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Abstract. — Let E be a finite extension of Fp. Using Fontaine’s theory of (ϕ,Γ)-modules,

Colmez has shown how to attach to any irreducible E-linear representation of Gal(Qp/Qp)
an infinite dimensional smooth irreducible E-linear representation of B2(Qp) that has a
central character. We prove that every such representation of B2(Qp) arises in this way.

Our proof extends to algebraically closed fields E of characteristic p. In this case, in-
finite dimensional smooth irreducible E-linear representations of B2(Qp) having a central
character arise in a similar way from irreducible E-linear representations of the Weil group
of Qp.
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Introduction

This article is inspired by the p-adic local Langlands correpondence for GL2(Qp), which1

is a bijection between some 2-dimensional representations of Gal(Qp/Qp) and some rep-2

resentations of GL2(Qp). Colmez observed that this bijection, whose existence had been3
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conjectured by Breuil, can be constructed using Fontaine’s theory of (ϕ,Γ)-modules, in or-4

der to obtain representations of B2(Qp), the upper triangular Borel subgroup of GL2(Qp),5

from 2-dimensional representations of Gal(Qp/Qp). In this article, we determine com-6

pletely which class of representations of B2(Qp) can be constructed by applying Colmez’s7

method to irreducible mod p representations of Gal(Qp/Qp) of any dimension.8

Let E be a finite extension of Fp. If V is a finite dimensional E-linear representation9

of Gal(Qp/Qp) and if χ is a smooth character of Q×p , then Colmez’s functor “lim←−ψD
\(·)”10

allows us to construct a smooth representation Ωχ(V ) = (lim←−ψD
\(V ))∗ of the group11

B2(Qp), having χ as central character. Our first result is the following (see theorem 4.212

and remark 4.3 of [Vie12b]).13

Theorem A. — If E is a finite field, and if Π is an infinite dimensional smooth irre-14

ducible E-linear representation of B2(Qp) having a central character χ, then there exists15

an irreducible E-linear representation V of Gal(Qp/Qp) such that Π = Ωχ(V ).16

Our proof extends to representations with coefficients in an algebraically closed field17

E of characteristic p. The theory of (ϕ,Γ)-modules is then less satisfactory, but one can18

still carry out Colmez’s construction and prove an analogue of theorem A.19

Theorem A’. — If E is an algebraically closed field of characteristic p, and if Π is an20

infinite dimensional smooth irreducible E-linear representation of B2(Qp) having a central21

character χ, then there exists an irreducible E-linear representation V of the Weil group22

of Qp such that Π = Ωχ(V ).23

This extension of theorem A depends on the following result, which (following a sug-24

gestion of Colmez) extends Fontaine’s theory of (ϕ,Γ)-modules to algebraically closed25

coefficient fields of characteristic p.26

Theorem B. — If E is an algebraically closed field of characteristic p, then there is a27

natural bijection between the set of irreducible E-linear representations of the Weil group28

of Qp and the set of irreducible (ϕ,Γ)-modules over E((X)).29

This bijection, which is compatible with the usual theory of (ϕ,Γ)-modules, does not30

seem to extend to reducible objects if E is not an algebraic extension of Fp.31

In order to prove theorems A and A’, we need to “invert” Colmez’s construction V 7→32

(lim←−ψD
\(V ))∗. This was done in some cases by Colmez (see §IV of [Col10b] as well as §433

of Emerton’s [Eme08]) and in much greater generality by Schneider and Vignéras (see34

[SV11]). Our method is similar. The finiteness result that we need in order to conclude35

is provided by Emerton (see [Eme08]).36
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Note that if E is a field of characteristic different from p, then determining the smooth37

irreducible representations of B2(Qp) is a much easier problem (see for instance §8 of38

[BH06] for the case E = C). Likewise, it is a simple exercise to determine the finite39

dimensional smooth irreducible E-linear representations of B2(Qp).40

Notation. — The letter E stands for a field of characteristic p. Throughout this article,41

E is given the discrete topology. We let B = B2(Qp) and write GQp for Gal(Qp/Qp). We42

define a map n : GQp → Ẑ as follows: if g ∈ GQp , then the image of g in Gal(Fp/Fp) is43

Frobn(g)p where Frobp = [x 7→ xp]. The Weil group of Qp is WQp = {g ∈ GQp such that44

n(g) ∈ Z} and IQp denotes the inertia subgroup of GQp .45

In order to retain the spirit of the lectures given at the LMS Durham Symposium, we46

explain the idea of the proofs of some of the technical results that are taken from other47

papers, in order for this article to be more easily readable by newcomers to the subject.48

1. (ϕ,Γ)-modules and (ψ,Γ)-modules49

In this section, we recall the definition of (ϕ,Γ)-modules and (ψ,Γ)-modules and we50

explain how these objects are related to each other.51

The ring E[[X]] is given the X-adic topology, for which it is complete, and the field52

E((X)) = ∪n>0X
−nE[[X]] is given the inductive limit topology when necessary.53

The rings E[[X]] and E((X)) are equipped with a continuous Frobenius map ϕ given54

by (ϕf)(X) = f(Xp). Let Γ stand for the group Z×p , the element of Γ corresponding55

to a ∈ Z×p being denoted by [a]. The rings E[[X]] and E((X)) are also equipped with56

an action of Γ, given by ([a]f)(X) = f((1 + X)a − 1). This action is continuous and57

commutes with ϕ.58

Definition 1.1. — A (ϕ,Γ)-module is an E((X))-vector space D of dimension d,59

equipped with a semilinear Frobenius map ϕ : D → D whose matrix in some basis60

belongs to GLd(E((X))), and a continuous semilinear action of Γ that commutes with ϕ.61

Example 1.2. — If δ : Q×p → E× is a continuous character, then we define E((X))(δ)62

as the (ϕ,Γ)-module of dimension 1 having eδ as a basis, where ϕ(eδ) = δ(p)eδ and63

[a]eδ = δ(a)eδ. Every (ϕ,Γ)-module of dimension 1 is then isomorphic to E((X))(δ) for a64

well-defined character δ : Q×p → E×.65

If α(X) ∈ E((X)), then we can write α(X) =
∑p−1

j=0(1 + X)jαj(X
p) in a unique way,66

and we define a map ψ : E((X)) → E((X)) by the formula ψ(α)(X) = α0(X). A direct67

computation shows that if 0 6 r 6 p− 1 then ψ(Xpm+r) = (−1)rXm.68
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If D is a (ϕ,Γ)-module over E((X)) and if y ∈ D, then we can write as above y =69 ∑p−1
j=0(1 +X)jϕ(yj), and we set ψ(y) = y0. The operator ψ thus defined commutes with70

the action of Γ and satisfies ψ(α(X)ϕ(y)) = ψ(α)(X)y and ψ(α(Xp)y) = α(X)ψ(y) (in71

particular, it is a left inverse of ϕ).72

Definition 1.3. — A (ψ,Γ)-module is an E[[X]]-module M of finite type, equipped with73

an E-linear map ψ : M → M such that ψ(f(Xp)y) = f(X)ψ(y), and a continuous74

semilinear action of Γ that commutes with ψ. We say that75

1. M is surjective if ψ : M→ M is surjective;76

2. M is non-degenerate if ker(ψ : M → M) does not contain an E[[X]]-submodule (in77

other words: if y ∈ M satisfies ψ(f(X)y) = 0 for all f(X) ∈ E[[X]], then y = 0);78

3. M is irreducible if it has no non-trivial sub-(ψ,Γ)-module.79

Note that an irreducible (ψ,Γ)-module is surjective and non-degenerate. It is also80

torsion-free unless it is finite-dimensional over E.81

Theorem 1.4. — If D is a (ϕ,Γ)-module, then D contains a surjective sub-(ψ,Γ)-82

module M such that D = E((X))⊗E[[X]] M. In addition,83

1. if D is irreducible of dimension > 2, then M is uniquely determined;84

2. if D is of dimension 1, and we write D = E((X))(δ), then either M = E[[X]] · eδ or85

M = X−1E[[X]] · eδ.86

Proof. — This is proved in §II.4 and §II.5 of [Col10a] if E is a finite field, and more87

generally in §4.3 of [Vie12a]. Note that if D is of dimension 1, then the existence of M88

and the fact that either M = E[[X]] ·eδ or M = X−1E[[X]] ·eδ are both simple exercises. In89

general, Colmez constructs both a smallest and a largest such sub-(ψ,Γ)-module, denoted90

by D\ and D] respectively. He then proves (see corollary II.5.21 of [Col10a] and theorem91

4.3.50 of [Vie12a]) that if D is irreducible of dimension > 2, then D\ = D].92

Definition 1.5. — We denote by M(D) the surjective (ψ,Γ)-module attached to an93

irreducible (ϕ,Γ)-module D (if D is of dimension 1, then we take M(D) = E[[X]] · eδ), so94

that our M(D) is Colmez’s D\.95

Theorem 1.6. — If M is a surjective (ψ,Γ)-module that is non-degenerate and free over96

E[[X]], then there exists a compatible (ϕ,Γ)-module structure on D = E((X))⊗E[[X]] M.97

Proof. — Let D = E((X)) ⊗E[[X]] M and let D̃ be D but with the E((X))-vector space98

structure given by f(X) · y = f(Xp)y so that D̃ is an E((X))-vector space of dimension99

pd. Let ψj : D → D be the map y 7→ ψ((1 + X)−jy), so that ψj : D̃ → D is a surjective100
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linear map. Its kernel is therefore of dimension pd− d and N = ∩p−1i=1 kerψj is an E((X))-101

vector space of dimension at least pd − (p − 1)d = d. The non-degeneracy of M implies102

that ψ : N→ D is injective, so that dim N = d and ψ : N→ D is bijective.103

Let ϕ : D→ N ⊂ D denote its inverse. It is easily checked that ϕ and Γ give rise to a104

(ϕ,Γ)-module structure on D, compatible with the (ψ,Γ)-module structure on M.105

We finish this section with a technical result on regularization by Frobenius. Let R be106

a ring equipped with an automorphism ϕ, which is extended to R[[X]] by ϕ(X) = Xp.107

Lemma 1.7. — If P ∈ GLd(R[[X]]), then there exists a matrix M ∈ GLd(R[[X]]) such108

that M−1Pϕ(M) = P (0) ∈ GLd(R).109

Proof. — This is a standard result, which is proved by successive approximation: if there110

exists a matrix Mi ∈ GLd(R[[X]]) such that M−1
i Pϕ(Mi) = P (0) + PiX

i + O(X i+1) with111

Pi ∈ Md(R) and if Qi = PiP (0)−1, then112

(1 +X iQi)
−1M−1

i · P · ϕ(Mi(1 +X iQi)) = P (0) + O(X i+1),

so that one can set Mi+1 = Mi · (1 +X iQi) and take M = limi→+∞Mi.113

2. Construction of Galois representations114

In this section, we recall Fontaine’s equivalence between (ϕ,Γ)-modules and represen-115

tations of GQp over finite fields. After that, we explain how to extend this equivalence to116

irreducible representations of WQp over algebraically closed fields.117

Let EQp = Fp((X)) and recall that if K is a finite Galois extension of Qp, then there118

exists a finite extension EK of EQp attached to it by the theory of the field of norms (see119

[Win83] and A3 of [Fon90]), and that GQp acts on EK . For example, GQp acts on EQp120

by g(f(X)) = f([χcycl(g)](X)). We have Esep
Qp

= ∪K/QpEK and if HQp denotes the kernel121

of χcycl : GQp → Z×p , then the map HQp → Gal(Esep
Qp
/EQp) is an isomorphism.122

If E is a finite field and if D is a (ϕ,Γ)-module over E((X)), then V (D) = (Esep
Qp
⊗Fp((X))123

D)ϕ=1 is an E-vector space and the group GQp acts on V (D) by the formula g(α ⊗ y) =124

g(α) ⊗ [χcycl(g)](y). This way, we get a functor from the category of (ϕ,Γ)-modules125

over E((X)) to the category of E-linear representations of GQp . The following theorem is126

proved in §1.2 of [Fon90].127

Theorem 2.1. — If D is a (ϕ,Γ)-module over E((X)), then V (D) is an E-vector space128

of dimension dim(D), and the functor D 7→ V (D) gives rise to an equivalence of cate-129

gories between the category of (ϕ,Γ)-modules over E((X)) and the category of E-linear130

representations of GQp.131
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Proof. — We give a sketch of Fontaine’s proof. Assume first that E = Fp and let D be132

a (ϕ,Γ)-module over Fp((X)). If we choose a basis of D and if Mat(ϕ) = (pij)16i,j6dim(D)133

in that basis, then the algebra A = Fp((X))[X1, . . . , Xdim(D)]/(X
p
j −
∑

i pijXi)16j6dim(D) is134

an étale Fp((X))-algebra of rank pdim(D) and V (D) = HomFp((X))−algebra(A,Fp((X))sep) so135

that V (D) is an Fp-vector space of dimension dim(D).136

Given the isomorphism HQp ' Gal(Fp((X))sep/Fp((X))), Hilbert’s theorem 90 tells us137

that H1
discrete(HQp ,GLd(Fp((X))sep)) = {1} if d > 1. If V is an Fp-linear representation138

of HQp then Fp((X))sep ⊗Fp V ' (Fp((X))sep)dim(V ) as representations of HQp so that139

the Fp((X))-vector space D(V ) = (Fp((X))sep ⊗Fp V )HQp is of dimension dim(V ) and140

V = (Fp((X))sep ⊗Fp((X)) D(V ))ϕ=1.141

It is then easy to check that the functors V 7→ D(V ) and D 7→ V (D) are inverse of142

each other. Finally, if E 6= Fp then one can consider an E-linear representation as an143

Fp-linear representation with an E-linear structure and likewise for (ϕ,Γ)-modules, so144

that the equivalence carries over.145

For example, if δ is a character of Q×p , then the representation arising from E((X))(δ)146

is the character of GQp corresponding to δ by local class field theory.147

If E is not a finite extension of Fp, then theorem 2.1 above may well fail. Suppose for148

instance that E = Fp(t) and that D = E((X))(δ) where δ(p) = t and δ|Z×p = 1. This149

(ϕ,Γ)-module “should” correspond to the unramified character of GQp sending Frobp to150

t−1, but there is no such character because the map n 7→ t−n does not extend to Ẑ. There151

is however such a character of the Weil group WQp of Qp and in the rest of this section,152

we construct a bijection between the set of irreducible representations of WQp and the153

set of irreducible (ϕ,Γ)-modules over E((X)), for any algebraically closed field E.154

Assume for the rest of this section that E is an algebraically closed field of character-155

istic p. We first explain how to attach an irreducible (ϕ,Γ)-module over E((X)) to an156

irreducible E-linear representation of WQp . If λ ∈ E×, let µλ : WQp → E× denote the157

character defined by g 7→ λ−n(g). Take n > 1 and let ωn : IQp → F
×
p be one of Serre’s158

fundamental characters of level n (see [Ser72]). If h ∈ Z is not divisible by any of the159

(pn − 1)/(pd − 1) for d < n dividing n (we then say that h is primitive), then let ind(ωhn)160

be the unique irreducible representation of GQp whose restriction to IQp is ⊕n−1i=0 ω
pih
n and161

whose determinant is ωh.162

The representation ind(ωhn) is actually defined over Fp, as we now show. Let W = {α ∈163

Fp such that αp
n

= (−1)n−1α} so that W is a Fpn-vector space of dimension 1 and hence164

a Fp-vector space of dimension n. Choose πn ∈ Qp such that πp
n−1
n = −p. By composing165

the map Gal(Qnr
p (πn)/Qp)

∼−→ F×pn o Ẑ with the map F×pn o Ẑ → EndFp(W ) given by166

(x, 0) 7→ mh
x (where mx is the multiplication by x map) and by (1, 1) 7→ (α 7→ αp), we167
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make W into an n-dimensional Fp-linear representation of GQp . We leave it as an exercise168

to check that W = ind(ωhn).169

Proposition 2.2. — If V is an irreducible n-dimensional E-linear representation of170

WQp, then there exists h ∈ Z and λ ∈ E× such that V = (E ⊗Fp ind(ωhn))⊗ µλ.171

Proof. — The proof is the same as in §2.1 of [Ber10a]: by §1.6 of [Ser72], V |IQp splits172

as a direct sum of n tame characters and since V is irreducible, these characters are173

transitively permuted by Frobenius, so that they are of level n. Therefore, there exists174

a primitive h such that V = ⊕n−1i=0 Vi where IQp acts on Vi by ωp
ih
n . Since ωn extends to175

Gal(Qp/Qpn), each Vi is stable under the Weil group of Gal(Qp/Qpn), which then acts on176

Vi by ωp
ih
n χi where χi is an unramified character. The lemma then follows from Frobenius177

reciprocity.178

Definition 2.3. — To V = (E ⊗Fp ind(ωhn)) ⊗ µλ, we then attach the (ϕ,Γ)-module179

D(V ) having a basis e0, . . . , en−1 in which [a](ej) = (aX/[a](X))hp
j(p−1)/(pn−1)ej if a ∈ Z×p180

and ϕ(ej) = ej+1 for 0 6 j 6 n− 2 and ϕ(en−1) = (−1)n−1λnX−h(p−1)e0.181

Different choices of h and λ can give rise to the same representation V , but we can182

check that the (ϕ,Γ)-module D(V ) thus defined depends only on V . Indeed, if λ ∈ Fp,183

then (E ⊗Fp ind(ωhn))⊗ µλ extends to GQp and the (ϕ,Γ)-module above is the extension184

of scalars of the one given by Fontaine’s construction, by the results of §2.1 of [Ber10a].185

We now explain how to attach an irreducible representation of WQp to an irreducible186

(ϕ,Γ)-module over E((X)). Let F be a field that is complete for a discrete valuation val(·)187

and endowed with an automorphism ϕ, such that val(ϕ(y)) = p·val(y) (in the sequel, we’ll188

have F = E((Y )) where Y n = X and val = valX). Let F{ϕ} denote the non-commutative189

ring of polynomials in ϕ with coefficients in F . If P (ϕ) = a0 + a1ϕ+ · · ·+ anϕ
n ∈ F{ϕ},190

then the Newton polygon NP(P ) of P is the convex polygon whose support consists of the191

points ([k], val(ak)) where [k] = (pk − 1)/(p− 1). The slopes of NP(P ) are the opposites192

of the slopes of the segments of the polygon. If P (ϕ) = a0 + a1ϕ + · · · + anϕ
n ∈ F{ϕ},193

and if y ∈ F , then P (ϕ)y = a0y + a1ϕ(y)ϕ+ · · ·+ anϕ
n(y)ϕn.194

Lemma 2.4. — If P (ϕ) ∈ F{ϕ} is isoclinic of slope s, and if y ∈ F satisfies val(y) = r,195

then P (ϕ)y is isoclinic of slope s− (p− 1)r.196

Proof. — We have val(ϕk(y)ak) = pkval(y) + val(ak) so that197

val(ϕk(y)ak)− val(ϕj(y)aj)

[k]− [j]
=

val(ak)− val(aj)

[k]− [j]
+ (p− 1)r.

198

Proposition 2.5. — If P (ϕ) ∈ F{ϕ} is irreducible, then it is isoclinic.199
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Proof. — See §2.4 of [Ked08] as well as §3.2 of [Vie12a]. We give a sketch of the proof.200

Let F{ϕ±1} be the space of polynomials in ϕ and ϕ−1. Since ϕ : F → F is not necessarily201

invertible, F{ϕ±1} is not a ring, but it is a left F{ϕ}-module. If r ∈ R and P ∈ F{ϕ±1},202

let valr(P ) = mini∈Z(val(ai) + r[i]). Using successive approximations, we can show that203

if R ∈ F{ϕ±1} and r ∈ R are such that valr(R− 1) > 0, then there exists P ∈ F{ϕ} and204

Q ∈ F{ϕ−1} such that R = PQ. Using this factorization result, we can now prove that205

if P ∈ F{ϕ} and NP(P ) has a breakpoint, then P can be factored in F{ϕ}.206

Note that in general, if P = P1P2, then the set of slopes of NP(P ) is not the union of207

the sets of slopes of NP(P1) and NP(P2).208

We denote by valX the X-adic valuation on EK , by E+
K the ring of integers of EK for209

valX and by kK the residue field of EK (it is the residue field of K(µp∞)).210

Proposition 2.6. — If D is an irreducible (ϕ,Γ)-module over E((X)), then there exists211

a finite extension K of Qp, such that EK ⊗EQp
D has a basis in which Mat(ϕ) belongs to212

GLd(kK ⊗Fp E).213

The kK ⊗Fp E-module generated by this basis depends only on D, and in particular it214

is stable under the action of GQp given by g(α⊗ y) = g(α)⊗ [χcycl(g)](y).215

Proof. — Let us first show that the kK⊗FpE-module generated by such a basis is unique.216

If M ∈ Md(EK ⊗EQp
E((X))), then let valX(M) be the minimum of the valuations of the217

entries of M .218

If EK ⊗EQp
D admits two bases in which Mat(ϕ) ∈ GLd(kK ⊗Fp E), then let P1 and219

P2 be the two matrices of ϕ and let B ∈ GLd(EK ⊗EQp
E((X))) be the change of basis220

matrix. We then have P2 = B−1P1ϕ(B) so that ϕ(B) = P−11 BP2. This implies that221

valX(ϕ(B)) = valX(B) so that valX(B) = 0, and hence B ∈ Md(E
+
K ⊗E+

Qp
E[[X]]). The222

same argument applied to B−1 shows that B ∈ GLd(E
+
K ⊗E+

Qp
E[[X]]). If we write B =223

B0 +C where B0 ∈ GLd(kK ⊗Fp E) and valX(C) > 0, then the formula ϕ(B) = P−11 BP2224

implies likewise that valX(C) = +∞ so that C = 0. The kK ⊗Fp E-module generated by225

these two bases is therefore the same.226

We now show the existence of such a basis. We can assume that D is irreducible227

as a ϕ-module; indeed, if M is an irreducible sub-ϕ-module of D, then we can write228

D =
∑n

i=1 γi(M) with γi ∈ Γ. We can assume that n is minimal, so that the sum is direct229

and the existence result for D follows from the result for each of the ϕ-modules γi(M).230

If m ∈ D is non-zero, then it generates D as an E((X)){ϕ}-module since D is assumed to231

be irreducible. Let P (ϕ) be a non-zero polynomial of degree dim D such that P (ϕ)(m) =232

0. If P (ϕ) were reducible, then this would correspond to a non-trivial sub-ϕ-module of233

D so that P (ϕ) is irreducible and by proposition 2.5, P (ϕ) is isoclinic. If s is the slope of234
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P (ϕ), then there exists a finite extension K of Qp and an element y ∈ EK of valuation235

s/(p− 1). Lemma 2.4 shows that if we replace m by ym, then the resulting polynomial236

Q(ϕ) is isoclinic of slope 0. This implies that there exists a basis of EK ⊗EQp
D in which237

Mat(ϕ) ∈ GLd((kK ⊗Fp E)[[Y ]]). Lemma 1.7 now implies that there exists a basis of238

EK ⊗EQp
D in which Mat(ϕ) ∈ GLd(kK ⊗Fp E), which is the sought-after result.239

Let D be an irreducible (ϕ,Γ)-module over E((X)), and let K be as above. Since240

E is algebraically closed, we have kK ⊗Fp E = En with n = [kK : Fp]. We denote241

by πk : En → E the projection on the k-th factor. Let VK(D) be the En-module242

generated by the basis afforded by proposition 2.6. This module is stable under GQp243

which acts by kK-semilinear automorphisms. We define an action of WQp on VK(D) by244

ρ(g)(y) = ϕ−n(g)(g(y)). This action is now En-linear, and commutes with ϕ. In particular,245

VK(D) = π1VK(D) ⊕ · · · ⊕ πnVK(D) and ϕ(πkVK(D)) = πk+1VK(D) (with πn+1 = π1) so246

that all the representations πkVK(D) are isomorphic. We let V (D) = π1VK(D).247

Proposition 2.7. — The representation V (D) defined above is irreducible.248

Proof. — Note that ϕn gives rise to an endomorphism of V (D). Since E is algebraically249

closed, ϕn has an eigenvalue λ, and the space V (D)ϕ
n=λ is stable under WQp , so that it250

contains an irreducible sub-representation W of WQp .251

The kK ⊗Fp E-module M = W ⊕ ϕ(W )⊕ · · · ⊕ ϕn−1(W ) is then a subspace of VK(D),252

which is stable under WQp and ϕ, so that it is also stable under GQp and ϕ. The space253

EK ⊗kK M is then a sub-(ϕ,Γ)-module of EK ⊗EQp
D that is stable under ϕ and GQp .254

By Galois descent (see for instance proposition 2.2.1 of [BC08]), EK ⊗kK M comes by255

extension of scalars from a sub-(ϕ,Γ)-module of D. If D is irreducible, then M = {0} or256

M = VK(D) and hence V (D) is irreducible.257

Theorem 2.8. — The two constructions V 7→ D(V ) and D 7→ V (D) defined above are258

inverse of each other and give rise to dimension preserving bijections between the set of259

irreducible E-linear representations of WQp and the set of irreducible (ϕ,Γ)-modules over260

E((X)).261

Proof. — The fact that dimensions are preserved is clear from the constructions. The262

fact that the two constructions are inverse of each other is a tedious but straightforward263

exercise.264
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3. Topological representations of profinite groups265

In this section, we first gather some results about topological E-vector spaces and266

duality, which generalize Pontryagin’s theorems to certain E-vector spaces (see §II.6 of267

[Lef42]). After that, we look at continous representations of certain topological groups.268

Recall that E is a field that is taken with the discrete topology. A topological E-vector269

space V is said to be linearly topologized if V is separated (Hausdorff) and if {0} has a270

basis of neighborhoods that are all vector spaces. For example, the discrete topology on V271

is a linear topology. We denote by Vecdisc(E) the category whose objects are the E-linear272

vector spaces with the discrete topology, with continuous linear maps as morphisms.273

We say that an affine subspace W of a linearly topologized E-vector space V is linearly274

compact if every family {Wi}i∈I of closed affine subspaces of W having the finite inter-275

section property has a non-empty intersection. Linearly compact affine spaces generally276

enjoy the same properties as compact topological spaces (see (27) of §II.6 of [Lef42]). For277

example, a linearly compact subspace of V is closed in V , its image under a continuous278

linear map is linearly compact, and a product of linearly compact spaces is linearly com-279

pact. A finite dimensional discrete E-vector space is linearly compact. If V is linearly280

compact and if W is a closed subspace of V , then W is open in V if and only if it is of281

finite codimension.282

We say that an E-vector space is of profinite dimension if it is an inverse limit of finite283

dimensional discrete E-vector spaces. For example, E[[X]] with the X-adic topology is of284

profinite dimension. Such a space is then linearly compact and conversely, by (32) of §II.6285

of [Lef42], linearly compact spaces are profinite dimensional. We denote by Veccomp(E)286

the category whose objects are the linearly compact E-vector spaces, with continuous287

linear maps as morphisms.288

If V is a topological vector space, we denote by V ∗ its continuous dual. This space289

is given a linear topology by choosing as a basis of neighborhoods of {0} the set {E⊥}E290

where E runs through all linearly compact subspaces of V , and E⊥ = {f ∈ V ∗ such that291

f(v) = 0 for all v ∈ E}.292

Theorem 3.1. — The duality functor V 7→ V ∗ gives rise to equivalences of categories293

Vecdisc(E)→ Veccomp(E) and Veccomp(E)→ Vecdisc(E).294

Moreover, the natural map V → (V ∗)∗ is an isomorphism.295

Proof. — See (29) in §II.6 of [Lef42].296

We now turn to group representations. Let G be a topological group and let VecGdisc(E)297

and VecGcomp(E) denote the categories of continuous E-linear representations of G on298
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either discrete or linearly compact spaces. If V is a representation of G, then V ∗ is a299

representation of G, with the usual action given by (gf)(v) = f(g−1v).300

Proposition 3.2. — If V ∈ VecGdisc(E) or V ∈ VecGcomp(E) is topologically irreducible,301

then so is its dual V ∗.302

Proof. — If W is a closed subspace of V ∗ stable under G, then let W⊥ = {v ∈ V such303

that f(v) = 0 for all f ∈ W}. The natural map W⊥ → (V ∗/W )∗ is an isomorphism by304

theorem 3.1. Moreover, W⊥ is a closed subspace of V , that is also stable under G, so305

that either W⊥ = {0} and W = V ∗ or W⊥ = V and W = {0}.306

Assume now that G is a topologically finitely generated profinite group (in this article,307

we only need the case G = Zp). Denote by V (G) the sub-E-vector space of V generated308

by the elements (g − 1)v where g ∈ G and v ∈ V .309

Proposition 3.3. — If V ∈ VecGcomp(E), then V (G) is a closed subspace of V .310

Proof. — Let g1, . . . , gn be elements generating a dense subgroup G′ of G. The subspace311

(gi − 1)V is the image of a linearly compact subspace by a continuous linear map and312

is hence linearly compact. This implies that V (G′) =
∑n

i=1(gi − 1)V is linearly compact313

and therefore closed in V .314

If v ∈ V , then the image of G′ under the map g 7→ (g− 1)v is contained in V (G′) and,315

since G′ is dense in G and V (G′) is closed in V , the image of G is also contained in V (G′)316

so that V (G) = V (G′) and V (G) is closed in V .317

Note that the same is trivially true if V ∈ VecGdisc(E). We set VG = V/V (G).318

Proposition 3.4. — If V ∈ VecGdisc(E) or V ∈ VecGcomp(E), then (V G)∗ = (V ∗)G.319

Proof. — If f ∈ V ∗, then f(gv) = f(v) for all g ∈ G and v ∈ V if and only if f is zero320

on V (G). This implies that (V ∗)G = (VG)∗. Replacing V by V ∗ in this formula and321

dualizing gives us the proposition.322

Let E[[G]] = lim←−N E[G/N ] denote the completed group algebra of G, where N runs323

through the set of open normal subgroups of G.324

Proposition 3.5. — If V ∈ VecGcomp(E) or V ∈ VecGdisc(E), then V is an E[[G]]-module.325

Proof. — If V ∈ VecGdisc(E), then this is immediate, so assume that V ∈ VecGcomp(E). The326

space V is a projective limit of finite dimensional E-vector spaces. We first show that if327

V ∈ VecGcomp(E), then V is a projective limit of finite dimensional E-linear representations328

of G. It is enough to prove that if W is an open subspace of V , then it contains an329

open subspace stable under G. By continuity, for each g ∈ G, there exists an open330
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neighborhood Hg of g in G and an open subspace Wg of V such that Hg ·Wg ⊂ W . By331

compacity of G, there exists g1, . . . , gn ∈ G such that G = Hg1 ∪ · · · ∪Hgn and if we set332

X = Wg1 ∩ · · · ∩Wgn , then X is an open subspace of W and G · X ⊂ W . The vector333

space generated by G ·X is then open in W and stable under G.334

Since V is a projective limit of finite dimensional E-linear representations of G by the335

above, and since each of them is an E[[G]]-module, then so is V .336

We now assume that G = Zp so that a choice of a topological generator of Zp gives337

rise to an isomorphism E[[G]] = E[[X]]. The following result is a variant of Nakayama’s338

lemma.339

Theorem 3.6. — If V ∈ Veccomp(E) is a topological E[[X]]-module, then V is finitely340

generated over E[[X]] if and only if V/XV is a finite dimensional E-vector space.341

Proof. — The fact that if V is finitely generated over E[[X]], then V/XV is a finite342

dimensional E-vector space is immediate, so let us prove the converse.343

Let v1, . . . , vn be elements of V that generate V/XV over E, and let W be the E[[X]]-344

module generated by v1, . . . , vn. The E-vector space W is linearly compact, and therefore345

so is V/W . In addition, (V/W )/X = {0}. It is therefore enough to show that if V ∈346

Veccomp(E) is a topological E[[X]]-module such that V/XV = {0}, then V = {0}.347

Let U be an open subspace of V . By continuity, there exists an open subspace W of348

U and k0 > 1 such that XkW ⊂ U if k > k0. Since W is open, it is of finite codimension349

in V and there exists v1, . . . , vn ∈ V such that V = W + Ev1 + · · · + Evn. For each i,350

there exists ki such that Xkvi ∈ U if k > ki. If k > max(k0, . . . , kn), then XkV ⊂ U .351

But XkV = V so that the only open subspace of V is V itself and hence V = {0}.352

4. Colmez’s functor353

In this section, we recall Colmez’s construction of representations of B = B2(Qp)354

starting from Galois representations (see §III of [Col10a]).355

If M is a (ψ,Γ)-module, then we denote by lim←−ψ M the set of sequences {mn}n∈Z where

mn ∈ M and ψ(mn+1) = mn for all n ∈ Z. Let χ : Q×p → E× be a smooth character. We

endow lim←−ψ M with an action of B in the following way

(( z 0
0 z ) · y)i = χ(z)−1yi;((
1 0
0 p

)
· y
)
i

= yi−1 = ψ(yi);

(( 1 0
0 a ) · y)i = [a−1](yi);

(( 1 z
0 1 ) · y)i = ψj((1 +X)p

i+jzyi+j), for i+ j > −val(z).
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It is straightforward to check that these formulas give rise to an action of B, and make356

lim←−ψ M into a profinite dimensional topological representation, M itself being separated357

and complete for the X-adic topology (warning: the normalization for the central charac-358

ter is the one chosen in §1.2 of [Ber10b] and it differs from the one in §2.2 of [Ber10a]).359

Note that if M1 and M2 are two (ψ,Γ)-modules, and there is a map M1 → M2, then there360

is a map lim←−ψ M1 → lim←−ψ M2.361

Proposition 4.1. — If Σ is a closed subspace of lim←−ψ M stable under B, then there exists362

a surjective sub-(ψ,Γ)-module N of M such that Σ = lim←−ψ N.363

Proof. — This is lemma III.3.6 of [Col10a]. We recall the idea of the proof: if Nk is the364

set of m ∈ M such that there exists x ∈ Σ with m = xk, then Colmez shows that Nk is a365

(ψ,Γ)-module that is independent of k and that we can take N = Nk.366

Theorem 4.2. — If Σ is an infinite dimensional topologically irreducible subrepresen-367

tation of lim←−ψ M for some (ψ,Γ)-module M, then there exists a (ψ,Γ)-module N that is368

irreducible and free over E[[X]], such that Σ = lim←−ψ N.369

Proof. — Let Mtor denote the torsion submodule of M. We then have an exact sequence370

lim←−ψ Mtor → lim←−ψ M → lim←−ψ M/Mtor. If the image of Σ in lim←−ψ M/Mtor is non-zero, then371

we have reduced to the case where M is torsion-free.372

Otherwise, Σ injects in lim←−ψ Mtor and Mtor is a finite dimensional E-vector space.373

Proposition 4.1 shows that Σ = lim←−ψ N where N is a finite dimensional E-vector space.374

Since ψ : N → N is surjective, it is injective, and then lim←−ψ N = N so that Σ itself is a375

finite dimensional E-vector space.376

We can therefore assume that M is torsion free. Let M be such that Σ injects in lim←−ψ M,377

with M torsion free, surjective and of minimal rank. If N is a sub-(ψ,Γ)-module of M,378

then the same argument as above shows that Σ injects in either lim←−ψ N or lim←−ψ M/N.379

This implies that the rank of N is equal to the rank of M, so there exists n > 0 such380

that XnM ⊂ N. Repeatedly applying ψ shows that XM ⊂ N. Since M/X is a finite381

dimensional E-vector space, there is therefore a smallest M such that Σ injects in lim←−ψ M,382

and this M is then irreducible.383

If V is an irreducible representation of either GQp (when E is a finite field) orWQp (when384

E is an algebraically closed field), then by the results of §2, we can attach to it a (ϕ,Γ)-385

module D(V ) and then by definition 1.5 an irreducible (ψ,Γ)-module M(V ) = M(D(V )).386

Let χ be a smooth character of Q×p . The space lim←−ψ M(V ) is of profinite dimension387

and gives rise to a continuous representation of B, which is topologically irreducible388

by proposition 4.1. Its dual Ωχ(V ) = (lim←−ψ M(V ))∗ is therefore a smooth irreducible389
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representation of B, with central character χ. We finish by recalling a result of [Ber10b]390

to the effect that Ωχ(V ) determines χ and V .391

Proposition 4.3. — If V1 and V2 are irreducible and Ωχ1(V1) is isomorphic to Ωχ2(V2)392

as representations of B, then χ1 = χ2 and V1 = V2.393

Proof. — This is proposition 1.2.3 of [Ber10b] in the case that E is a finite field, and394

the proof is similar if E is algebraically closed. We recall the main ideas: since χ is395

the central character of Ωχ(V ), it is immediate that χ1 = χ2 so we need to show that396

if there is an equivariant map f : lim←−ψ M(V1) → lim←−ψ M(V2), then V1 = V2. Let prk :397

lim←−ψ M → M denote the map {mn}n∈Z 7→ mk. If n > 0, let Kn be the set of elements398

m of lim←−ψ M(V1) such that prk(m) = 0 for k 6 n. The module Kn is a closed sub-E[[X]]-399

module of lim←−ψ M(V1) that is stable under ψ and Γ, and ψ(Kn) = Kn+1. This implies that400

pr0 ◦ f(Kn) is a sub-(ψ,Γ)-module of M(V2). Since M(V2) is irreducible, we have either401

pr0 ◦ f(Kn) = {0} or pr0 ◦ f(Kn) = M(V2). In addition, ψ(pr0 ◦ f(Kn)) = pr0 ◦ f(Kn+1)402

and pr0 ◦ f(Kn) = {0} for n� 0 by continuity, so that pr0 ◦ f(Kn) = {0} for all n > 0.403

This implies that pr0 ◦ f(m) depends only on m0.404

The map m0 7→ pr0 ◦ f(m) from M(V1) to M(V2) is therefore a well-defined map of405

(ψ,Γ)-modules, which is non-zero because f is an isomorphism. By proposition II.3.4 of406

[Col10a], it extends to a map D(V1)→ D(V2) so that D(V1) ' D(V2) and V1 ' V2.407

5. Representations of B2(Qp)408

In this section, we prove that every infinite dimensional smooth irreducible represen-409

tation of B having a central character is of the form Ωχ(V ) for some V and χ. We start410

by studying representations of B. Let Z = {a · Id, a ∈ Q×p } be the center of B, and let411

K = B2(Zp) =

(
Z×p Zp

0 Z×p

)
.

If β ∈ Qp and δ ∈ Z, let412

gβ,δ =

(
1 β
0 pδ

)
.

Let A = ∪n>1{αnp−n + · · · + α1p
−1 where 0 6 αj 6 p − 1} so that A is a system of413

representatives of Qp/Zp. The following is lemma 1.2.1 of [Ber10a].414

Lemma 5.1. — We have B =
∐

β∈A,δ∈Z gβ,δ ·KZ.415

If σ1 and σ2 are two smooth characters σi : Q×p → E×, then let σ = σ1 ⊗ σ2 : B→ E×416

be the character σ : ( a b0 d ) 7→ σ1(a)σ2(d) and let indB
KZσ be the set of functions f : B→ E417

satisfying f(kg) = σ(k)f(g) if k ∈ KZ and such that f has compact support modulo Z.418

If g ∈ B, denote by [g] the function [g] : B → E defined by [g](h) = σ(hg) if h ∈ KZg−1419
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and [g](h) = 0 otherwise. Every element of indB
KZσ is a finite linear combination of some420

functions [g]. We make indB
KZσ into a representation of B in the usual way: if g ∈ B,421

then (gf)(h) = f(hg). In particular, we have g[h] = [gh] in addition to the formula422

[gk] = σ(k)[g] for k ∈ KZ.423

Theorem 5.2. — If Π is a smooth irreducible representation of B having a central char-424

acter, then there exists σ = σ1 ⊗ σ2 such that Π is a quotient of indB
KZσ.425

Proof. — This is theorem 1.2.3 of [Ber10a]; we recall the proof here. The group I1426

defined by427

I1 =

(
1 + pZp Zp

0 1 + pZp

)
is a pro-p-group and hence ΠI1 6= 0. Furthermore, I1 is a normal subgroup of K so that428

ΠI1 is a representation of K/I1 = F×p × F×p . Since that group is a finite group of order429

prime to p, we have ΠI1 = ⊕ηΠK=η where η runs over the characters of F×p ×F×p and since430

Z acts through a character by hypothesis, there exists a character σ of KZ and v ∈ Π431

such that k · v = σ(k)v for k ∈ KZ. By Frobenius reciprocity, we get a non-trivial map432

indB
KZσ → Π and this map is surjective since Π is irreducible.433

Note that if µ is a character of Q×p that is trivial on Z×p , then indB
KZσ1µ ⊗ σ2µ

−1 =434

indB
KZσ1 ⊗ σ2. We can therefore assume that σ2(p) = 1, which we now do.435

Write σ = σ1 ⊗ σ2. By lemma 5.1, each f ∈ indB
KZσ can be written in the form436

f =
∑

β∈A,δ∈Z α(β, δ)[gβ,δ].437

Definition 5.3. — Let s : indB
KZσ → E be the map438

s :
∑

β∈A,δ∈Z

α(β, δ)[gβ,δ] 7→
∑

β∈A,δ∈Z

α(β, δ).

Note that if σ = 1 ⊗ 1, then indB
KZσ is the set of functions with finite support on the439

set of the vertices of the Bruhat-Tits tree, and s is then the “sum of the values” function.440

The following lemma results from a straightforward calculation (recall that σ2(p) = 1).441

Lemma 5.4. — The map s : indB
KZσ → E(σ) is B-equivariant.442

Let B+ and B− denote the monoids443

B+ =

{(
pZ>0Z×p Zp

0 Z×p

)}
⊂ B, B− =

{(
Z×p Zp

0 pZ>0Z×p

)}
⊂ B,

and let (indB
KZσ)+ denote the set of elements of indB

KZσ with support in B+. Since444 (
pna b
0 d

)
=

(
1 p−nbd−1

0 p−n

)(
a 0
0 d

)(
pn 0
0 pn

)
,

(indB
KZσ)+ is the set of f =

∑
α(β, δ)[gβ,δ] with δ 6 0 and β ∈ p−δZp/Zp.445
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Lemma 5.5. — If y =
∑

β∈A,δ∈Z α(β, δ)[gβ,δ] ∈ (indB
KZσ)+, then y ∈ (( 1 1

0 1 ) − Id) ·446

(indB
KZσ)+ if and only if

∑
β∈A α(β, δ) = 0 for all δ 6 0.447

Proof. — We have ( 1 1
0 1 ) [gβ,δ] = [gβ+p−δ,δ] so that448

X ·
∑

β∈A,δ∈Z

α(β, δ)[gβ,δ] =
∑

β∈A,δ∈Z

(α(β − p−δ, δ)− α(β, δ))[gβ,δ].

Since β ∈ p−δZp/Zp, the lemma follows from the fact that the image of the map (xi)i 7→449

(xi−1 − xi)i from EZ/pδZ to itself is the set of sequences (xi)i with
∑

i xi = 0.450

Write F =
(
p 0
0 1

)
and X = ( 1 1

0 1 )− Id so that A = E[[X]] is the completed group ring of451 (
1 Zp
0 1

)
and let A{F} be the non-commutative ring of polynomials in F with coefficients452

in A, where FX = XpF . If Π = indB
KZσ/R is a quotient of indB

KZσ, let Π+ denote the453

image of (indB
KZσ)+ in Π. The space Π+ is then a left A{F}-module, as well as a torsion454

A-module (since Π is smooth). Recall (see §3 of [Eme08]) that an admissible A-module455

is an A-module M that is torsion and such that MX=0 is finite dimensional.456

Proposition 5.6. — If M is a finitely generated left A{F}-module that is torsion over457

A, then M is admissible as an A-module if and only if the quotient M/XM is finite458

dimensional over E.459

Proof. — This is proposition 3.5 of [Eme08].460

Lemma 5.7. — The map (indB
KZσ)+ → E[F ] given by461 ∑

β∈A,δ60

α(β, δ)[gβ,δ] 7→
∑
n>0

(∑
β∈A

α(β,−n)

)
F n

(which arises from “retracting the building to the appartment”) gives rise to an isomor-462

phism of A{F}-modules (indB
KZσ)+/X = E[F ].463

Proof. — It is straightforward to check that the given map (indB
KZσ)+ → E[F ] is a464

surjective map of A{F}-modules. Its kernel is X · (indB
KZσ)+ by lemma 5.5.465

Lemma 5.8. — The A{F}-module (indB
KZσ)+ is generated by [Id].466

Proof. — The fact that if n > 0, a, d ∈ Z×p and b ∈ Zp, then [
(
pna b
0 d

)
] belongs to the467

A{F}-module generated by [Id] follows from the formula468 (
pna b
0 d

)
=

(
1 (b− pna)d−1

0 1

)(
pn 0
0 1

)(
a 0
0 d

)
.

469

Theorem 5.9. — If Π has no quotient isomorphic to E(σ), then the A-module Π+ is470

admissible.471
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Proof. — By proposition 5.6 above (Emerton’s theorem), it is enough to show that Π+ is472

finitely generated over A{F} and that Π+/XΠ+ is a finite dimensional E-vector space.473

The finite generation follows from the fact that Π+ is a quotient of (indB
KZσ)+, which is474

generated by one element over A{F} by lemma 5.8.475

Let R+ = (indB
KZσ)+ ∩ R. We have an exact sequence of A{F}-modules R+/X →476

(indB
KZσ)+/X → Π+/X → 0. By lemma 5.7, we have an isomorphism of A{F}-modules477

(indB
KZσ)+/X = E[F ]. Since any non-trivial quotient of E[F ] is finite dimensional over E,478

it is enough to show that R+ has non-trivial image in (indB
KZσ)+/X. If this was not the479

case, then we would have R+ ⊂ X · (indB
KZσ)+. Lemma 5.5 shows that X · (indB

KZσ)+ ⊂480

ker(s) where s is the map of definition 5.3. If y ∈ R, then F ny ∈ R+ for n � 0 so that481

R ⊂ ker(s) and therefore by lemma 5.4, there is a surjective map Π→ E(σ).482

Proof of theorems A and A’. — Let Π be an infinite dimensional smooth irreducible rep-483

resentation of B having a central character. By theorem 5.2, we can write Π = indB
KZσ/R484

and by theorem 5.9, Π+ is an admissible E[[X]]-module. Its dual M = (Π+)∗ is therefore485

a linearly compact topological E-vector space, and an E[[X]]-module by proposition 3.5.486

In addition, the space of coinvariants M/XM = MZp is finite dimensional by proposition487

3.4. By theorem 3.6 (Nakayama’s lemma), M is finitely generated over E[[X]].488

Since Π+ is a representation of B+Z, its dual M is a representation of B−Z. We define489

a (ψ,Γ)-module structure on M as follows: we know that it is a finitely generated module490

over E[[X]] and we set ψ(m) =
(
1 0
0 p

)
m and [a](m) =

(
1 0
0 a−1

)
m if a ∈ Z×p .491

If f : Π → E is an element of Π∗, let fn denote the restriction of
(
1 0
0 pn
)
f to Π+.492

The map f 7→ {fn}n∈Z gives rise to an equivariant map Π∗ → lim←−ψ M. Since Π∗ is493

irreducible by proposition 3.2, theorem 4.2 applied to Σ = Π∗ gives us a free irreducible494

(ψ,Γ)-module N such that Π∗ = lim←−ψ N. Theorem 1.6 now says that N = M(D) for495

some irreducible (ϕ,Γ)-module D so that Π∗ = lim←−ψ M(D). Theorem 3.1 finally says that496

Π = (lim←−ψ M(D))∗ which proves theorems A and A’ by the bijections constructed in §2497

(theorem 2.1 if E is a finite field and theorem 2.8 if E is algebraically closed).498

Remark 5.10. — Theorem A’ and proposition 2.2 imply that if E is algebraically499

closed, and Π is an infinite dimensional smooth irreducible representation of B having a500

central character, then there exists an infinite dimensional smooth irreducible Fp-linear501

representation Π0 of B having a central character, and a smooth character µ : B→ E×,502

such that Π = (E ⊗Fp Π0)⊗ µ.503

In particular, we can apply the same methods as in [Ber12] in order to prove that504

in fact, every smooth irreducible representation of B over an algebraically closed field505

necessarily has a central character.506
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