x_{12}, \overline{x_{23}}, x_{13}), \dots$

The SAT problem

Is a given set of propositional clauses (a CNF formula) satisfiable?

$$\overline{x_{12}} \lor \overline{x_{23}} \lor x_{13}$$
 $x_{12} \lor x_{23} \lor \overline{x_{13}}$ OK: $(x_{12}, x_{23}, x_{13}), (x_{12}, \overline{x_{23}}, x_{13}), \dots$
 x_{12}
 x_{23} OK: (x_{12}, x_{23}, x_{13})

The SAT problem

Is a given set of propositional clauses (a CNF formula) satisfiable?

$$\overline{x_{12}} \lor \overline{x_{23}} \lor x_{13}$$
 $x_{12} \lor x_{23} \lor \overline{x_{13}}$ OK: $(x_{12}, x_{23}, x_{13}), (x_{12}, \overline{x_{23}}, x_{13}), \dots$
 x_{12}
 x_{23} OK: (x_{12}, x_{23}, x_{13})
 $\overline{x_{13}}$ Unsatisfiable

 \triangleright x_{12} , x_{23} and x_{13} are called *atoms*. (Short for atomic formulae.)

The weighted MAX-SAT problem

- Add weights to each clause (to get weighted CNF).
- Each assignment has a cost: the sum of the weights of the unsatisfied clauses.
- ► An infinite cost gives a 'hard' clause. (In practice a big number is used.)
- Goal: find an assignment with minimal cost.

9999
$$\overline{x_{12}} \lor \overline{x_{23}} \lor x_{13}$$

9999 $x_{12} \lor x_{23} \lor \overline{x_{13}}$
12 x_{12}
34 x_{23}
1 $\overline{x_{13}}$

Weighted MAX-SAT as mode finding for log-linear distributions

- ▶ Given weighted CNF $\lambda_1 C_1, \lambda_2 C_2, \dots$
- ▶ Define $f_i(\mathbf{x}) = 1$ if \mathbf{x} breaks clause C_i ; else = 0
- $ightharpoonup P(\mathbf{x}) = Z^{-1} \exp\left(\sum_i -\lambda_i f_i(\mathbf{x})\right)$

This connection has been exploited by those working on *Markov logic* where weighted *first-order* clauses are used.

Weighted MAX-SAT solvers

- ▶ Here are the SAT solving algorithms available in UBCSAT.
- ▶ 19 have weighted MAX-SAT variants
- Adaptive G2WSAT
 - Adaptive G2WSAT+p
- Adaptive Novelty+
- Conflict-Directed Random Walk
- DDFW: Divide and Distribute Fixed Weights
- Deterministic Conflict-Directed Random Walk
- Deterministic Adaptive Novelty+
- ► G2WSAT: Gradient-based Greedy WalkSAT
- ► G2WSAT+p: Gradient-based Greedy WalkSAT with look-ahead
- GSAT: Greedy Search for SAT
- GSAT/TABU: GSAT with Tabu search
- ► GWSAT: GSAT with Random Walk
- ► HSAT: GSAT with History Information

Experiments Results Recent work

Weighted MAX-SAT solvers

- ► HWSAT: HSAT with Random Walk
- ► IRoTS: Iterated Robust TABU Search
- Novelty
- Novelty+: Novelty with Random Walk
- Novelty++: Novelty with Diversification Probability
- Novelty+p: Novelty+ with look-ahead
- PAWS: Pure Additive Weighting Scheme
- ► RoTS: Robust Tabu Search
- R-Novelty
- R-Novelty+: R-Novelty with Random Walk
- RGSAT: Restarting GSAT
- RSAPS: Reactive SAPS
- SAMD: Steepest Ascent Mildest Descent
- SAPS: Scaling and Probabilistic Smoothing
- SAPS/NR: De-randomized version of SAPS
- Uniform Random Walk
- VW1: Variable Weighting Scheme One
- VW2: Variable Weighting Scheme Two
- WalkSAT
- ► WalkSAT/TABU: WalkSAT with TABU search

Introduction

Weighted MAX-SAT

Encoding BN model selection as weighted CNF

Pre-computing scores

Experiments

Results

Choosing parents incurs a cost, but we must choose

- ▶ Create atoms: " X_i has parent set Pa"
- ▶ Create weighted clauses: $-Score_i(Pa) : \overline{X_i}$ has parent set Pa
- ▶ Create 'hard' clauses: $(X_i \text{ has parent set } \operatorname{Pa}_{i1}) \vee (X_i \text{ has parent set } \operatorname{Pa}_{i2}) \vee \cdots \vee (X_i \text{ has parent set } \operatorname{Pa}_{im_i})$
- Choosing parents for each variable determines the DAG.

Ruling out cycles with a total order

- Encode variable orderings as well as DAGs (à la Friedman and Koller)
- ▶ Create n(n-1)/2 atoms: $ord(X_i, X_j)$ meaning X_i and X_j are lexicographically ordered in the variable ordering.
- Create hard clauses:

$$X_j$$
 has parent set $\{X_i, X_k\} \rightarrow \operatorname{ord}(X_i, X_j)$
 X_j has parent set $\{X_i, X_k\} \rightarrow \overline{\operatorname{ord}(X_j, X_k)}$

► Create n(n-1)(n-2)/3 hard clauses:

$$\overline{\operatorname{ord}(X_i, X_j)} \vee \overline{\operatorname{ord}(X_j, X_k)} \vee \overline{\operatorname{ord}(X_i, X_k)}$$

 $\overline{\operatorname{ord}(X_i, X_j)} \vee \overline{\operatorname{ord}(X_j, X_k)} \vee \overline{\operatorname{ord}(X_i, X_k)}$

Introduction

Weighted MAX-SAT

Encoding BN model selection as weighted CNF

Pre-computing scores

Experiments

Results

Pre-computing scores

- ➤ All weighted MAX-SAT solvers (that I know of) require all weights to be known before solving begins.
- ▶ So compute and store Score_i(Pa) for every variable *i* and candidate parent set Pa.
- I used a limit of 3 parents.
- With their more efficient code (and 4 dual-core machines) Silander and Myllymäki's bene system took 6 hours 16 minutes to compute all parent scores when there were 29 variables.
- ▶ In an example with 17 variables bene took under 18 seconds.

Filtering 'family' scores

lf

then throw RHS score away.

Introduction

Weighted MAX-SAT

Encoding BN model selection as weighted CNF

Pre-computing scores

Experiments

Results

BNs and datasets

▶ Datasets of size 100, 1000 and 10000 were produced by forward sampling from the following 7 BNs.

		max	
Name	n	Pa	r
Mildew	35	3	100
Water	32	5	4
alarm	37	4	4
asia	8	2	2
carpo	60	5	4
hailfinder	56	4	11
insurance	27	3	5

Size of WCNF

► These are sizes for an alternative encoding using a partial order over variables.

Data	atoms	clauses	lits
ca_2	8,609	226,406	661,551
ca_3	7,368	221,365	651,469
ca_4	19,932	269,367	747,473
ha_2	3,325	170,009	509,305
ha_3	3,842	171,400	512,087
ha_4	6,849	181,545	532,377
in_2	982	18,926	56,049
in_3	1,477	20,346	58,889
in_4	4,355	30,344	78,885

The MaxWalkSAT algorithm

```
while still_trying:
    somehow_assign_truth_values_to_all_atoms
    while cost <= target:
        c = random_choice(unsat_clauses)
        lits = lits_of(c)
        if random_flip:
            lit = random_choice(lits)
        else:
            lit = lowest_cost_flip(lits)
        flip_truth_value(lit)
        update_cost
```

Running MaxWalkSAT

```
newmaxwalksat version 20 (Huge)
seed = 99955222
cutoff = 10000000
tries = 100
numsol = 1
targetcost = 503040
heuristic = best, noise 50 / 100, init initfile
allocating memory...
clauses contain explicit costs
numatom = 6848, numclause = 181544, numliterals = 529296
wff read in
                                           average
                                                               average
                                                                            mean
    lowest
             worst
                       number
                                              when
                                                                  over
                                                                           flips
                                                                   all
                                                                           until
      cost
             clause
                       #unsat
                                 #flips
                                            model
                                                    success
 this try this try this try
                                            found
                                                                 tries
                                                       rate
                                                                           assign
    506076
              16968
                            56
                               10000000
               23318
                                 2913803
                                           2913803
                                                          50 12913803 12913803 0
    501973
                            56
total elapsed seconds = 75.428415
average flips per second = 171206
number of solutions found = 1
mean flips until assign = 12913803.000000
mean seconds until assign = 75.428415
mean restarts until assign = 2.000000
```

ASSIGNMENT ACHIEVING TARGET 503040 FOUND

Nature of the search space

- ▶ If the current assignment of truth values to the atoms breaks at least one hard clause, then this assignment does not correspond to a DAG.
- ► The search (temporarily) visits cyclic graphs and 'graphs' were a variable's parent set may be undefined.
- Breaking hard constraints is OK; they will be fixed eventually.

Introduction

Weighted MAX-SAT

Encoding BN model selection as weighted CNF

Pre-computing scores

Experiments

Results

Searching for high scoring BNs

Data	True	Ancestor	Total order	Long	> True
Mi_2	-7,786	-5,711	-5,708	-5,705	Y
Mi_3	-63,837	-47,229	-47,194	-47,120	Υ
Mi_4	-470,215	-409,641	-410,159	-408,282	Υ
Wa_2	-1,801	-1,488	-1,486	-1,484	Υ
Wa_3	-13,843	-13,293	-13,284	-13,247	Υ
Wa_4	-129,655	-129,274	-128,916	-128,812	Υ
al_2	-1,410	-1,368	-1,368	-1,336	Υ
al_3	-11,305	-11,599	-11,501	-11,339	N
al_4	-105,303	-107,205	-106,503	-105,907	N

Searching for high scoring BNs

Data	True	Ancestor	Total order	Long	> True
as_2	-247	-241	-241	-241	Y
as_3	-2,318	-2,312	-2,312	-2,312	Y
as_4	-22,466	-22,462	-22,462	-22,462	Y
ca_2	-1,969	-1,849	-1,852	-1,824	Y
ca_3	-17,739	-17,938	-17,891	-17,731	Y
ca_4	-173,682	-175,832	-176,456	-174,605	N

Introduction

Weighted MAX-SAT

Encoding BN model selection as weighted CNF

Pre-computing scores

Experiments

Results

Working directly on total orders

Given a total ordering the best parents for each variable are easy to find.

	$\{Tb,Tu\}$	-2.24772935188
	{Tb}	-3.00976537207
	{Sm, XR}	-8.07036732971
	$\{Tu, XR\}$	-9.37534407212
	{XR}	-9.38063760741
	$\{Sm,Tu\}$	-21.6756460345
	{Sm}	-21.6903150436
	{}	-25.2333385745

Parent sets for Cancer

Decision tree for choosing parents

Encoding as WCNF

$$\begin{array}{llll} 2 & : & \overline{(\text{Tb} < \text{Ca})} \lor \overline{(\text{Tu} < \text{Ca})} \\ 3 & : & \overline{(\text{Tb} < \text{Ca})} \lor \overline{(\text{Tu} < \text{Ca})} \\ 8 & : & \overline{(\text{Tb} < \text{Ca})} \lor \overline{(\text{XR} < \text{Ca})} \lor \overline{(\text{Sm} < \text{Ca})} \\ 9 & : & \overline{(\text{Tb} < \text{Ca})} \lor \overline{(\text{XR} < \text{Ca})} \lor \overline{(\text{Sm} < \text{Ca})} \lor \overline{(\text{Tu} < \text{Ca})} \\ 9 & : & \overline{(\text{Tb} < \text{Ca})} \lor \overline{(\text{XR} < \text{Ca})} \lor \overline{(\text{Sm} < \text{Ca})} \lor \overline{(\text{Tu} < \text{Ca})} \\ 21 & : & \overline{(\text{Tb} < \text{Ca})} \lor \overline{(\text{XR} < \text{Ca})} \lor \overline{(\text{Sm} < \text{Ca})} \lor \overline{(\text{Tu} < \text{Ca})} \\ 21 & : & \overline{(\text{Tb} < \text{Ca})} \lor \overline{(\text{XR} < \text{Ca})} \lor \overline{(\text{Sm} < \text{Ca})} \lor \overline{(\text{Tu} < \text{Ca})} \\ 25 & : & \overline{(\text{Tb} < \text{Ca})} \lor \overline{(\text{XR} < \text{Ca})} \lor \overline{(\text{Sm} < \text{Ca})} \\ \end{array}$$

Initial results with 'order-only' encoding

- Using the irots solver and the new encoding get:
 - Score of -132,951 for insurance 10,000 dataset. Beats best previous score of -133,934 and score of true BN which is -133,489.
 - Score of -497,652 for hailfinder 10,000 dataset. Beats best previous score of -498,739.