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Local linear approximation to multiscale function

Suppose we have a function f for which we seek a local linear ap-
proximation

f(x+0)~F(x)+ T(x)d

where the function f exhibits small and large scales, but the increments
0 are on the large scale.

More generally, suppose we know the pdf of 4, and we seek the ‘best

local linear approximation’ in the sense of minimising the expectation
over 0 of

T =F{f(x+06)—-F(x)—T(x)§'Alf(x + ) — F(x) — T(x)5]}
for a given symmetric positive definite matrix A.
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Solution to optimal linearisation problem, ‘Opt-M’ =
erotee
Since
T 2AE[f(x +d) — F(x) — T(x)d]
and
S 2AE{[f §) —F(x)6'Y — 2AT(x)E[661
IT(x) {f(x+9) —F(x)|]d" } — (x)E[607 ]

the solution is independent of A and given by

T(x) = {E[f(x+8)d"]— E[f(x+d8)|E[d] }H{EI[6d | — E[6][d] }
F(x) = E[f(x+8)— T(x)d]
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Properties of ‘Opt-M’

T(x) ={E[(f(x+8)8" |- E[f(x+8)]E[8] }{E[68" |- E[S]E[8]" }'
F(x)=E[f(x+0)—-T(x)d]

(1) In general 'optimal’ linearisation state F(x) 1s not the original
function f(x) and PF operator T(x) not the tangent linear f '(x)
(2) Differentiability of f irrelevant
(3) Unlike the usual regularisation approach T(x) is not the derivative of F
(4) If f is differentiable then F(x) — f(x)
and T(x) —» f'(x) as distribution 6 — Dirac delta function
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Application to cloud function

Seek a rational basis on which to 'regularise’ in 4D-Var the Smith cloud scheme of 1990,

where cloud fraction C is expressed as a function of

— qT _qsat(TL7 p)
Qy=
(1 o RHc)qsat (TL’ p)

Cloud fraction and its derivative w.r.t. Q are

0 for Q, <-1 [ 0 forQ, <-1
oo 11+9Q,)* for-1<Q, <0 C':4(1+QN)for—1SQNSO
1-1(1-0,)* for0<Q, <1 (1-0Q,) for0<Q, <1
1 for1<Q, \ 0 for1<Q,

How should one regularise this function?

Met Office had used regularisation C =Z[1+ tanh(2Q, )] withderivative C'=sech’ (2Qy)
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Smith Cloud Scheme with Standard Regularisation

=
—
st

-

0 forQ, <-1 0 for Qy =-1
oo L(1+Q,)* for-1<Q, <0 o)A+ Q) for—1<0Q, <0
_<1_%(1_QN)2 for0<Q, <1 (1-Q,) for0<Q, <1
0 for1<Q
| 1 for1<Q P 2 A
Standard regularisation CNz%[1+tanh(2QN)] C'=sech”(20,)
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Smith Cloud Scheme with Optimal Regularisation ===

st

Optimal regularisation: C(Q,+0Q, ) = F(Q)+T(Q,)0Q,

If E(5QN) =0 then F(QN ):E[C(QN+5QN )] and T(QN )= E[C(QN +5Q12\1)5QN]
E[0Q,"]
Eg. p =1 Gaussian .
SO ~ ) Opt reg LS: Opt rea PF: E(C(Q+50)50)]
¢~ N0 E(C(Q+50)} =

1 | x| p T
pdf f (x) = ;eXp(—%j =% i C(Q+ x)exp(—=2)dx =é i C(Q+x)xexp(—)dx




1.2

0.4

pof

Actual Distribution and Application using Real Data

Distribution of delta Q_N
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1(Q) -C(QEI]

T(Q)= Var(S)
C(Q)=C(Q)-T(Q)E0]
where

GO = [ F(OCQ+8)dS =Y f(5)CQ+B)AS

Q) = [ 8£(8)CQ+8)d5=Y 5 f(8)C(Q+E)AS,
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Results with Real Data

Ciac Linearisation state Cirac(Q_N)
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Suboptimality of TL Models

Recall that J (with A=I) is simply the mean square error in the approximation
f(x+06)=Fx)+T(x)0

Hence have direct means of assessing how suboptimal different
regularisations (including TL) are

Eg if f is quadratic and 6 distributed as standard (p=2) Gaussian then I =3/2

Opt Reg
J WMean square emor of diferen: treamens of PF Cloud
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1‘il'|
fil!
0.24 |||| Il'I
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I
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i
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| lIII ! IIIII'.
\ _. '-,'l"-.
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Remarks on “Opt-M”

Whereas the tangent-linear opeator is a function only of f, Opt-M
is a function of f and the pdf of the increments.

In the TL approach the original function is used for the base state
and its derivative for the linear model; neither is optimal unless the
function is close to linear within a couple of standard deviations of the
base state.

Non-differentiability of f is not of itself a problem as can easily
approximate by a smooth function arbitrarily C° close to f. The is-
sue is how rapidly the derivative changes compared with likely size of
increments.

The results apply equally well to discontinuous functions, and at
the other extreme, it shows that taking the tangent-linear is generally
suboptimal even for smooth functions.

© Crown copyright 2010 Page 11



Data Assimilation - Formulation

State of atmosphere x defined by (at least) 7 variables
(u,v,w,p,q, p,0) at each gridpoint

Before any observations have been assimilated all we know i1s that
the true state of the atmosphere x 1s 'close' to some 'background’
state x, which is the short period forecast from the latest best estimate of

the atmosphere 6 hours earlier,
x ~ N(x,,B) where B=E[(x —x, )(x—X, )" ]
s0 p(x) =< exp{-L1(x—x,)" B~ (x—x,)}

Lety denote a vector of observations, and H be the observation operator

which maps x to the vector of observations implied by x
y ~ N(Hx,R) where R = E[(Hx —y)(Hx—-y)" ]
so p(y | x) o< exp{-3(Hx—y)" R (Hx—y)}
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Best estimate of state of atmosphere

The most likely state of the atmosphere given the background and information in the

observations is given by the maximum of the posterior pdf p(x|y)

By Bayes theorem p(x,y) = p(x | y)p(y) = p(y | X)p(x) p(xly)
p(x|y) = p(y | x)p(x)
p(y)

oc exp{-1(x—x,) B (x—x,)-1(Hx—y)" R (Hx—y))

ie, we seek x which maximises the RHS of this expression and therefore
which minimises J(x¥)=-In(p(x]y))
J(x)=1(x-x,) BT (x—x,)++(Hx—y) R™ (Hx—y)
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Data assimilation as large

optimization problegs
In reality observations are distributed over a time window, so denoting
y' as vector of observations at time i,
M ," is nonlinear model evolution from timestep O to i

H' is observation operator at time i

B, R, are covariance matrices

Best estimate of state of atmosphere x obtained by minimising cost function

J(x)=3(x=-x,) B (x—x,)+31> [y —H'M,/x]"R [y - H'M,'x]

State of atmosphere x defined by 7 variables (u, v, w, p,q, p, &) at each
of 432 *325%50 =7 million gridpoints — X has 50 million elements

H' may be nonlinear (eg radiative transfer equation for satellite brightness temperatures)
and the forecast model M ' is certainly nonlinear
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Incremental Method

Recall
J(x)=1(x-x,) B (x—x,) +%Z[yi —HiMOiX]TRi_l[yi —HiMOiX]

Let S be a "simplification" operator (eg projection to lower resolution)
Set ox = S(x—Xx,)

LetM,' denote a simplified linearized version of the forecast model M, in the

same space as the range of S (eg the tangent linear of a low dimensional form of
M Oi with physical processes omitted) and approximate

[ l i -1 i
MyxasM,x=M,x, +S M,
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Incremental Method

Substituting
M,)x~M,x, +S "M, 5

into J gives

J(&) :%&(TS_TB_IS_I&_F
LYY~ H (M %, + STM SO Ry — H' (Mx, + ™M, 8%)]

which is quadratic in ox apart from the effects of the weakly non - linear

observation operator H'

Much cheaper as at lower resolution and easier to implement as
physical processes omitted. To capture the effects of full resolution and
the missing physics this is iterated in an outer loop :

-1
X, <X, +5 &
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Incremental Method

Non - incremental J 1s
Jx)=1(x-x,)" B (x—=x,)+3 D> [y ~H'M/xI"R [y’ —H'M'x]

Minimise instead using ox = S(x —x,)

Nonlinear ./

o Figure courtesy ECMWF
- > T

= e ——
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How to choose linear model in 4D-Var?

Non-incremental 4D-Var cost function is

i M;(x0+0x)))" By H(y; 'HE(ME-(XU—I—(SX)))—|—%5XTB_1(5X (1)

i=1

[\.'J|l—l

where xq is the background state at time ty, M;, H; are respectively the full model
evolution to time ¢; and the observation operator at time ¢;, y; is a vector of obser-
vations at t;, and B, R; are background and observation error covariance matrices.
Suppose for present that observation operators H; are linear
Tangent linear approximation is to replace M;(xg + 0x) by M;(x) + M. (xq)x
Can we do better? - ie, can we find M (xg), £(xg) so that £(xq) + M(xq)0x

(a) better approximates M;(xp + 0x) than M;(xy) + M (x0)dx does, or

(b) ‘performs better’ in Eqn (1) than M;(xq) + M/’ (x)dx does
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Opt-A: Optimising linear model for analysis ==

Supposing there are observations only at one time, so
¥ = h(XfJ G Eb) + €,
the analysis in incremental 4D-Var is
X, =Xp +0

where 6 is obtained in the inner loop by minimising, for some R, B

Loim L -
J(0) = 55‘5 B8 + E(y —b(xp) — M(x)8) R (y — £(xp) — M(x)8)
where £(x;) + M(x3,)d approximates h(x;, + d)
eg in TL have £(x;) = h(x;)) and M (x;) = h'(x;)

What about instead choosing M (x), £(x;,) to improve analysis di-
rectly? Might do this by choosing analysis

(i) to best approximate truth, or

(ii) to best approximate conditional mean Page 20



Opt-A: Optimising linear model for analysis

X, minimising J on previous slide is
X, = Xp + K(x)(y — €(xs))
where
K(xp) = (B '+ M'R*M)"*M*R™*
so choosing M (x,), £(x,) is equivalent to choosing K(xy), £(x3).
We first consider two problems where the objective is to choose
K(xp),£(Xp) in such a way as to minimise the expected error in the

analysis.

(Opt-A) Find matrix K(x;) and vector ¢(x;) which minimise the
expected analysis error

Elllxa — x4l1*] = Elll3 + K (x5) (h(x5, + €) + €, — €(x3)) — %¢||’]

where the expectation is over €, €, and ||.|| denotes some norm. Page 21



Solution to Opt-A

For the norm (on analysis error etc) we will use
|x]|? = x" Ax

where A is some positive definite matrix. In Opt-A we seek to find
vector £(x;) and matrix K (x;) which minimises

E[(x; —xq)" A(%; — X,)]
where
X, =Xp + K(h(x, + €) + €, — £)
The solution to Reg-A is independent of the matrix A:

K = E[{x; — xp — E[x; — x| }h(xs + €)" ] X
{E[(h(xb T Eb) + €, — E[h(xb I Eu’})])(h(xb + EFJ) -+ Eo)l‘]}_l

Ke(xp) = KE[h(x + €)] — E[x; — Xp]
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Another popular single-value choice for the analysis is the condi-
tional mean

x; = Blxly] = [ xp(xly)dx

as this is also the minimum variance solution. Note that unlike the
maximum likelihood estimate the conditional mean is a function of the

whole pdf

This suggests the second problem

(Opt-A’) find matrix K(x;) and vector £(x;) which minimise the
expected error

Elllxa — xallI*] = Elllxy + K (x3) (h(xs + €) + €0 — £(x3)) — xg]|’]

where the expectation is again over €, €,.
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Solution to Opt-A’

Note that Opt-A’ has the identical formulation to Opt-A but with
the conditional mean x¢

x; = Blxly] = [ xp(xly)dx

replacing x;. The solution to Opt-A depended on x; only through the
terms E[x;] and E[x;y?]. However

(1) Since x¢ is a function of y only,

Elx7] = E[E[x|y]] = E[x]

Exiy']| = / / xy p(y)p(x|y)dxdy

and since by Baye’s theorem

p(x|y)p(y) = p(x, y)

it follows that
Elxey"] = [ [ xy"p(x,y)dxdy = Elxy"]

It follows that Opt-A and Opt-A’ have exactly the same solution.
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Strategies for incremental 4D-Var

Suppose there is only one timestep and we write the non-incremental
AD-Var cost function as

1 i T . o
J = E(y — h(xy +6x)) R (y — h(x;, + 6x)) + §5xi B 1%

We now have several strategies for implementing incremental method:

e Standard (tangent-linear): linearise h by replacing it by h(x;) +
h’ (X;))éx;

e ‘Opt-M’": linearise h by replacing it by F(x;) + T(x3)d chosen to
minimise the expected error in

Ih(x, + &) — F(xs) — T(x)d]4

e ‘Opt-A’: linearise h by choosing it in such a way as to minimise
the expected analysis error in

||X!r;, -+ f((xb) (h(xb + Eu’)) =+ € — g(xb)) == XfHQA Page 25



Relation between Opt-M and Opt-A

Relation between Opt-A and Opt-M

What is the relation between
‘Opt-M’ (optimising for the model)
and
‘Opt-A’ (optimising for the analysis)?

II] cvery case
X, = Xp T I{(Xh)[y _ Eﬂ(xz’})]

Supposing for the time being that the background is unbiased so

Eley=x— x| =0
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TL, Opt-M and Opt-A compared

We have for TL:

EU (X:’J) = h(XfJ)
K(x3) = BM" (R+ MBM")™" where M = h'(x;)

for Opt-M:

ED(XJ;,) = E[h(Xg} —+ Eb)]
K(xp) = BMY(R+ MBM*)™! where M = {E[h(x; + €,)€p” | H{ E[eres’]} !

for Opt-A:

o(xp) = E[h(x, + €;)]
f{(X,rJ) = {E’[41‘5,5-,1]()‘[{;r = Eg;.)r]}{E[h(Xb -+ Eg})h(Xb + E,{-,)T] —
E[h(X,’; -+ Eg})]E[h(X,r;. =t Eg})]l‘ o R}_l
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Opt-M as high-order approximation to Opt-A

Case (1) h only slightly nonlinear - suppose
h(x, + 0x) = ag + A6 + A
then

| Kopt—a — Kri|| = O(A)
| Kopt—a — Kop—m|| = O(A?)

[e, Opt-M represents a higher order approximation to Opt-A than TL
does.

Case (2) h strongly nonlinear - advantages of Opt-M over TL can
be dramatic.
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TL versus Opt-M applied to modified logistic map ==

Example
h(z) = 4|z](1 — [z]) + ysin(Kn|z]) where [x] =z, mod 1
g(x) = H(x) =1
y ~ N (h(x),0.04)
x — xp ~ N(0,0.034)

F(x) using TL (black) and Opt-M (blue) T(x) using TL (black) and Opt-M (blue)
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TL versus Opt-M with many outer loops

Mean square background error using tangent-linear (black)
and Opt-M (blue), many outer loops
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Summary

In any situation where one needs a local linear approximation to a
function, where the pdf of the increments is known or can be estimated,
Opt-M is superior to a first order Taylor expansion.

Opt-M does not require differentiability of the original function.

In data assimilation locally-linear approximations are widely used.
If we optimise the approximation to minimise the expected analysis
error this yields an optimal linearisation Opt-A.

Opt-M applied to the model leads to a higher order approximation

to Opt-A than does a first-order Taylor expansion, and outperforms it
in cycled data assimilation.
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