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This is an overview of an extended programme of joint work with Guy Hen-
niart, aimed at rendering the local Langlands correspondence effective as a tool
for local investigations. It is intended to serve as an introduction to recent

results in [13].

Throughout, F'is a non-Archimedean local field, og is the discrete valuation
ring in F, pp is the maximal ideal of o and kp = 0 /pp is the residue field. The
characteristic of kg is denoted by p, but we make no assumptions concerning
the characteristic of F. We fix a separable algebraic closure F of F, and let W
be the Weil group of F/F.

If n > 1 is an integer, then G,,(F) will denote the set of equivalence classes of
irreducible, smooth representations of W of dimension n. (Here, and through-
out, we consider only complex representations.) On the other side, A, (F') is the
set of equivalence classes of irreducible cuspidal representations of the locally
profinite group GL,,(F'). The Langlands correspondence [18], [21], [27] thus gives

a canonical bijection G, (F) — A, (F), which we denote o — Lo.

The theory of simple characters, as developed in [15], provides a complete
and explicit classification of the elements of A, (F'). It is therefore natural to
ask how the features of this structure theory are reflected by the representations

of Wg. The work summarized here reveals a strong and transparent parallelism.

Let Pr be the wild inertia, or first ramification, subgroup of Wy and denote
by P r the set of equivalence classes of irreducible smooth representations of Pp.
The group Wpg acts on ’JA’F by conjugation. The Wg-isotropy group of o € ﬂAJF

is of the form Wg, where E' = Zp(«)/F is a finite, tamely ramified extension.
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Let Wp = U,>1 9n(F) be the set of equivalence classes of irreducible smooth
representations of Wg. Fixing a representation o € P r and an integer m > 1,
let G,,,(F'; @) be the set of elements of W which contain o with multiplicity m.

Each element o of G,,(F; ) then satisfies
dimo =m[E:F] dima, FE = Zp(a).

Classical Clifford theory yields an explicit description of the elements of G, (F’; o)
in terms of certain (regular) elements of G;(E,,; ), where E,,/FE is unramified

of degree m: see 8.2 below.

On the other hand, the Ramification Theorem of [5] attaches to the pair
(ar,m) a distinguished conjugacy class © = @7 («) of simple characters in the
group GL,,(F), where n = m[E:F| dim «, as above. If A,,(F;©) denotes the set
of m € A, (F) which contain ©, the Langlands correspondence induces a bijec-
tion G, (F; ) — A, (F;0). The aim is to describe this map. To do this, we use
the classification theory from [15] and the theory of tame lifting from [2] and [5]:
these give an explicit description of the elements of A,,(F’;©) in terms of (reg-
ular) elements of Ay (Ey,; Og,,), where Op, = &5 (a). Combining these two
descriptions with the Langlands correspondence G1(E,,;a) — A1(En;Og,,),
we get an explicit bijection G, (F;a) — A, (F;©). The main result here shows
that this bijection differs from the Langlands correspondence by twisting the ele-
ments of G (F,,; «) with a fixed, tamely ramified character of E*. This twisting
character is completely computable in many cases; at worst, the Langlands cor-
respondence is determined up to twisting by an unramified character of order
dividing the dimension. Such a discrepancy is susceptible to analysis in terms
of a finite number of local constant calculations: we summarize that method at
the end of §9.

These notes are primarily aimed at giving an overview of recent work, and so
are short on detail. The material is based on the theory of simple characters, as
laid down in [15] and further developed in [2], [5]. That occupies many pages,
so we are constrained to abbreviate it drastically. In the main development
in Chapter I, we have omitted many of the definitions, and concentrated on
formal or structural properties illuminated by the simplest useful examples. This
serves the main purpose of exhibiting the underlying simplicity of the Langlands

correspondence (Main Theorem, 9.4) but obscures the essentially explicit nature
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of simple characters and the simple strata used to describe them. As a partial
remedy, we have added an appendix (§6) to Chapter I, giving a skeletal account
of the central definitions and constructions. This may be omitted completely,
but may equally be useful as a road-map for the reader wishing to pursue the

topic further.

Acknowledgement. The exposition has been improved at several points following

suggestions of an anonymous referee, to whom it is a pleasure to give thanks.

I. CUSPIDAL REPRESENTATIONS OF GLp,

We review the classification of the irreducible cuspidal representations of
GL,(F). The account is based firmly on [15] and [2], but we have incorpo-

rated some more recent insights, mainly from [13].

1. INTERTWINING AND INDUCTION

1.1. Intertwining. For a moment, let G be a group, let K; be a subgroup of
G and p; a representation of K, for i = 1,2. An element g € G intertwines p;
with py if

Hompgsng, (pf, p2) # 0.
Here, K{ means ¢g7'K1g and p{ is the representation = — p1(grg™!), v € K7.
Surely this property depends only on the double coset KigK>. In the same
vein, we write Ig(p1) for the set of g € G which intertwine p; with itself. In

particular, I (p;1) invariably contains Kj.

Suppose next that G is locally profinite, and that K is an open subgroup of
G. Let p be a smooth representation of K on a complex vector space W. The

space of functions f : G — W, which satisfy
f(kg) = p(k) f(g), keK, geG,

and which are compactly supported modulo K, then carries a natural action of
G by right translation. The representation of GG so obtained is smooth. It is

said to be compactly induced from p, and is denoted c-Ind% p.

We specialize to the case where G is the group of F-points of some connected,
reductive algebraic group defined over F': we say that GG is a connected reductive

F-group. Such a group G carries a locally profinite topology, inherited from F.
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Proposition. Let G be a connected reductive F-group, let K be an open sub-
group of G, which is compact modulo the centre of G. Let p be an irreducible
smooth representation of K. If Ig(p) = K, then the induced representation

c-Ind% p is irreducible and cuspidal.

The proof in [9], while overtly for G = GLy(F'), remains valid in the stated
degree of generality. It applies, in particular, to the case G = GL,,(F).

The proposition provides the most effective way we have of exhibiting irre-
ducible cuspidal representations of reductive groups. For a given group G, the
aim is always to produce a list D of inducing data (K, p) accounting exactly for
the irreducible cuspidal representations of G:

(1) if (K,p) € D, then m, := c-Ind$ p is irreducible and cuspidal;
(2) if w is an irreducible cuspidal representation of G, there exists (K, p) € D
such that m = m,;
(3) if (Ki,pi) €D, i=1,2, and m,, = m,,, then (K1, p1) is G-conjugate to
(K2, p2).
If G = GL,(F), such a list has been obtained [15]. More generally, let D be
a central F-division algebra of dimension d?, d > 1. If n = md, for an integer
m > 1, the group G’ = GL,,,(D) is an inner form of G. A similar list for G’
is given in [31], implying a classification scheme which is uniform across all of
inner forms of G. This uniformity is compatible with the Jacquet-Langlands

correspondence, to the extent known [6], [11], [12], [33].

More widely, the inductive approach gives all the cuspidal representations
of a classical group G, provided p # 2 [34], although the structure is more
complicated and the classification property (3) is not yet known. J.-K. Yu
has used the same sort of method to produce classes of irreducible cuspidal
representations of a general connected, reductive F-group G [36]. Yu’s method
make no pretence at completeness: for example, if G = GL,,(F), then it yields
all irreducible cuspidal representations of GG if and only if p does not divide n.
In the general case, J.-L. Kim [25] has shown that Yu’s construction yields all

desired representations provided p is sufficiently large, in a sense depending on

G.

1.2. Example. We give the first standard example of the idea of 1.1. It recurs
frequently in later pages, despite being rather atypical.
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Let V' be an F-vector space of dimension n, A = Endp(V), G = Autp(V).
Let L be an op-lattice in V' and set

m=mp(L) = Endy, (L) = M, (op).

Thus m is a mazimal o p-order in A. The ideal p,, = ppm is the Jacobson radical
of m. Set
K =F*Uy, Upj=1+pn.

In particular, K is an open subgroup of GG, compact modulo the centre F'* of

G, and U] is an open normal subgroup of K.

Let A be an irreducible representation of K such that /\|U%n is trivial. The
irreducible representation A|y,, is therefore inflated from an irreducible repre-
sentation \ of Uy /UL = GL,,(kp). We have

Io(\) =K <= \is cuspidal.

So, if s cuspidal, then c—Ind% A is irreducible and cuspidal. The boxed state-
ment is a pleasant exercise, c¢f. [9] 14.3. The following assertion, however, lies
rather deeper. A proof may be extracted from [15] (6.2 and 8.3.3).

Proposition. Let X be an irreducible representation of Uy, trivial on UL. The
following are equivalent:

(1) X is not cuspidal;

(2) the representation c—Ind% A has no irreducible cuspidal sub-quotient;

(3) the representation A occurs in no cuspidal representation of G.

Elaborating the first exercise, one may further deduce:

Corollary. Let (m,V') be an irreducible cuspidal representation of G, having a
non-zero fized point for the group UL. There is a unique irreducible representa-
tion A of K such that Ny, is inflated from an irreducible cuspidal representation
of Un /UL and 7 = c-Ind% .

2. SIMPLE CHARACTERS

As before, let V' be an F-vector space of finite dimension n, and set A =
Endp(V), G = Autp(V). Fundamental to the classification theory is the concept
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of “simple character in G”. Simple characters are complex and subtle objects
defined explicitly but indirectly. The basic theory is rather technical. It occupies
the first three chapters of [15], and is further developed in [2]. We want to
concentrate on the implications, for the Langlands correspondence, of certain
structural features. We have therefore given the briefest possible account of the

background material, appending an overview in §6.

2.1. Hereditary orders. We make much use of a family of special sub-rings

of A and a system of subgroups of G derived from them.

An F-lattice chain in V is a non-empty set L of og-lattices in V' which is
both linearly ordered under inclusion and stable under scalar multiplication: if
r e F* and Ly,Ly € L, then zL; € L and either L1 C Ly or Lo C L.

If £ is an F-lattice chain in V', the orbit space F*\L is finite with at most n
elements. We set
e=ep(L)=|F"\L|

This integer er(L) is called the F'-period of L.

Let L be an op-lattice chain in V. We set

a=ap(L) = () mp(L), where
Lekl
mp(L) ={r€ A: 2L C L} = End,,(L).

The intersection here is finite, with e = ep(L) distinct factors. The set a is an
op-order in A. An op-order obtained this way is called hereditary. (For a full
discussion of hereditary orders, see [30] or the early pages of [15].) Observe that
the maximal order mp (L) is the hereditary order defined by the lattice chain
{zL:2z e F*}.

For L € L, let L' be the largest element of £ such that L' C L and L’ # L.
The set
pa = () Hom,, (L, L')
Lel
is a two-sided ideal of a. It is the Jacobson radical of a, p, = rada. It is,

moreover, an tnvertible two-sided ideal of a, its inverse being

po' = () Hom,, (L', L).
Lel
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One can recover the lattice chain £ from the hereditary order a = ap (L), because
L is exactly the set of all a-lattices in V. When using this viewpoint, the period

e =e(a) = ep(L) appears as a sort of ramification index,

pra=pg.

Observe that a is a maximal order if and only if e(a) = 1.

Attached to a hereditary op-order a in A, we have the unit group U, = a*.
This is a compact open subgroup of G. It is a maximal compact subgroup if
and only if a is a maximal order. Inside U,, we have the “standard filtration
subgroups”

UF=14pk k>1.

These are again open in G and normal in Uj.

Remark. The groups U,, attached to the hereditary og-order a, appear in the
theory of the affine building of G: see, for example, the exposition in [35]. In
this context, the groups U, are the parahoric subgroups of G. From this point of
view, a group U, also carries many canonical, non-standard filtrations of interest

in representation theory [29], [34].

A further concept is useful. Let a = ap(L) be a hereditary op-order in A and
E a subfield of A containing F'. One says that a is E-pure if = 'ax = a, for all
x € E*. More expansively, this means that V is an E-vector space and L is an
op-lattice chain in V. If we let B = Endg(V') be the centralizer of F in A, then
b = an B is the hereditary og-order in B defined by L: in our earlier notation,

b=anNB= ClE(L)
Observe also that p, N B = radb.

2.2. Simple strata. A simple stratum in A is a pair [a, 3] consisting of a
hereditary op-order a in A and an element 3 of G satisfying the following con-
ditions:

(1) the algebra E' = F[(] is a field and vg(3) < 0;

(2) ais E-pure;

(3) G is simple over F.
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The effect of (3) is the following. If we have another pair [a, 3] satisfying (1)
and (2), such that 8'—( € a, then

[F[3]: F] > [F[g] : F].

The formal definition, which is equivalent to (3), is recalled in 6.3 below. The
point needed here is that a simple stratum [a, 3] gives rise, in a canonical and
explicit manner, to an open, therefore compact, subgroup H'(3,a) of Ul. At
this stage, we note only that the group H'(3, a) depends on the equivalence class
of [a,3]: if we have another simple stratum [a, 3’] such that 5/ = 8 (mod a),
then H'(3',a) = H'(3,a).

Remark. The property of “simplicity over F” is necessarily expressed via hered-
itary orders, but it really depends on ( alone. Taking E = F[3] as in part
(1), let V; be a finite-dimensional E-vector space and a; an E-pure hereditary
op-order in Endp(V;), i = 1,2. The pair [a1, 3] is then a simple stratum if and

only if [ag, 5] is a simple stratum.

2.3. Simple characters. To proceed further, we need to choose a smooth
character ¢ of F' of level one. That is, 9 is trivial on pr but not on op. If [a, 5]
is a simple stratum in A, the choice of ¢ gives rise to a finite set C(a, 3,1) of
very particular characters of the group H'(3, a). These are the simple characters

attached to [a, 5]. Again, the set C(a, 3, 1) depends only on the equivalence class
of (.

The choice of ¥ does not affect the definition of simple characters: changing 1
only affects the way simple characters are labelled by simple strata. Explicitly,
if " is some other character of I of level one, there is a unit v € Ur such that
Y (z) = Y(ux), x € F. We then have C(a, 3,¢') = C(a,uB,v). For this reason,
when treating the relation between simple strata and simple characters, we tend
to regard 1 as fixed and use the simpler notation C(a,3) = C(a, 5,).

3. AN EXAMPLE

To illuminate the outline of 2.2, 2.3, we give the simplest useful example.

3.1. Minimal elements. Let E/F be a finite field extension, let « € E* and
suppose that £ = F[a].
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Definition. The element a is minimal over F if

(1) the integer v = vg(«) is relatively prime to e = e(E|F);
(2) if w is a prime element of F, the coset a®w ™ +pr C Up generates the

residue class field extension kg /kp.

Condition (2) is, of course, independent of the choice of w. For us, the key

property is:

Proposition. If a is minimal over F' and vpj)(a) <0, then a is simple over
F.

The proof is to be found in [15] 1.4.15.

3.2. Simple characters for minimal elements. Let [a,a] be a simple stra-
tum in which « is minimal over F. It is a consequence of parts (1) and (2) in
the definition (2.2) that a~'a = p!, for an integer I > 0. Let E = F[a], let B
be the A-centralizer of E' and set b = a N B. In this situation,

1 (a.a) = UL UL,

where [x] denotes the integer part of a real number x.
A character 6 of H!(a, a) lies in C(a, o, %) if and only if 0|1 factors through

the determinant map detg : B* — E* and

O(1+z) =Y otra(az), =€ le/Q]H,

where try : A — F denotes the matrix trace.

3.3. The general case. In general, an element 3 of G, which is simple over
F, is constructed from a finite sequence of pairs (E;, ;). Here, the E;/F are
subfields of A of strictly increasing degree, and «; is minimal over F;. The defi-
nition of H'(/3,a) then follows this sequence step by step, as does the definition

of C(a, 3): see §6 for an overview of the construction.

4. CLASSIFICATION OF CUSPIDAL REPRESENTATIONS

We review the central classification results from [15].
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4.1. Intertwining. Let [a, ] be a simple stratum in A = Endp(V). Let
E = F[f], let B be the A-centralizer of E' and set b = anN B. Let 6 € C(a, ).
We attach to 8 the following groups:

Jy = the G-normalizer of 6,
Jy = Jg N U,,
Jig =JpNUL.

Lemma. Let K, denote the group of y € B* such that y~'by = b.
(1) The group Jy is open and compact modulo centre in G.
(2) The groups Jg, J3, Jy depend only on the equivalence class of [a, 3], and

satisfy the following relations,

JQZJC[JJ917
J§ = UsJg,
Us =UpyN Jj.

(3) The set I(0), of elements of G which intertwine 6, is given by

Ic(0) = J; B* Jj.

Remarks. We will prefer to label groups by 6 rather than the attached simple
stratum since, as we shall see in 5.1, the stratum is not a reliable invariant of
the situation. So, from now on, we usually write H, rather than H L(8,a), for
0 € C(a,3). We observe that J§ is the unique maximal compact subgroup of Jy
and J; is the pro-p radical of JJ.

Ezample. If a is minimal over F (as in 3.2), the group J; is given by

Jh = T, a) = UL U/,

4.2. Level zero. To get clean statements, we need a variant of the notion of
simple character. A trivial simple character in G is the trivial character of U},
for a hereditary op-order a in A. We use the notation 1} for such a character.
If # = 1%, the G-normalizer Jy of @ is K, (notation as in 4.1 Lemma), while
JJ =U, and H} = J; = U}. The set I5(0) is G itself. All the assertions of 4.1

Lemma thus remain valid in this case, provided we set £ = F'.
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4.3. Extended maximal simple types. Let 6 be a simple character in G.

Definition. An extended maximal simple type over 6 is an irreducible repre-
sentation A of Jp such that Ay contains 0 and I(A) = Jy.

Let T(0) be the set of equivalence classes of extended maximal simple types

over 6.

This concept is only useful for a particular kind of simple character . Suppose
first that € is non-trivial, say 6 € C(a,3), for a simple stratum [a, 3] in A. As
usual, let B be the A-centralizer of £ = F[3] and set b = an B. We say
that 6 is m-simple if the hereditary og-order b is mazximal, or, equivalently, if
e(a) = e(E|F). If, on the other hand, 6 is trivial, @ = 1} say, then 6 is called

m-simple if a is maximal. The reason for introducing this concept is:

Lemma. Let 6 be a simple character in G. The set T(0) is non-empty if and

only if 0 is m-simple.

We have already remarked this property for trivial simple characters, in 1.2
Corollary. In general, one may equally describe the elements of T(6) explicitly:

we shall do this in the more suggestive context of 9.3 below.

We may now summarize the main results of [15] concerning the structure of

cuspidal representations.

Classification Theorem. Let 7 be an irreducible cuspidal representation of G
on a complex vector space V.
(1) The representation m contains a simple character 6. Any such character
1s m-simple, and any two are G-conjugate.
(2) The natural representation A of Jg on V? is irreducible, lies in T(0) and
= c—Ind§9 A.

(3) If 0 is an m-simple character in G, the map
Av— c—Ind% A
is a bijection between T(0) and the set of equivalence classes of irreducible

cuspidal representations of G containing 0.

This theorem yields the desired explicit description of the irreducible cuspidal

representations of G.
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5. ENDO-EQUIVALENCE CLASSES AND LIFTING

We need some further properties of simple characters, in order to state a
fundamental result concerning change of base field. As in 2.3, we work relative

to a fixed choice of a smooth character ¢ of F', of level one.

5.1. Intertwining and conjugacy. We consider the way in which simple
characters 6 € C(a, 5) depend on the two associated parameters a and 3, within
appropriate constraints. We start with a rather weak uniqueness property [15]
3.5.1.

Proposition 1. Let [a, 5], [@/, 3] be simple strata in A, and suppose that

C(a, B) N E(a’, ") # 0
(whence, in particular, H(3,a) = H*(5',a’)). We then have:
(1) a=4d,

(2) €(a, ) = C(a, ),
(3) e(FAIF) = e(F[F]|F) and [F[3] : F] = [F[§'] : F].

The hypotheses of Proposition 1 imply no further relation between the fields
F[p], F[#']. Indeed, it is easy to find examples where any two fields of given

degree and ramification index can give rise to the same sets of simple characters.

The second result [15] 3.5.11 of the sequence deals with intertwining of simple

characters attached to the same hereditary order.

Proposition 2. Fori = 1,2, let [a, §;] be a simple stratum in A = Endp(V), let
0; € C(a, B;). Suppose that 01 intertwines with 0 in G = Autp(V'). There exists
x € Uy such that 03 = 07. Indeed, 0 — 0% is a bijection C(a, 51) — C(a, B2).

5.2. Transfer. In another direction, we may fix the element 3 and vary the
order a. We start from a finite field extension E = F[3]/F, generated by an

element (3, of negative valuation and simple over F, as in 2.2.

We suppose given two finite-dimensional E-vector spaces V7, V5 and set A; =
Endgr(V;). Let a; be an E-pure hereditary order in A;. Thus [a;, 3] is a simple

stratum in A;. In these circumstances, there is a canonical bijection

Tﬁ : e(alaﬁ) L e(a27ﬁ)‘

ay,a2
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We refer to Tflm as the (B-transfer from a; to as. Transfer is natural relative
to the orders a;: in the obvious notation,

B _ B B
Ta1,a3 - Ta2703 © Ta17a2'

It may, however, depend on the choice of 3, ¢f. 5.1 Proposition 1.

Example. To indicate how Tflm is constructed, we return to the example
of §3, in which the element (3 is minimal over F. Let v = —vg(f), and let
a be an E-pure hereditary order in some A = Endp(V). Let B be the A-
centralizer of E and b = anN B. We have 3~ 1a = p., where [ is the integer
vep(a)/e(E|F) = veg(b). Given 0 € C(a, ), there is a unique character yg of
U4 such that

0|U§ = xg o detp.

The character yy determines 6 uniquely. Given simple strata [a;, 5] as above,

the map 7 = TfhuQ is defined by the relation

X160 = X6, ‘968(&1,5).

5.3. Endo-equivalence. We start with a pair of finite-dimensional F-vector
spaces V7, Vo. We are given a simple stratum [a;, ;] in A; = Endp(V;), i =1,2.
A common realization of [ay, $1], [az, B2] consists of a finite-dimensional F-vector
space V, a hereditary op-order 2 in A = Endp (V') and a pair of F-embeddings
fi : F[8i] — A such that 2 is f;(F[8;])-pure, i = 1,2. Thus each [2, f;(5;)] is a

simple stratum in A.

We remark that, for fixed ¢, any two such embeddings f; are Ug-conjugate, so
the choice of f; is irrelevant. We therefore speak of the pair (V,2() as a common

realization of the [a;, 5;].

Lemma. Let [a;,3;] be a simple stratum in A; = Endp(V;), and let 0; €
C(as, Bi), i = 1,2. The following are equivalent.
(1) There ezists a common realization (V,21) of the strata [a;, 3;] such that
the simple characters 7'51_ "o intertwine in Autp (V).
(2) For any common realization (V,2) of the strata [a;, 3;], the simple char-

acters Taﬁj’gﬁi intertwine in Autp (V).
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As in 5.1 Proposition 2, the characters Tfi ' o0i intertwine in Auty (V) if and

only if they are Ug-conjugate. For a proof of the lemma, see [2] 8.7.

Continuing in the context of the lemma, we say that 6, is endo-equivalent
to O if the pair (01,0;) satisfies the equivalent conditions (1) and (2). This
relation of endo-equivalence is an equivalence relation on the class of all non-
trivial simple characters in all groups Autp(V'), as V ranges over the class of

finite-dimensional F-vector spaces.

A trivial simple character never intertwines with a non-trivial one, so we may
extend the notion by deeming that all trivial simple characters belong to one
endo-equivalence class. Let £(F') denote the set of endo-equivalence classes of

simple characters over F'. We denote by Or € E(F') the class of trivial ones.

We exhibit some useful consequences of these results.

Proposition.

(1) A simple character is endo-equivalent to any of its transfers.

(2) Two simple characters over F, attached to the same hereditary op-order
a, are endo-equivalent if and only if they are Uy-conjugate.

(3) Let 0; € C(a;,3;), i = 1,2. If 01 is endo-equivalent to 6y, then

[F[A] = F] = [F[f2] : F].

Consequently, if © € E(F) is the endo-equivalence class of § € C(a,3), the
integer

deg® = [F[f] : F]

depends only on @. Conventionally, degO0p = 1.

Remark. In the context of part (3) of the proposition, the ramification indices
e(F[B;]|F) are equal, as are the inertial degrees f(F|[03;]|F'). The extensions
F[B;]/F need not be isomorphic. However, if T;/F is the maximal tamely ram-
ified sub-extension of F[3;]/F, the fields T; are F-isomorphic [13], 2.4. Indeed,
there exists j € J; such that Ty = le . Any two choices of j induce the same
isomorphism z +— j~'xj from T} to 7. Thus 6 determines the maximal tamely

ramified sub-extension uniquely, up to distinguished isomorphism.
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5.4. Tame lifting. It is apparent from the definitions that a field isomorphism
F — F’ induces a bijection E(F') — E(F’). In particular, the group Aut F' acts
on E(F'). The operation F' +— E(F') has a more interesting property: if K/F is

a finite, tamely ramified field extension, there is a canonical map [2]
The definition is outlined in §6. Here, we list only the main properties.

Proposition.

(1) The map ik, p is surjective. If L/K is finite and tamely ramified, then

iy F =iKk/FOlL K-

(2) The map ik p has finite fibres. If © € E(F), then

deg® = ) ~deg P,
]

where @ ranges over the elements of E(K) for which ix/p® = 6. More-
over, ig,p® = OF if and only if ® = Of.
(3) If K/F is Galois and ® € E(K), then

igyp(i/p®) = {27 : 7 € Gal(K/F)}.

If © € E(F), the K/F-lifts of © are the elements of the fibre i;(}F@. If ©is
the endo-equivalence class of 6 € C(a, ), there is a canonical bijection between
the set of K/F-lifts of © and the simple components of the semisimple K-algebra
K ®p F[3].

5.5. Relation with automorphic induction. We move briefly to a different
situation. Let K/F be a finite, cyclic extension of degree d. Let p be an
irreducible cuspidal representation of GL,,(K). The operation of automorphic
induction attaches to p an irreducible smooth representation m = A, p of the
group GL,,4(F). This is defined in [22] when F' has characteristic zero, and in
[23] otherwise. For us, the point is that automorphic induction corresponds, via
the Langlands correspondence, to the operation of induction to Wg of smooth

representations of Wy.
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For the same p, the representation m = A, p is parabolically induced from
an irreducible cuspidal representation my of the Levi factor L of some (not
necessarily proper) parabolic subgroup of GL,,,4(F"). The group L is of the form
G1 x Gg X --- x G, for a divisor r of d and where G; = GL,,q/,(F). Thus
T 2 m ®me ® - @7, where 7; is an irreducible cuspidal representation of

G;. We use the notation
TrT=m BB --Bmnr,.

By the Classification Theorem 4.3, the representation p contains a unique conju-
gacy class of m-simple characters in GL,,, (K), the endo-class of which we denote
Y(p). We similarly define ¥(m;) € E(F), 1 < j <.

Automorphic Induction Theorem. Let K/F be cyclic and tamely ramified
of degree d. Let p be an irreducible cuspidal representation of GL,,(K) and write

T=Agpp=mBm B B,

where v > 1 and 7; is an irreducible cuspidal representation of GLy,q/,(F),
1<j<r. We have

I(m;) =ig/pd(p), 1<j<r

The proof of this theorem is given in [5] but relies heavily on some special
cases in [2]. In both of those papers, we assumed that F' had characteristic zero
since, at the time they were written, automorphic induction was known only in
that case. The existence, and relevant properties, of automorphic induction in
positive characteristic are established in [23]. Once that theory became available,
so did the positive characteristic case of the theorem: the proof requires no
modification. We remark also that there is a related result connecting tame
lifting with base change, in the sense of [1] and [23], but we will not use that

here.

6. APPENDIX:
A SKELETON OF DEFINITIONS

We extract from [15] and [2] the basic definitions pertaining to simple char-

acters and strata, and state the structure theorems giving them their explicit
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form. The section may be omitted at first reading: we shall only refer to it once
in the pages to follow. However, we are guided by the desire to use the Lang-
lands correspondence as a computational tool, and the material here is essential
to any such project. This skeleton should prove adequate for most purposes,
and may also serve as a short introduction for a reader unfamiliar with these

matters.

Let V be a finite-dimensional F-vector space, and set A = Endg(V), G =
AutF(V).

6.1. Adjoint and co-restriction. This preliminary material is to be found
in [15] 1.3, 1.4.

Let E/F be a subfield of A. Thus V is an E-vector space and B = Endg(V)
is the centralizer of £ in A. Let tr4 : A — F be the reduced trace. Thus
(x,y) — tra(xzy) provides a nondegenerate, symmetric bilinear form Ax A — F.
Let C' be the orthogonal complement of B with respect to this pairing. In
particular, C' is a (B, B)-bimodule.

Note. If E/F is separable, then A is the orthogonal sum of B and C. Otherwise,
BccC.

Suppose E = F[f], for some § € E*. For x € A, we define ag(x) = fr—xf.
Thus ag is a (B, B)-homomorphism A — C with kernel B. It follows that
ag(A) =C.

In the other direction, a tame co-restriction on A, relative to E/F, is a
(B, B)-homomorphism s : A — B with the following property. If a is an FE-
pure, hereditary op-order in A, then s(a) = aN B. Such a map s exists, and is
unique up to multiplication by a unit of F. In particular, we have an infinite
exact sequence

At Y p 8

Now write b = aN B, p =rada and q = radb. A tame co-restriction then has

the further property

6.2. Relation with duality. The tame co-restriction appears naturally in
the context of duality. Let ¥ be a smooth character of F, ¢ # 1, and let 14
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denote the smooth character x — ¢ (tra z) of A. For a € A, let aip4 denote the
character x — 14 (za). The map a — a4 then gives a topological isomorphism

of A with its group A of smooth characters.

If E/F is a subfield of A with centralizer B, and if £ # 1 is a smooth character
of F, we may similarly define a character {p € B. This yields an isomorphism
B — E, b +— b&p. The obvious restriction map A — Bis surjective. So, if we
identify A with A and B with B via choices of characters Y € F , € € E, this
restriction corresponds to a surjective map sy ¢ : A — B. If we take both 1) and

& to be of level one, then sy ¢ is a tame co-restriction on A, relative to E/F.

6.3. Strata. We need a looser definition of stratum, as in Chapter 1 of [15].
We recall (2.1) that the Jacobson radical of a hereditary order a is invertible, as

two-sided ideal of a.

A stratum in A is a quadruple [a,l, m,b] as follows. First, a is a hereditary
op-order in A; we set p = rada. The parameters [, m are integers such that
[ > m. Finally, b € p~'. Strata [a,l,m,b;], i = 1,2, are deemed equivalent if
by = by (mod p~™). We use the notation

[a,l,m,b1] ~ [a,1,m,bs].

A stratum [a, 1, m, 3] is called pure if F[3] is a field, a is F[3]-pure, and fa = p~L.

Let [a,l,m, 3] be a pure stratum in A, and write E = F[3]. Let B be the
A-centralizer of F, and take b, p, q as in 6.1. Let k£ be an integer and define

Ny = {ZL‘ ca: ag((li) € pk}
For k sufficiently large, we have 9 C b+p. Assuming F # F, we define
ko(B,a) =max{k € Z : Ny, ¢ b+p}.

In the case F = F, it is convenient to set ko(83,a) = —oo. Otherwise, we have
kO(ﬁ? a) = —L.
A simple stratum in A is a pure stratum |[a, [, m, 3] such that

m < —]{Io(ﬂ, a).

To describe the dependence of ko(83,a) on a, we note that the matrix algebra
Endp(F) contains a unique E-pure hereditary op-order a(E): this is defined by
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the lattice chain {p), : j € Z} in E. Let p(E) = rad a(E), so that Ba(E) = p(E)",
where v = vg(3). We set

kr(B) = ko(B,a(E)).
We expand a comment made in 2.2.

Proposition. Let [a,l,m, 3] be a pure stratum in A, with 3 ¢ F.
(1) The quantity ko(B,a) is given by

ko(0,a) = kr(B) er(a)/e(F[G][F).

(2) The element (3 is minimal over F' if and only if ko(5,a) = —I, that is, if
and only if kp(8) = v (B). In particular, a pure stratum [a,l,1—1, 5]

1s simple if and only if B is minimal over F.

These assertions are proved in [15] 1.4.13, 1.4.15 respectively.

6.4. Synthesis of simple strata. All simple strata are built from minimal

elements in a systematic manner.

Theorem 1. Let [a,l,m,~] be a simple stratum in A. Let B be the A-centralizer
of v, letb=anN B, and let s, : A — B be a tame co-restriction on A relative to

F[y]/F. Let [b,m,m—1,«] be a simple stratum in B.
(1) There is a simple stratum [a,l,m—1, 5] in A such that

la,l,m, 3] ~ [a,l,m,~] and
[b,m, m—1, s, (8—7)] ~ [b,m,m—1,al.

(2) For any such 3, we have

e(FIB)|F) = e(F]|F) e(Fly, ]| F[v]),
FEW|F) f(Fly, o] |F]).

\

e

=

&
|

(3) Moreover,

-m of a & Flv],
ko(ﬁ,a):{ fo ¢ Fly]

ko(y,a) otherwise.
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Remark. In the context of Theorem 1, the field F[y] need not be F-isomorphic
to a subfield of F[3].

All simple strata arise from the construction in Theorem 1. Indeed, let
[a,l,m, 3] be a simple stratum in A and set r = —ko(5,a). We assume 3 ¢ F,
so r is an integer satisfying m < r < [. There is nothing to do if r = [, since (3

is then minimal over F. We therefore assume the contrary.

Theorem 2. There exists a simple stratum [a,l,7,v] in A such that

[a7l7r77] ~ [a7l7/r?/8]'

Moreover, if B is the A-centralizer of v, if b = anNB, and if sy : A — B
is a tame co-restriction on A relative to F[y]/F, then [b,r,r—1,s,(8—7)] is

equivalent to a simple stratum in B.
This sort of technique also allows one to compare simple strata, step by step.

Proposition. Let [a,l, m, ] be a simple stratum in A, let B be the A-centralizer
of B and let b =anb. Let [a,l,m,'] be a simple stratum in A, equivalent to
[a,l,m,3]. We then have

(1) ko(B',a) = ko(B,a);

(2) if sg is a tame co-restriction on A relative to F[B]/F, the stratum
[b,m, m—1,s3(0'—p)] is equivalent to either [b,m,m—1,0] or a simple
stratum [b,m, m—1, a|, where a € F[B]*;

(3) the first alternative in (2) holds if and only if [a,l,m—1, '] is equivalent
to a G-conjugate of [a,l,m—1,].

6.5. Groups and characters. We start with a simple stratum [a,[,0, 8] in
A, and attach to it a pair H'(3,a) C J'(8,a) of open subgroups of Ul. Set
r = —ko(B,a). Thus r is an integer such that 0 < r < [, or else r = o0
(corresponding to the case § € F*). In the case r > [ (so that ( is minimal

over F), we use the definition from §3:
H'(8,0) = Uy UL, 7 (8,0) = Uy U872

where b is the a-centralizer of (.
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We therefore assume 0 < r < [. We choose a simple stratum [a, [, , 7] equiva-
lent to [a,l,7, 3]. Let B denote the A-centralizer of # and set b = an B. Induc-
tively, the group H'(v,a) has been defined. We put H*(3,a) = H'(3,a) N Uk,
k > 1, and similarly for J k. We set

H'(B,0) = Uy H'?H (y,0), JY(B,0) = Uy STV (5, a).

These groups depend only on the equivalence class of the stratum |[a, [, 0, 3.

Next, we choose a smooth character ¢ of F' of level one. For a € A, we
denote by 1, the function x — 1 (tra(a(z—1))) on A. We define a set C(a, 3, 1)
of characters of H'(f3,a), following the preceding construction. Suppose first
that (3 is minimal over F'. As in §3, a character 0 lies in C(a, 3,) if and only if
0|y factors through detp and

0(y) = vs(y), ye /At

Otherwise, we take r and « as before. A character § of H'(83, a) lies in C(a, 3,)
if and only if 9’U§ factors through detp and there exists ¢ € C(a,~, ) such that

0(y) = o(y)vp—r(y), ye HIIT (v, 0a).

6.6. Tame lifting. We outline a construction from [2]. For this, we need a
simple stratum [a,,0, 5] in A, and a subfield K/F of A, commuting with 5 and
such that the algebra K[f] is a field.

Proposition 1. Let C' denote the A-centralizer of K and ¢ =anC.

(1) The quadruple [c,1,0, (] is a simple stratum in C.
(2) The group H'(B,a) N C is equal to H'(B,¢).
(3) Let Y =Y oTrg p. If 6 € C(a, B,7), then the restriction

QK = 9|H1(,3,c)

lies in C(c, B,¢k).

In the situation of the proposition, the field K[3] is K-isomorphic to exactly

one simple component of the semisimple K-algebra K @z F[3].
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Proposition 2. Let K/F be a finite, tamely ramified field extension. Let V' be
a finite-dimensional K -vector space and set C' = Endg (V), A = Endp(V). Let
[c,1,0,0] be a simple stratum in C and let a be the unique K-pure hereditary
op-order in A such that aNC =c. Let Y = oTrg/p.

There exists a simple stratum [c,1,0,3'] in C' such that

(1) G(Caﬁlﬂbl() = e(caﬁa ¢K>7 and

(2) the quadruple [a,1,0, '] is a simple stratum in A.
Let ¢ € C(c, B,v¢K). For any such ', there exists a unique 6 € C(a,3’,v) such
that O = ¢.

In the context of Proposition 2, the endo-equivalence class © € E(F') of
depends only on the endo-equivalence class @ € £(K) of ¢. The process @ — O
gives a well-defined map E(K) — E(F) which is independent of the initial choice
of 1. This map is the one denoted i, in 5.4.

II. REPRESENTATIONS OF THE WEIL GROUP

Let F'/F be a separable algebraic closure of F, and let W be the Weil group
of F/F. If E/F is a finite separable field extension with E C F, we identify
the Weil group Wg of F/E with the subgroup of Wx which fixes E under the

natural action of Wy on F.

Let Pr denote the wild inertia, or first ramification, subgroup of Wr. Thus
Pr is a closed, normal subgroup of Wg. It is a pro-p group, and may be identified
with the Galois group of F/F®™ where F*"/F is the maximal tamely ramified
extension of F inside F. In particular, if K C F and K/F is finite and tamely
ramified, then Px = Pp.

7. APPLICATION OF CLIFFORD THEORY

7.1. Representations. Let G, (F') be the set of equivalence classes of irre-

ducible, smooth representations of Wr of dimension n and set

Wr = | Gu(F).

n>1
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Analogously, let @F be the set of equivalence classes of irreducible smooth rep-

resentations of Prp. We use elementary Clifford theory to describe W F in terms
of @ F.

IfoeW F, the restriction o|p,., of o to Pp, is semisimple. It is a direct sum
of various o € P r, any two of which are Wg-conjugate and occur with the same

multiplicity. We enshrine this in the canonical map
7”%7 : W F — WF\:/}SF

which sends o € Wp to the Wp-orbit of an irreducible component of o|p,.. For

an integer s > 1 and a € P, we accordingly define
G4(F; ) = {0 € Wp : dim Homg . (@, 7) = s}.

For example, let 1 be the trivial character of Pr. The elements of G5(F; 1)
are then the irreducible, s-dimensional, tamely ramified smooth representations

of WF

Proposition. Let o € UA)F

(1) The Wg-isotropy group of « is of the form Wg, where E = Zp(«)/F is
finite and tamely ramified.

(2) There ezists p € Wg such that plp. = a. If p' is any other such rep-
resentation, there is a unique tamely ramified character ¢ of Wg such
that p' = p ® 1.

(3) Taking p as in (2), let T € G5(E;1r). The representation

Xo(1) =Indg/pp®T
is 1rreducible, and lies in G5(F';«). The map
Xy Gs(E31p) — Ss(Fs )
1 a bijection.

All assertions here are straightforward, but a complete proof may be found
in §1 of [13].
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IIT. CONNECTIONS

For an integer n > 1, let A,,(F) denote the set of equivalence classes of irre-
ducible, smooth, cuspidal representations of GL, (F'). It will also be convenient

to have the notation
GLr = | Au(P).

n>1

L

Thus the Langlands correspondence o — “o is a bijection W F— GL .

If 7 € A,(F), then 7 contains a unique G-conjugacy class of simple charac-
ters in G = GL,(F) (4.3). These simple characters all lie in the same endo-
equivalence class, which we have denoted ¥(m). Thus we have a canonical sur-

jective map

9 : GLp — E(F).

8. SOME BASIC RELATIONS

8.1. Ramification theorem. If K/F is a finite, tamely ramified extension,
then P = Pp, and there is a canonical surjection WK\‘JA)F — WF\iTDF The

first step in our description of the Langlands correspondence is:

Ramification Theorem.
(1) There is a unique map Pp : Wp\ﬁp — E(F) such that

r},l lﬂ

F
commutes. The map P is bijective.

(2) If K/F is a finite, tamely ramified field extension, then

Wi\Pr —X 5 &(K)

.

Pp

commutes.
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Part (1) is proved in [5] §8, under the restriction that F' has characteristic
zero. As remarked in 5.5, it holds equally, with the same proof, in positive
characteristic. Part (2) is 6.2 of [13] (and follows easily from the Automorphic
Induction Theorem of 5.5).

Let © € E(F) and let s > 1 be a positive integer. We define A, (F'; ©) to be
the set of 7 € Agqeg o (F) such that ¥(m) = ©. As in [13], we have the following

corollary.

Tame Parameter Theorem. Let o € Pp and set E = Zp(a), © =0p(a).

(1) We have
deg® = [E:F| dim .

(2) If © is the endo-equivalence class of 6 € C(a,[3), for a simple stratum
[a, B] in some matriz algebra, then E is F-isomorphic to the mazimal
tamely ramified sub-extension T/F of F[(]/F .

(3) The Langlands correspondence induces a bijection
9s(Fsa) — A (F;0),

for all s > 1.

We emphasize that, in part (2), there is no distinguished F-isomorphism of
E with T

Remarks. In the case dima = 1, part (1) of the Ramification Theorem follows
directly from local class field theory: if ap : Wp — F* is the Artin Reciprocity
map, then ar(Pr) = UL. In the case dim o = p, one may deduce something of
the nature of ®p(«) from Moeglin’s treatment [28] of the Langlands correspon-
dence in dimension p, p > 5. For detailed treatment of the case p = 2, see [26]
or [9], for p = 3 see [19]. Otherwise, we have virtually no systematic information

concerning the map ®p.

8.2. Tamely ramified representations. Let 1x be the trivial character of
Pr, let n > 1, and consider the set G,,(F;1r) of classes of irreducible tamely

ramified representations of Wg, of dimension n.

Let F,,/F be unramified of degree n, A = Gal(F,/F), X;(F,) = the group
of tamely ramified characters of F,*. The group A acts on X;(F},). We say that
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x € X1(F,) is A-regular if the characters x°, § € A, are distinct. We denote by
X1 (F,)? " the set of A-regular elements of X;(F,). The map

A\Xl(Fn)A_reg B— 9n(F7 1F)7

X 0x = Inan/F X

is then a canonical bijection.

Recall that 0p € E(F) is the endo-equivalence class of trivial simple charac-
ters over F. As an instance of the Remarks in 8.1, we have Op = ®p(1p). Let

m = M,,(op). We describe canonical bijections

A\X (F,) 278 — T(1;,) — An(F;0p),

X — Ay — .

For the first, let p(F),) denote the group of roots of unity in F,,, of order relatively
prime to p. The Galois group A acts on p(F},); an element ¢ of p(F,,) is called
A-regular if the conjugates ¢°, § € A, are distinct.

We embed F,, in M,,(F) so that m becomes F,,-pure. This embedding identi-
fies u(F,) with a subgroup of Uy. Reduction modulo py, then identifies pu(F),)
with a subgroup of § = GL,,(kp), the A-regular elements of u(F,) becoming
elliptic regular in G. Let x € X (F,)?"8. As in [17] (cf. §2 of [10]), there is a

unique irreducible cuspidal representation 5\X of G such that

tr A (O) = (=11 > X°(0),

0EA

for every A-regular element ¢ of p(F),). We define an irreducible representation
A, of the group J = F*U, by deeming that A, |y, be the inflation of S\X and
that A, |rx be a multiple of x|rx. The map x — A, is then the desired bijection
A\ X (F,)? e — T(1L). The second bijection above is then A, — c-Ind§ A,,
G = GL,(F), as in 1.2 Corollary.

The representation LO'X, attached to o, by the Langlands correspondence, is
not m,. It is rather

OX = 7TX/,

where Y’ = w" !y and w is the unramified character of F* of order 2.
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8.3. A wild lift. We continue in the situation of 8.2. Let Q/F be a finite,
totally wildly ramified, field extension. Thus QF,,/Q is unramified of degree
n, and we may identify Gal(QF,/Q) with A. Composition with the field norm
Ngr, /F, gives a A-isomorphism X (F,) — X1(QF,), and so leads to a canonical
bijection

bQ/F An(FaOF) = An(Q;OQ)-

This map is readily described in terms of types. Let m € A, (F;0Fr) be given
by a A-regular character x € X;(F),). Thus 7 is induced by a representation
Ay € T(1L) as in 8.2. Likewise, bg/r 7 is induced by a representation A,
where xg = x o Ng, /r,. By definition, the representation A, is determined
by its restriction to @* (which is a multiple of xg|gx) and the restriction of
its character to the set of A-regular elements ¢ of u(Q,) = p(F,). For such an

element (,

tr Ay, (¢) = tr A, (¢l .

Note here that the field degree [Q:F] is a power of p.

We remark that, in the case where Q/F is also cyclic, this map bg,p is base
change, in the sense of [1], [23].

9. MAIN THEOREM

We return to the context of 4.3, to describe more fully the class of extended

maximal types attached to an m-simple character in a group GL,,(F).

9.1. Notation. We establish notation for the rest of the section. Let § be a
non-trivial m-simple character in G = GL,,(F). In particular, § € C(a, 3,v),
for some simple stratum [a, 3] in A = M,,(F') and a smooth character ¢ of F of
level one. We now set P = F[f], we let B be the A-centralizer of P and put
b=anB.

Attached to 6 are the groups Jy, JJ and Jj of 4.1. Since 6 is m-simple, we
have Jy = P*J) = P*UyJj and J} N P*U, = U[}, so the inclusion of Uy in
Jy induces an isomorphism U, /Ul = JJ/J}. Since b is a maximal op-order, we
have an isomorphism

Up /Ut = GL,(kp),
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where s = n/[P:F|, uniquely determined up to conjugation by an element of Us.

Altogether, we have isomorphisms
(%) Jg/Jg = Us/Ug = GLs(kp).

Let ¢ be an irreducible representation of P*Uy, trivial on U¢. There is then,
by (x), a unique irreducible representation g of Jp such that |1 is trivial and
&o|pxu, = & The equivalence class of & then depends on that of £, and not on

the choice of isomorphism ().
9.2. Heisenberg representations. We recall a general result from [15] 5.1.

Lemma. Let ¢ be a simple character in a group G' = GL,.(F). There exists a

unique irreducible representation n(¢) of J(}) such that 77(¢>|H; contains ¢.

Since J (}) normalizes ¢, the restriction of n(¢) to H(}) is a multiple of ¢. One
may also show that Ig/ (n(¢)) = Ig/ (o).

We now revert to the notation of 9.1. The following lies rather deeper, and
is proved in [13] 3.2, [15] 5.2.

Proposition 1. Let 6 be an m-simple character in G = GL,,(F'). There exists

a representation £ of Jg such that k|51 = n(0) and I(k) = Ic(6).

We denote by H(#) the set of equivalence classes of representations x of Jy

satisfying the conditions of the proposition.

We elucidate the structure of the space H (). Let X;(6) be the group of
characters £ of Jy with the following properties:

(1) € is trivial on J;, and

(2) & is intertwined by every element of 1(6).
If £ € X1(0) and k € H(6), then surely £ ® k € H(0). In this manner loc. cit.

Proposition 2. The set H(0) is a principal homogeneous space over the abelian
group X1(0).

The group X (6) is easy to describe. Let X;(P) denote the group of tamely
ramified characters of P* and Xy (P)s the subgroup of unramified characters v
such that v®* = 1. Let x € X1(P) and let detp : B* — P* be the determinant
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map. Thus xp = xodetp |pxy, provides a character P* Uy, from which we may
form the character (xp)g of Jy. It is easy to see that (xp)e lies in X;(#) and

that the map x — (xB)g gives an isomorphism
X1(P)/Xo(P)s ——— X1(6).

It is sometimes better to view this slightly differently. Let T'/F be the maximal
tamely ramified sub-extension of P/F. Composition with the field norm Np 7
induces an isomorphism X;(7")/Xo(T)s — X1(P)/Xo(P)s and so:

Corollary. The space H() is a principal homogeneous space over the group
X1(T)/ Xo(T)s.

We recall that any two choices of the field T" are canonically F-isomorphic,
indeed J-conjugate. The actions of the groups X;(T') on H(0) are then related
by this conjugation.

9.3. The tensor decomposition. We continue in the same situation. The set
T(1}) consists of classes of irreducible representations A of P* Uy such that A|g,

is the inflation of an irreducible cuspidal representation of Uy /U} = GL4(kp).

Proposition. Let © be the endo-equivalence class of 0. If k € H(0) and )\ €
T(1}), then k@ A\g € T(0). For any r € H(H), the map
T(11) — 7(0),
A— K ® Ag,

18 a biyjection. It induces a bijection

TP A (P;0p) —=— AL(F;0).

The first two assertions come from [13] 3.6 and the final one follows from the

Classification Theorem of 4.3.

Let T'/ F be the maximal tamely ramified sub-extension of P/F'. In particular,
the extension P/T is totally wildly ramified. Taking account of 8.3, we have a
bijection

bp/T P

Il : As(T;00) ———— As(P;0p) e, As(F;0).
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As the notation indicates, the map II, does not depend on the choice of pa-
rameter field P/T" this follows easily from the remark following the definition
of 8.3. Also, the underlying simple character # determines the tame parame-
ter field T'/F uniquely up to a distinguished isomorphism so IT, is essentially
independent of the choice of T.

9.4 Main theorem. In the notation of Chapter II, let a € @F and let s > 1

be an integer. Let © = ®p (). We describe the Langlands correspondence
Gu(Fya) —=— AL (F;0).

Let E = Zp(«), so that deg ©® = [E:F] dim «, by the Tame Parameter Theorem.
Set n = sdeg@, and let § be an m-simple character in G = GL,,(F) of endo-
equivalence class @: this determines € uniquely, up to G-conjugation. We choose
a simple stratum [a, 5] in M,,(F') such that 6 € C(a, 3), and use the notation set
up in 9.1. By the Tame Parameter Theorem again, the field E is F-isomorphic
to the maximal tamely ramified sub-extension 7'/ F of P/F.

One needs to specify an F-isomorphism here. The simple character 6 gives
rise to a simple character 0 over T, as in 6.6. Let Op € E(T') be the endo-
equivalence class of 7. We choose the isomorphism E — T to carry ®g(«)
to @p. This determines it uniquely. We henceforward use this isomorphism to
identify E with T

Let p € G1(E;«): thus p € \/AVE and p|p, = a. Using the proposition of 7.1,
any o € 95(F;a) is of the form X,(7), for a uniquely determined representation
7 € G5(F; 1g). In particular, “7 € A4 (F;0g).

Main Theorem. Let p € §i(E;«). There exists a unique k = k, € H(0) such
that
L2,(r) =1I.("r), 7€ S(E;1g).

The map

G1(E; ) — H(0),

P Kp
is an isomorphism of X1(FE)-spaces.

This summarizes the main results of [13], especially 7.3 and 7.6.
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9.5. Comments.

9.5.1. In the special case £ = F, s = 1, the theorem says essentially noth-
ing. Each of the sets §1(F;«), A1(F;0) is a principal homogeneous space over
the abelian group X;(F') of tamely ramified characters of F’*. The Langlands
correspondence provides an X5 (F')-bijection G1 (F; ) — A1 (F;60). Any X1 (F)-
map 91 (F;a) — Ay (F;0) is therefore bijective, and differs from the Langlands

correspondence by a constant X, (F')-translation.

9.5.2. We return to the general case. Let F/FE be unramified of degree s and
set A = Gal(E,/E). Write ps = p|lw,, and 7, = Lps. In particular, p, is a
A-fixed point of G;(E,; ) and likewise 7, € A1(FEy; O4)?, where O, = &g _(a).
The representation 7, contains an m-simple character 6, of endo-equivalence
class Oy, lifting an m-simple character 6 in GL, (F') of endo-equivalence class
©. The representation s contains an extended maximal simple type k(ps) €
T(0s) = H(0s) which is fixed by A.

The first step of the proof uses an explicit construction, based on the Glauber-
man correspondence [16] from the representation theory of finite groups, to pro-
duce a canonical map ig_ ,;r @ H(fs)? — H(F). The representation r(p) =
ig,/rk(ps) is not the representation r, required by the theorem. However, for

a simple reason as in 9.5.1, there exists 1, € X (Es)? such that

Kp = k(1o @ p),
for all p € G1(F;a). The main labour of the proof is in showing that p, is

independent of p, and so depends only on s, o and the base field F'. We therefore
denote it p = pf,.

9.5.3. In the essentially tame case, where dima = 1, the character ,uf,a is
worked out fully in [7], [8] and [10]. In the general case dima > 1, it is con-
structed as a product following a certain structure tower for the field extension
E,/F:

E;DKyD>DK;D---DK,DF.

Here, K,./F is unramified and F,/K, is totally tamely ramified. Each K;/K;1,
0 < ¢ < r—1, is cyclic of prime degree, while E has trivial Kgp-automorphism
group. This yields a decomposition

ES/KO KO/KI

Haa = 150 i P

S g Ha
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/F

The unramified contribution ,ué{T can be worked out completely, in terms of

simple combinatorial invariants. It has order < 2 but may be ramified [13] 10.7.
At the other end, ufs/ Ko is somewhat mysterious: it is unramified of order
dividing 2[FE,:Ky] dima. The remaining factors are given by various explicit
formuleae involving transfer factors and certain constants derived from automor-

phic induction.

9.5.4. The proof of the Main Theorem exposes a structure of some independent
interest. If « € Pp and E = Zp(a), the set G4(F'; a) carries a natural action of
the group X (E). Let 0 € §4(F'; o), and write o = X,(7), for some p € §1(E; o),
T € G5(F;1p). We set

XQaO':Ep(X@)T), XEXl(E).

On the other side, let 8 be an m-simple character in G = GL,(F), say 0 €
C(a,3). Set P = F[f], s =n/[P:F] and let © be the endo-equivalence class of
0. Let T'/F be the maximal tamely ramified sub-extension of P/F. Let m €
As(F;0). Thus m = I1,(§), for k € H(f) and £ € As(T;07). For x € X1(T),
we set

X Or m = I, (x€).

In the case © = ®p(a), the F-isomorphism F = T' chosen in 9.4 yields
"(x©a0)=x0r'o, x€Xi(E), 0 € Gi(Fa).

This ©p-action may be defined more transparently via extended maximal simple

types, in the manner of 9.2.

9.5.5. The version of the Langlands correspondence given by the Main Theorem
is well-adapted to describing congruence behaviour, modulo a prime number

[ # p. See [14] for a simple treatment of this topic.

9.6. Local constant comparisons. We recall briefly a different method with
some claim to effectiveness. It works more generally, but we shall consider only

the most interesting case of totally ramified representations.

Let 1 be a non-trivial smooth character of F' and s a complex variable. For
m,m € GLp, let e(m X o, s,1) be the local constant of [24], [32]. Likewise,
for o € Wp, let (o, s,1) be the Langlands-Deligne local constant.
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Let n > 1. Under the standard characterization [20], if ¢ € G, (F) and
7 € An(F), then m = Lo if and only if

for all 7 € W r such that dim7 < n. We use the Tame Parameter Theorem to

refine this criterion.

We rely on a result from [3], as follows. Let ¢(i)) be the greatest integer k
such that p;k C Kerv. For m; € A, (F), i = 1,2, the local constant takes the

form

5(7-(1 X o, S’/(p) = q_s(a(ﬂl X m2)+ninzc(y)) 8(7'('1 X T, 0, w),

where ¢ = |kp| and a(m; X m3) is an integer independent of . In particular, if

X is an unramified character of F'*, then

€(X771 X g, 8,1) = 5(7T1 X XT3, S, 1)

_ X(w)a(ﬂl Xm2)+ninac(y) 6(7‘(’1 X T, 8777/}),

where w is a prime element of F.

For = € GLp, let d(m) be the number of unramified characters x of F* for

which xm = 7w. We say that 7 is totally ramified if d(w) = 1. Similarly for

representations o € Wg.

From [3], we obtain:

Lemma. Let m € A, (F) be totally ramified, and let | be a prime divisor of n.
There exists a positive divisor n; of n/l and a totally ramified representation
7 € Ay, (F) such that a(m x ) is not divisible by .

The defining property of 7; depends only on the endo-equivalence class ¥(m;).
One can construct an endo-equivalence class, with the desired properties, di-

rectly from ().

We return to our usual situation with o € Pr, E = Zp(a), but we now
assume E/F is totally ramified. Set © = ®p(a). If 7 € A1(F;0), then 7 is

totally ramified. We now obtain:
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Theorem. Let S be the set of prime divisors of [E:F| dima. There is a subset

{o

121 €S} of WF with the following properties.

(1) oy is totally ramified and dim o; divides n/l.
(2) Leto € G1(F;a), m € A1(F;0) and suppose that det 0 = w,, the central

character of w. The following are equivalent:

(b) e(o; ® 0,5,v¢) = e(foy x 7,5,9), for alll € S.

The hypothesis in (2) implies that fo = x7, where y is unramified of order

dividing n. The theorem follows on taking m; as in the lemma and defining o;

by Loy = m.

10.

11.

For an application of this result, see [4].
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