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Introduction

selection as combinatorial optimisation

» Model selection for Bayesian networks (using a decomposable
score) is combinatorial optimisation.

» In this work the score is marginal likelihood with a Dirichlet
parameter prior.

Mo I (nijx+aij
» P(D|G) =17 1H7'1rn5+10)4,,)H (Fj(kaitk)!k)

> Score(G) ¥ log P(D|G) = 327, Score;(Pai(G)).

» For each variable choose high-scoring parents subject to the
constraint that no cycle is formed.
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Introduction

The basic idea

» Given that BN model selection is combinatorial optimisation

> ...we can use state-of-the-art algorithms for combinatorial
optimisation ...

» ...if we are prepared to do a little encoding.
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Weighted MAX-SAT

The SAT problem

» Is a given set of propositional clauses ( a CNF formula)
satisfiable?

X12 V X23 V X13

x12Vx3Vxiz  OK :(xi2, %3, x13), (X12, %23, X13);5 - - -
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The SAT problem

» Is a given set of propositional clauses ( a CNF formula)
satisfiable?

X12 V X23 V X13

x12 V x03 V X13 OK :(x12, x23, X13), (X12, %23, X13), - - -
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x23  OK :(x12, %03, X13)

James Cussens, University of York BN learning via weighted MAX-SAT



Weighted MAX-SAT

The SAT problem

» Is a given set of propositional clauses ( a CNF formula)
satisfiable?

X12 V X23 V X13

x12 V x03 V X13 OK :(x12, x23, X13), (X12, %23, X13), - - -
X12
x23  OK :(x12, %03, X13)

X13 Unsatisfiable

> x12, x23 and xi3 are called atoms. (Short for atomic formulae.)
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Weighted MAX-SAT

The weighted MAX-SAT problem

» Add weights to each clause (to get weighted CNF).

» Each assignment has a cost: the sum of the weights of the
unsatisfied clauses.

» An infinite cost gives a ‘hard’ clause. (In practice a big
number is used.)

» Goal: find an assignment with minimal cost.

9999 X12 V X23 V X13
9999 x12 V X203 V X13

12 X12
34 X23
1 X3
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Weighted MAX-SAT

Weighted MAX-SAT as mode finding for log-linear
distributions

» Given weighted CNF \1 G, A Gy, ...
» Define fj(x) = 1 if x breaks clause C;; else =0
> P(x) = Z " exp (32; —Aifi(x))

This connection has been exploited by those working on Markov
logic where weighted first-order clauses are used.
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Weighted MAX-S.

Weighted MAX-SAT solvers

v

Here are the SAT solving algorithms available in UBCSAT.
19 have weighted MAX-SAT variants

v

Adaptive G2WSAT

Adaptive G2WSAT+p

Adaptive Novelty+

Conflict-Directed Random Walk

DDFW: Divide and Distribute Fixed Weights
Deterministic Conflict-Directed Random Walk
Deterministic Adaptive Novelty+

G2WSAT: Gradient-based Greedy WalkSAT
G2WSAT+p: Gradient-based Greedy WalkSAT with look-ahead
GSAT: Greedy Search for SAT

GSAT /TABU: GSAT with Tabu search
GWSAT: GSAT with Random Walk

HSAT: GSAT with History Information

VYVVVVVVVVVYYVYYY
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Weighted MAX-SAT

Weighted MAX-SAT solvers

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

HWSAT: HSAT with Random Walk

IRoTS: Iterated Robust TABU Search

Novelty

Novelty+: Novelty with Random Walk
Novelty++: Novelty with Diversification Probability
Novelty+p: Novelty+ with look-ahead

PAWS: Pure Additive Weighting Scheme
RoTS: Robust Tabu Search

R-Novelty

R-Novelty+: R-Novelty with Random Walk
RGSAT: Restarting GSAT

RSAPS: Reactive SAPS

SAMD: Steepest Ascent Mildest Descent
SAPS: Scaling and Probabilistic Smoothing
SAPS/NR: De-randomized version of SAPS
Uniform Random Walk

VW1: Variable Weighting Scheme One

VW?2: Variable Weighting Scheme Two
WalkSAT

WalkSAT/TABU: WalkSAT with TABU search
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Encoding BN model selection as weighted CNF

Choosing parents incurs a cost, but we must choose

» Create atoms: “X; has parent set Pa”
> Create weighted clauses: —Score;(Pa) : X has parent set Pa
» Create ‘hard’ clauses:
(X; has parent set Pa;1) V (X; has parent set Paj) V.-V
(Xi has parent set Pajp,)
» Choosing parents for each variable determines the DAG.
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Encoding BN model selection as weighted CNF

Ruling out cycles with a total order

» Encode variable orderings as well as DAGs (a la Friedman and
Koller)

» Create n(n—1)/2 atoms: ord(X;, X;) meaning X; and X; are
lexicographically ordered in the variable ordering.

» Create hard clauses:

X; has parent set {X;, Xk} — ord(Xi, Xj)

X; has parent set {X;, Xk} — ord(Xj, Xk)
» Create n(n— 1)(n — 2)/3 hard clauses:

ord(Xi, X;) V ord(Xj, Xk) V ord(X;, Xk)

ord(X;, X;) V ord(X;, Xx) V ord(X;, X)
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Pre-computing scores

Pre-computing scores

> All weighted MAX-SAT solvers (that | know of) require all
weights to be known before solving begins.

» So compute and store Score;(Pa) for every variable i and
candidate parent set Pa.

» | used a limit of 3 parents.

» With their more efficient code (and 4 dual-core machines)
Silander and Myllymaki's bene system took 6 hours 16
minutes to compute all parent scores when there were 29
variables.

» In an example with 17 variables bene took under 18 seconds.
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Pre-computing scores

Filtering ‘family’ scores

X1 Xl

Scorey > Scorey

then throw RHS score away.
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Experiments

BNs and datasets

» Datasets of size 100, 1000 and 10000 were produced by
forward sampling from the following 7 BNs.

max
Name n | |Pa| r
Mildew 35 31100
Water 32 5 4
alarm 37 4 4
asia 8 2 2
carpo 60 5 4
hailfinder | 56 41 11
insurance | 27 3 5
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Experiments

Size of WCNF

» These are sizes for an alternative encoding using a partial
order over variables.

Data ‘ atoms | clauses Iits‘

ca2 8,609 | 226,406 | 661,551
ca_3 7,368 | 221,365 | 651,469
ca4 | 19,932 | 269,367 | 747,473
ha_2 3,325 | 170,009 | 509,305
ha3 | 3,842 | 171,400 | 512,087
ha4 | 6,849 | 181,545 | 532,377
in_2 082 | 18,926 | 56,049
in_3 1,477 | 20,346 | 58,889
in4 4,355 | 30,344 | 78,885
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Experiments

The MaxWalkSAT algorithm

while still_trying:
somehow_assign_truth_values_to_all_atoms
while cost <= target:
¢ = random_choice(unsat_clauses)
lits = lits_of(c)
if random_flip:
lit = random_choice(1lits)
else:
lit = lowest_cost_flip(lits)
flip_truth_value(lit)
update_cost
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Experiments

Running MaxWalkSAT

newmaxwalksat version 20 (Huge)

seed = 99955222

cutoff = 10000000

tries = 100

numsol = 1

targetcost = 503040

heuristic = best, noise 50 / 100, init initfile
allocating memory...

clauses contain explicit costs

numatom = 6848, numclause = 181544, numliterals = 529296
wff read in

average average mean

lowest worst number when over flips
cost clause #unsat #flips model success all until
this try this try this try this try found rate tries assign
506076 16968 56 10000000 * 0 * *
501973 23318 56 2913803 2913803 50 12913803 12913803.0

total elapsed seconds = 75.428415
average flips per second = 171206
number of solutions found = 1
mean flips until assign = 12913803.000000
mean seconds until assign = 75.428415
mean restarts until assign = 2.000000
0
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Experiments

of the search space

» If the current assignment of truth values to the atoms breaks
at least one hard clause, then this assignment does not
correspond to a DAG.

» The search (temporarily) visits cyclic graphs and ‘graphs’ were
a variable's parent set may be undefined.

» Breaking hard constraints is OK; they will be fixed eventually.

BN learning via weighted MAX-SAT
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Results

Searching for high scoring BNs

Data True | Ancestor | Total order Long | > True
Mi_2 -7,786 -5,711 -5,708 -5,705 Y
Mi_3 -63,837 | -47,229 -47,194 | -47,120 Y
Mi_4 | -470,215 | -409,641 -410,159 | -408,282 Y
Wa_2 -1,801 -1,488 -1,486 -1,484 Y
Wa3 | -13,843 | -13,293 -13,284 | -13,247 Y
Wa_4 | -129,655 | -129,274 -128,916 | -128,812 Y
al2 -1,410 -1,368 -1,368 -1,336 Y
al_3 -11,305 | -11,599 -11,501 | -11,339 N
al4 | -105,303 | -107,205 -106,503 | -105,907 N
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Results

Searching for high scoring BNs

Data True | Ancestor | Total order Long | > True
as_2 -247 -241 -241 -241 Y
as_3 -2,318 -2,312 -2,312 -2,312 Y
as_4 -22,466 | -22,462 -22,462 | -22,462 Y
ca2 -1,969 -1,849 -1,852 -1,824 Y
ca3 -17,739 | -17,938 -17,891 | -17,731 Y
cad | -173,682 | -175,832 -176,456 | -174,605 N
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Recent work

Working directly on total orders

» Given a total ordering the best parents for each variable are
easy to find.

{Tb, Tu} | -2.24772935188
{Tb} ~3.00976537207
{Sm, XR} | -8.07036732971
{Tu, XR} | -9.37534407212

Parent sets for Cancer

{XR} -9.38063760741
{Sm, Tu} | -21.6756460345
{Sm} ~21.6903150436
O -25.2333385745
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Recent work

Decision tree for choosing parents

Sm < Ca? Sm < Ca? {Tb} {Tb, Tu}

AT,

Tu<Ca? Tu<Ca? {Sm, XR}

o)\ oo/ e

{Sm}{Sm, Tu}{XR}{Tu,XR}
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Recent work

Encoding as WCNF

2 (Tb < Ca) V (Tu < Ca)

3 (Tb < Ca) V (Tu < Ca)

8 (Tb < Ca) V (XR < Ca) V (Sm < Ca)

9 (Tb < Ca) V (XR < Ca) V (Sm < Ca) V (Tu < Ca)

9 : (Tb<Ca)V(XR<Ca)V(Sm< Ca)V (Tu < Ca)
21 : (Tb<Ca)V (XR< Ca)V (Sm< Ca)V (Tu < Ca)
21 : (Tb < Ca)V (XR < Ca) V (Sm < Ca) V (Tu < Ca)
25 : (Tb<Ca)V(XR < Ca)V (Sm < Ca)
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Recent work

Initial results with ‘order-only’ encoding

» Using the irots solver and the new encoding get:

» Score of -132,951 for insurance 10,000 dataset. Beats best
previous score of -133,934 and score of true BN which is
-133,489.

» Score of -497,652 for hailfinder 10,000 dataset. Beats best
previous score of -498,739.
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