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1 Some words about the fundamental lemma.

1.1. Origin. — The global Langlands correspondence predicts deep relations between automor-
phic forms on a reductive group over a number field and representations of the absolute Galois
group of this number field. It implies the Langlands functoriality, a family of transfers between
automorphic representations on different groups. A general strategy to attack Langlands functo-
riality is still missing. However, in some specific but basic cases, the endoscopic ones, Langlands
suggested to use the Arthur-Selberg trace formula. Roughly speaking, the trace formula relates
the trace of a test function on the automorphic spectrum to more geometric distributions, namely
the (global) orbital integrals attached to rational conjugacy class. The point is that there exists a
explicit transfer of (regular semisimple) conjugacy classes from an endoscopic group to the group
itself and this transfer is expected to be dual to the transfer of automorphic forms. In partic-
ular, there should be deep relations between orbital integrals on a group and on its endoscopic
groups. Conversely, if one knows these relations, one should get, by the trace formula, character
identities between automorphic forms which should characterize the automorphic transfer. The
global orbital integrals are products of local ones and we expect also relations between local or-
bital integrals. The simplest relation and the most important one is the fundamental lemma, a
combinatorial identity between orbital integrals for the units of Hecke algebras. It appears in the
works [18] of Labesse-Langlands and [19] of Langlands, and it is stated in general in the work [20]
of Langlands-Shelstad.

1.2. Geometry and cohomology. — Ngô proved the fundamental lemma in [24]. More precisely,
Ngô proved a variant of this statement for Lie algebra over local fields of positive characteristic.
It is known by the work of Waldspurger that it suffices to prove this variant (cf. [26],[27], and cf.
[10] for different methods). The advantage of the latter situation is that orbital integrals (both
local and global) then have a geometric meaning : they count the number of rational points of
some varieties over finite fields. By Grothendieck-Lefschetz trace formula, the fundamental lemma
admits a cohomological interpretation. Ngô indeed proves the fundamental lemma through a deep
cohomological study of the elliptic part of the Hitchin fibration.
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2 LOCAL ORBITAL INTEGRALS AND THEIR GEOMETRIC INTERPRETATION.

1.3. The fundamental lemma for GL(n). — In the rest of the paper, we will focus only on
the group GL(n). In this case, the fundamental lemma is a tautological statement. Nonetheless,
Ngô’s main cohomological theorem is still very deep in this situation. Moreover, his geometric and
cohomological arguments become easier to understand. We will also give some words about the
extension of Ngô’s work by Laumon and myself (cf. [7] and [8]) which is the key of our proof of
the weighted fundamental lemma (a generalized form of the fundamental lemma stated by Arthur
which is also needed in the endoscopic program).

Let’s describe quickly how the paper is organized. We begin in section 2 by the geometric
interpretation of local orbital integrals through affine Springer fibers. Then we introduce Hitchin’s
fibration in section 3. We give a geometric description of Hitchin fibers in section 4 using the
Hitchin-Beauville-Narasimhan-Ramanan correspondence. Then in section 5 we study an example
of a non-separated Hitchin fiber. In section 6, we explain the truncation of the Hitchin fibration
we used in [7]. In the more technical section 7, we state and explain Ngô’s main cohomological
theorem and its extension. We discuss at length some good open subset of the base of the Hitchin
fibration. We hope that this makes the constructions of section 9 of [8] more accessible.

1.4. Acknowledgement. — This expository article is largely based on the one hand on the
papers [23] and [24] of Ngô Bao Châu and on the other hand on my work [7] and [8] with Gérard
Laumon on the weighted fundamental lemma. This text takes also great profit of many talks
Laumon or me gave on this subject. I thank Gérard Laumon for having shared with me some of
his notes and for his help for the figures. Finally I would like to thank the referee for carefully
reading the article.

2 Local orbital integrals and their geometric interpretation.

2.1. Notations. — Let Fq be a finite field with q elements. Let n be an integer. We assume that
the characteristic of Fq satisfies the following inequality

char(Fq) > n.

Let
G = GL(n)

over Fq and let g = gl(n) be its Lie algebra. The adjoint action of G on g is simply the action by
conjugation of GL(n) on gl(n).

Let
O = Fq[[ε]]

be the ring of power series with coefficients in Fq and let F be its fraction field. So

F = Fq((ε))

is the field of Laurent power series with coefficients in Fq.
We will frequently use left quotients denoted by \.

2.2. Orbital integrals. — Let γ ∈ g(F ). We assume that γ is regular semisimple which means
that its characteristic polynomial has n distinct roots in a suitable extension of F . The centralizer
of γ in G (by abuse of notations, we will not distinguish G and G ×Fq F ) is then a F -maximal
subtorus of G. It is denoted by Tγ or simply T .

Let
1g(O)

be the characteristic function of g(O). We can attach to the element γ and the function 1g(O) the
following orbital integral

Oγ =

∫
T (F )\G(F )

1g(O)(g
−1γg) dg
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2 LOCAL ORBITAL INTEGRALS AND THEIR GEOMETRIC INTERPRETATION.

where the measure dg is the quotient of Haar measures on G(F ) and T (F ) respectively normalized
by

vol(G(O)) = 1

and
vol(X∗(T )\T (F )) = 1

where X∗(T ) is the group of F -rational cocharacters of T . Here the choice of the uniformizer ε
gives an injective morphism

X∗(T ) → T (F )
λ 7→ λ(ε)

so that we can view the group X∗(T ) as a subgroup of T (F ).

Remark 2.2.1. — The orbital integral is finite : since the function 1g(O) is compactly supported
and the orbit of γ is closed, the integral can be taken over a compact subset of T (F )\G(F ).

The integral Oγ is the Lie algebra analog of an orbital integral attached to the unit function
of the spherical algebra of G(F ).

2.3. Orbital integral as a counting function. — A subset L ⊂ Fn is called a lattice if it
is a sub-O-module free of rank n. For example, L0 = On is a such a lattice and it will called
“standard” in the sequel. Let us denote by X the set of lattices.

The group G(F ) acts on Fn and thus acts on the set X of lattices. It is easy to see that the
action is transitive. Moreover the stabilizer of the standard lattice is G(O).

For any endomorphism γ ∈ g(F ) of Fn, we say that a lattice is γ-stable if γ(L) ⊂ L. Let

Xγ := {L ∈ X | γ(L) ⊂L}

be the set of γ-stable lattices. For example, the standard lattice L0 is γ-stable if and only if
γ ∈ g(O). If g ∈ G(F ) and L = g · L0 then L is γ-stable if and only if L0 is g−1γg-stable that is if
and only if g−1γg ∈ g(O).

Proposition 2.3.1. — The map g 7→ gOn gives bijections
– G(F )/G(O) ' X
– {g ∈ G(F )/G(O) | g−1γg ∈ g(O)} ' Xγ .

From now on, let us assume that γ ∈ g(F ) is regular semisimple. Remember we have defined
the orbital integral Oγ .

Proposition 2.3.2. — The group X∗(T ) acts on Xγ without fixed points and

Oγ = |X∗(T )\Xγ |

Proof. — The subgroup T (F ) of G(F ) acts also on X. Since any element of T (F ) commutes with
γ, the action preserves Xγ . By restriction, we get an action of the subgroup X∗(T ). The stabilizer
of a lattice in X∗(T ) is a compact discrete subgroup thus a finite group : it must be trivial since
the group X∗(T ) is a free Z-module. Hence the action of X∗(T ) does not have fixed points. For
the remaining equality, using our normalization of measures, we can write

Oγ =

∫
X∗(T )\G(F )

1g(O)(g
−1γg) dg

=
∑

g∈X∗(T )\G(F )/G(O)

∫
Hg\G(O)

1g(O)((gk)−1γgk) dk

where Hg = G(O) ∩ g−1X∗(T )g is a torsion-free, discrete and compact group and hence must be
trivial. Moreover, using vol(G(O)) = 1 and the fact that the map g 7→ 1g(O)(g

−1γg) is clearly
invariant on the left by G(O), we get

3



2 LOCAL ORBITAL INTEGRALS AND THEIR GEOMETRIC INTERPRETATION.

Oγ =
∑

g∈X∗(T )\G(F )/G(O)

∫
G(O)

1g(O)(((gk)−1γgk)

=
∑

g∈X∗(T )\G(F )/G(O)

1g(O)(g
−1γg)

= |X∗(T )\Xγ |.

�

2.4. Affine Grassmannian. — We would like to view the set X of lattices as the set of Fq-points
of an algebraic variety. This is possible for each set Xi,j for integers i > 0 and j ∈ Z where

Xi,j = {L ∈ X | εiOn ⊂ L ⊂ ε−iOn and ∧n L = εjO}.

Here ∧nL is the maximal exterior power of L : this is a fractional ideal of O. Let Vi be the left
quotient εiOn\ε−iOn : it is a Fq-vector space. Note that the uniformizer induces on Vi a nilpotent
endomorphism (still denoted by ε) which satisfies ε2i = 0. The map

L → VL = εiOn\L

induces a bijection of Xi,j onto the set

{W ⊂ Vi | dim(W ) = ni− j and ε(W ) ⊂W}.

of subspaces of Vi of dimension ni− j which are stable under the nilpotent endomorphism ε. This
latter set is the set of Fq-points of a projective variety. Indeed, we can consider the Grassmanniann
of linear subspaces W of dimension ni − j in V (this is a projective variety) and inside the
Grassmannian, the condition ε(W ) ⊂W defines a closed subvariety which is classically known as
a Springer fiber. But we have more : the inclusion Xi,j ⊂ Xi+1,j gives a closed immersion of the
corresponding Springer fibers. Thus the set

Xj = {L ∈ X | ∧nL = εjO}

ı̀s the set of Fq-points of an ind-variety. Finally, X is the set of Fq-points of the disjoint union (over
j ∈ Z) of the ind-varieties corresponding to Xj . This ind-variety is called the affine Grassmannian.

In the sequel, we change slightly our notations : X denotes the affine Grassmannian. The set
of Fq-points is denoted by X(Fq).

2.5. Affine Springer fiber. — Let γ ∈ g(F ) be a regular semisimple element. The condition of
being γ-stable defines a closed ind-subvariety still denoted Xγ ⊂ X. The variety Xγ was introduced
by Kazhdan and Lusztig in [17] and it is by now called an affine Springer fiber.

Theorem 2.5.1. —(Kazhdan-Lusztig, cf. [17])
– The reduced ind-scheme of Xγ is represented by a variety, locally of finite type and of finite

dimension.
– The quotient X∗(T )\Xγ is a projective variety (where T is the centralizer of γ in G)

Remark 2.5.2. — A formula for the dimension of Xγ was stated by Kazhdan-Lusztig and proved
by Bezrukavnikov in [5].

2.6. An example of affine Springer fiber. — Take G = GL(2) and γ =

(
ε 0
0 −ε

)
. The

set of connected components of the affine Springer fiber Xγ is indexed by Z. For j ∈ Z, the
connected component Xjγ is such that Xjγ(Fq) is the set of lattices L in F 2 which are γ-stable and

of index ∧2L = εjO. Let p1 : F 2 → F (resp. p2) be the first (resp. second) projection. For any
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2 LOCAL ORBITAL INTEGRALS AND THEIR GEOMETRIC INTERPRETATION.

lattice L ⊂ F 2, let us consider the free O-sub-modules of F defined by L1 = p1(L), L2 = p2(L),
L1 = L∩Ker(p2) and L2 = L∩Ker(p1). We have ∧2L ' L1⊗OL2 ' L2⊗OL1 and a commutative
diagram

L1
� _

��

� q

""
L2 � o

��

� � // L // //

����

L1

$$ $$
L2

"" ""

L1\L1

ψzz
L2\L2

where the arrow ψ is an isomorphism of O-module defined by ψ(x1) = x2 for any x1 ∈ L1 and
x2 ∈ L2 such that x1 + x2 ∈ L. If moreover the lattice L is γ-stable, the morphism ψ is also
γ-equivariant for the actions induced by γ, namely multiplication by ε on L1\L1, resp. −ε on
L2\L2. It follows that L1\L1 is killed by ε. Let i ∈ Z be such that L1 = εiO. Since we have

L1 ⊕ L2 ⊂ L ⊂ L1 ⊕ L2,

we also have

(2.6.1) εiO ⊕ εj−i+1O ⊂ L ⊂ εi−1O ⊕ εj−iO.

Let Pi be the set of lattices L which satisfies (2.6.1) and ∧2L = εjO. Clearly, Pi is the set of
Fq-points of a projective line. Any lattice L ∈ Pi is γ-stable. The intersection Pi ∩ Pi′ is empty
unless i′ ∈ {i + 1, i, i − 1}. Moreover Pi ∩ Pi+1 is reduced to a single split lattice εiO ⊕ εj−iO
(which is the point ∞ in Pi and the point 0 in Pi+1).

In this way, we see that Xjγ is an infinite chain of projective lines as in picture 1. The black

nodes are the split lattices εiO ⊕ εj−iO.

Figure 1
Infinite chain of projective lines

The centralizer of γ in G is a split torus of rank 2. We have X∗(T ) ' Z2 and the action of Z2

on Xγ permutes the connected components. The stabilizer of a connected component is isomorphic
to Z and acts on it by translation on the chain. The quotient X∗(T )\Xγ looks like a projective
line with a node (cf. figure 2 below).
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3 HITCHIN FIBRATION.

Figure 2
A projective line with a node

2.7. The work of Goresky-Kottwitz-MacPherson. — In some cases, Goresky, Kottwitz and
MacPherson were able to compute the cohomology of the affine Springer fiber Xγ . In their work
[15], they assume that the regular semisimple element γ ∈ g(F ) is “equivalued” and unramified.
Let us explain their first hypothesis “equivalued”. Technically this essentially means the following :
over an algebraic closure, the element γ is conjugated to a diagonal matrix diag(λ1, . . . , λn) and
there exists r ∈ Q such that val(λi − λj) = r for any i 6= j. The point is that they can prove that
the cohomology of affine Springer fibers Xγ associated to equivalued elements γ is pure (cf. [16]). A
first consequence of the purity is that it is possible to deduce the cohomology from the equivariant
cohomology for some torus action. Here enters their second hypothesis “unramified”. Technically
γ is unramified means that γ can be conjugated to a diagonal matrix on the maximal unramified
extension of F . In particular, its centralizer is a split torus of rank n over such an extension.
From a geometric point of view, this implies that, after extension of scalars to an algebraic closure
k of Fq, a torus of rank n over k acts on Xγ . Moreover, there’s a combinatorial way to get the
equivariant cohomology of Xγ for this action from the knowledge of orbits of dimension less or
equal to one.

We have seen that orbital integrals count the number of rational points of quotients of affine
Springer fibers. Thanks to the Grothendieck-Lefschetz fixed point formula, this gives a cohomolog-
ical interpretation to orbital integrals and also to the fundamental lemma. From their computation
of the cohomology of affine Springer fibers of reductive groups (still for “equivalued” and unrami-
fied elements), Goresky, Kottwitz and MacPherson proved the fundamental in these cases. In fact,
it is conjectured (but until now not known) that the cohomology of affine Springer fibers is always
pure (for some recent progress on this purity problem see [9]). So their hypothesis of equivaluation
could be removed. Nonetheless their use of equivariant cohomology needs a ”big” torus action
which appears only in the unramified case.

3 Hitchin fibration.

3.1. Notation. — Let k = Fq be an algebraic closure of the finite field Fq. Let C be a connected,
smooth, projective curve with over k = Fq of genus gC . Let D = 2D′ be an even and effective
divisor on C. We assume that

deg(D) > 2gC .

Let n be an integer such that char(Fq) > n.

3.2. Hitchin bundles. — A Hitchin bundle is a pair (E , θ) where
– E is a vector bundle on C of rank n and degree 0
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3 HITCHIN FIBRATION.

– θ : E → E(D) = E ⊗OC OC(D) is a homomorphism of OC-modules.

Remark 3.2.1. — When D is a canonical divisor (which we do not assume), a Hitchin pair is
called a Higgs bundle in the literature. The setting we consider appears in Ngô’s paper [23].

3.3. Characteristic polynomial. — Let (E , θ) be a Hitchin bundle. The trace of θ is the section
of O(D) defined by

trace(θ) : OC
id→ End(E)

θ→ OC(D) ∈ H0(C,OC(D)),

where the first arrow is the identity section and the second one is θ viewed as an element of
Hom(End(E),OC(D)). For any 1 6 i 6 n, we also get sections

trace(∧iθ) ∈ H0(C,OC(iD))

and the characteristic polynomial of θ is the polynomial

χθ(X) = Xn − trace(θ)Xn−1 + . . .+ (−1)n trace(∧nθ)

3.4. Hitchin fibration. — Let M be the algebraic k-stack which classifies Hitchin bundles (E , θ).
Let A be the affine space of characteristic polynomials

Xn − a1X
n−1 + . . .+ (−1)nan

with ai ∈ H0(C,OC(iD)). By Riemann-Roch theorem, it is easy to compute its dimension

dimk(A) =

n∑
i=1

dimk(H0(C,OC(iD)))(3.4.1)

=

n∑
i=1

(1− gC + i deg(D))

=
n(n+ 1)

2
deg(D) + n(1− gC)

The Hitchin fibration is the morphism
f : M→ A

defined by
f(E , θ) = χθ

3.5. Adelic description of Hitchin fibers. —Let F be the function field of C. Let |C| be the
set of closed points of C. For any c ∈ |C|, let Oc be the completion of the local ring at c and let
Fc be the fraction field of Oc. Let

AF = lim−→
S

∏
c∈S

Fc
∏
c/∈S

Oc

be the ring of adèles of C where the direct limit is taken over finite subsets S ⊂ |C|. The field F
is diagonally embedded in AF . Let

O =
∏
c∈|C|

Oc ⊂ AF .

To the divisor D =
∑
c∈|C| nc[c], we attach an idèle $D = ($nc

c )c ∈ A×F . We have a degree
morphism

deg : A×F → Z

7



3 HITCHIN FIBRATION.

which is trivial on O× and F×. We have

deg($D) = deg(D).

Let
χ = Xn − a1X

n−1 + . . .+ (−1)nan

be a characteristic polynomial in the Hitchin base A(k). We can view it as a polynomial with
coefficients in F . Let G = GL(n) and g = gl(n) its Lie algebra. Let Hχ be the set of pairs

(g, γ) ∈ G(AF )/G(O)× g(F )

such that

1. deg(det(g)) = 0 ;

2. the characteristic polynomial of γ is χ ;

3. we have the following integral condition

g−1γg ∈ $−1
D g(O).

The map
G(F )×G(AF )/G(O)× g(F ) → G(AF )/G(O)× g(F )

(δ, g, γ) 7→ δ · (g, γ) := (δg, δγδ−1)

defines an action on the left of the group G(F ) on the set Hχ. We can form the quotient groupoid
[G(F )\Hχ]. It is a small category where the objects are elements of Hχ and for (g, γ) and (g′, γ′)
the set Hom((g, γ), (g′, γ′)) is the set of δ ∈ G(F ) such that (g′, γ′) = δ ·(g, γ). The next proposition
gives a description “à la Weil” of a Hitchin fiber.

Proposition 3.5.1. — The Hitchin fiber f−1(χ)(k) is equivalent to the quotient groupoid [G(F )\Hχ].

Let us denote

(3.5.1) Arss

the open subset of χ ∈ A which are square-free in the ring F [X] of polynomials with coefficients
in F . The exponent rss means regular semi-simple since the characteristic polynomial of γ ∈ g(F )
is square-free if and only γ is regular semi-simple. Let χ ∈ Arss and γ ∈ g(F ) with characteristic
polynomial χγ = χ. Then the centralizer of γ in G is a maximal torus T and the set of γ′ ∈ g(F )
such that χγ′ = χ is simply the conjugacy class of γ under G(F ). That’s why the Hitchin fiber
f−1(χ)(k) is also equivalent to the quotient groupoid

[T (F )\Hγ ]

where Hγ is the set of g ∈ G(AF )/G(O) such that deg(det(g)) = 0 and g−1γg ∈ $−1
D g(O). There

is a more suggestive way to write this quotient. Let

(3.5.2) (γc)c∈|C| = $Dγ ∈ g(AF ).

The integrality condition 3 for g = (gc)c∈|C| ∈ G(A)/G(O) is equivalent to

g−1
c γcgc ∈ g(Oc).

Thanks to the proposition 2.3.1, such a coset gc is nothing else but a k-point in the affine Springer
fiber Xγc . The Hitchin fiber f−1(χ)(k) is thus equivalent to the quotient groupoid

[T (F )\
∏
c∈|C|

′ Xγc(k)]
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4 GEOMETRIC DESCRIPTION OF HITCHIN FIBERS.

where the restricted product
∏′

means that at almost every point c we take the standard lattice.
Note that since T (F ) centralizes γ it also centralizes γc and it does act on Xγc .

3.6. Counting points of Hitchin fibers. — Suppose in this § that the curve C and the divisor
D come from a curve C0 and a divisor D0 defined over a finite field Fq. In the same way as in §3.5,
we get an adelic description of the category of Fq-points of a Hitchin fiber : one has to replace
the objects relative to C, D and k by the analogous objects relative to C0, D0 and Fq which are
denoted by a subscript 0.

We can count the number of points : this is precisely the sum over isomorphism classes weighted
by the inverse of the order of the group of automorphisms. Like in the proposition 3.6.1, the result
is expressed as an orbital integral. Let χ ∈ Arss(Fq) and γ ∈ g(F0) such that χγ = χ. Let T be
the centralizer of γ in G. For any c ∈ |C0|, the groups G(Fc) and T (Fc) are provided with Haar
measures normalized as in §2.2. Let

T (A0)0 = {t ∈ T (A0) | deg(t) = 0}.

The following proposition is the starting observation of Ngô (cf. [23]).

Proposition 3.6.1. — The number of Fq-points of the Hitchin fiber f−1(χ) is equal to the following
product of orbital integrals

(3.6.1) vol(T (F0)\T (A0)0)
∏
c∈|C0|

∫
T (Fc)\G(Fc)

1g(Oc)(g
−1γcg) dgc.

where the element γc is defined as in (3.5.2), the measure is the quotient of Haar measures on
G(Fc) and T (Fc), the function 1g(Oc) is the characteristic function of g(Oc). The expression (3.6.1)
is finite if and only if the Hitchin fiber f−1(χ) has finitely many Fq-points.

Remark 3.6.2. — For almost every c ∈ |C0|, the element γc belongs to g(Oc) and moreover its
image in the residue field is still regular semisimple. This implies that the orbital integral∫

T (Fc)\G(Fc)

1g(Oc)(g
−1γcg) dgc

is 1. At the other places, the orbital integral is finite (since the conjugacy class of a semisimple
element is closed, the integral is in fact taken over a compact subset of T (Fc)\G(Fc)). Thus the
product is finite. This is not always the case for the volume vol(T (F0)\T (A0)0). In general, one
can write

F0[X]/(χ) =

r∏
i=1

Ei

as a product of finite extensions Ei of F0. We have

T (F0)\T (A0) =

r∏
i=1

E×i \A
×
Ei
.

The degree morphism gives a surjection of the right hand side onto Zr. It restricts to a surjection
of T (F0)\T (A0)0 onto the sublattice of (n1, . . . , nr) ∈ Zr such that n1 + . . . + nr = 0. Thus
T (F0)\T (A0)0 cannot be of finite volume unless r = 1. In this case it is compact. The condition
r = 1 means that the polynomial χ is irreducible over F0.

4 Geometric description of Hitchin fibers.

4.1. A slight variant of the Hitchin fibration. — In the following, we will focus on the
(open) regular semisimple locus of the Hitchin fibration

Mrss = M×A Arss

9



4 GEOMETRIC DESCRIPTION OF HITCHIN FIBERS.

where the open set Arss of the base has been defined in (3.5.1). In fact, we are going to introduce
some étale open subset of Mrss. For this, we introduce another datum, namely a closed point of
C, denoted by ∞. We assume that the point ∞ does not belong to the support of the divisor D.
Let

A∞ ⊂ Arss

be the open subset of characteristic polynomials χ = Xn−a1X
n−1 + . . .+ (−1)nan ∈ A such that

the polynomial
χ∞ = Xn − a1(∞)Xn−1 + . . .+ (−1)nan(∞) ∈ k[X]

has only simple roots. Let
A → A∞

be the étale Galois cover of A∞ of group the symetric group Sn given by

A = {(χ, τ) ∈ A∞ × kn | χ∞ =
n∏
i=1

(X − τi)}.

The fiber product M ×A A classifies quadruples (E , θ, χ, τ) where (E , θ) is a Hitchin bundle and
(χ, τ) ∈ A is such that χ = f(E , θ). This implies that the endomorphism θ∞ of the k-vector-space
E∞ must has n distinct eigenvalues. In particular, θ∞ is regular semisimple and θ is generically
regular semisimple.

Let
M→M×A A

be the Gm-torsor obtained by choosing an eigenvector e1 in the line Ker(θ∞ − τ1 IdE∞). We get a
Hitchin morphism (still denoted by f) by base change

f :M // M×A A // A

By an argument from deformation theory, we can show the following theorem.

Theorem 4.1.1. —(Biswas-Ramanan [6], cf. also [24] §4.14). The algebraic stack M is smooth
over k.

Remark 4.1.2. — The main point in the above constructions is to avoid the singularities of
the global nilpotent cone. The additional datum τ ∈ kn will later play more or less the role of
a parabolic structure. The datum e1 is not at all essential but it is convenient here in order to
rigidify the situation.

4.2. The spectral curve of Hitchin-Beauville-Narasimhan-Ramanan. — Let

πΣ : ΣD = Spec
( ∞⊕
i=0

OC(−iD)Xi
)
→ C.

be the total space of the line bundle OC(D).
Let a = (χ, τ) ∈ A. We write

χ(X) = Xn − a1X
n−1 + . . .+ (−1)nan

with ai ∈ H0(C,OC(iD)).
The spectral curve Ya (cf. [3]) is the closed curve in ΣD defined by

Ya = Spec
( ∞⊕
i=0

OC(−iD)Xi
)
/Ia)

where the sheaf of ideals Ia of OΣ is generated by OC(−nD)χ. The canonical projection

πa : Ya → C

10
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is a finite cover of degree n, which is étale over the point∞. But we have the datum τ = (τ1, . . . , τn)
which is an ordering on the (simple) roots of χ∞. Thus we have also an ordering on the fiber of
πa over ∞ :

π−1
a (∞) = {∞1, . . . ,∞n}.

Proposition 4.2.1. — The spectral curve Ya is

1. reduced ;

2. connected ;

3. not always irreducible : there is a 1− 1 correspondence between the set of irreducible compo-
nents of Ya and the set of irreducible factors of the characterictic polynomial χ ∈ F [X].

The assertion 1 is due to the fact that χ belongs to the regular semisimple locus Arss by construction
of A. Let

Aell

be the open subset of (χ, τ) such that χ ∈ F [X] is irreducible. By the assertion 3 above, it is also
the open subset of a ∈ A such that Ya is integral.

The arithmetic genus of Ya is defined by

qYa = dimk(H1(Ya,OYa)) = dimk(H1(C, πa,∗OYa))

One can compute ,
πa,∗OYa = OC ⊕OC(−D)⊕ . . .⊕O((−n+ 1)D)

and by the theorem of Riemann-Roch, one gets

Proposition 4.2.2. — The arithmetic genus of Ya does not depend on a and it is equal to

qYa =
n(n− 1)

2
deg(D) + n(gC − 1) + 1.

4.3. Hitchin-Beauville-Narasimhan-Ramanan correspondence. — This the following the-
orem (cf. [3]).

Theorem 4.3.1. — Let a ∈ A. The Hitchin fiber Ma = f−1(a) is isomorphic to the stack of
torsion-free coherent OYa-modules F of degree 0 and rank 1 at generic points of Ya, equipped with
a trivialization of their stalk at ∞1.

Let us recall briefly how one can construct a Hitchin bundle from a torsion-free OYa -module
of rank 1. The multiplication by X on OΣ gives the universal section

OΣ → π∗ΣOC(D)

and for any a ∈ A a section
OYa → π∗aOC(D).

By tensoring by a coherent OYa-modules F , we get a morphism F → F ⊗OYa π
∗
aOC(D) and by

the projection formula a twisted endomorphism of πa,∗F

θ : πa,∗F → πa,∗(F ⊗OYa π
∗
aOC(D)) = πa,∗(F)(D).

If F is moreover torsion-free of rank 1, then πa,∗F is torsion-free OC-module of rank n. But since
C is smooth, it is a locally free OC-module of rank n thus a vector bundle of rank n on C. So we
have a pair (πa,∗F , θ). We can compute its degree :

deg(πa,∗F) = χ(C, πa,∗F) + n(gC − 1)

= χ(Ya,F) + n(gC − 1)

= deg(F) + χ(Ya,OYa) + n(gC − 1)

= deg(F) + 1− qYa + n(gC − 1)

11
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If we assume deg(F) = 0, using proposition 4.2.2, we get

deg(πa,∗F) = −n(n− 1)

2
deg(D).

But remember that the divisor D = 2D′ is even. So the pair (πa,∗F ⊗OC OC((n − 1)D′), θ) is a
Hitchin bundle (the underlying vector bundle is now of degree 0). Finally the trivialization at ∞1

gives our fourth datum e1.

4.4. First consequences of theorem 4.3.1. — LetAsm the open set of a such that Ya is smooth.
In fact, one can show that Asm is not empty. When Ya is smooth, a torsion-free OYa -module of
rank 1 is a line bundle. Thus we get :

Corollary 4.4.1. — For a ∈ Asm, the Hitchin fiber Ma is the Jacobian of Ya. In particular, it is
an abelian variety (and as such a scheme).

For any a ∈ A, we can consider the smooth commutative group scheme

Pic0(Ya)

of line bundles on Ya of degree 0, equipped with a trivialization of their stalk at ∞1.
By tensor product, this groups acts on (and is an open substack of) the stack of torsion-free

OYa -modules of degree 0 and rank 1. By theorem 4.3.1, we get an action of Pic0(Ya) on the Hitchin
fiber Ma.

LetMreg
a ⊂Ma be the open sub-stack (E , θ, τ, e1) ∈Ma such that θc is regular for any c ∈ C.

Recall that an endomorphism of kn is regular if its centralizer is of minimal dimension, namely
n. In the correspondence of theorem 4.3.1, this open substack corresponds to Pic0(Ya). We can
state :

Corollary 4.4.2. — Mreg
a is a Pic0(Ya)-torsor.

4.5. Dimension of Hitchin fibers. — As a consequence of the work [1] of Altman-Iarrobino-
Kleiman on compactified Jacobian, we have the following theorem

Theorem 4.5.1. — Let a ∈ A.

1. The open substack Mreg
a is dense in Ma.

2. We have
dim(Ma) = dim(Mreg

a ) = dim(Pic0(Ya))

and this dimension is qYa , the arithmetic genus of Ya. In particular, dim(Ma) does not
depend on a.

3. The set of irreducible components of Ma is a torsor under the abelian group of connected
component of Pic0(Ya) and we have

π0(Pic0(Ya)) ' {(ni) ∈ ZIrr(Ya) |
∑
i

ni = 0}

where Irr(Ya) is the set of irreducible components of Ya.

Recall that Ya is irreducible if and only if a belongs to the elliptic set Aell. From the assertion 3
of theorem 4.5.1, we get the corollary :

Corollary 4.5.2. — The Hitchin fiber Ma is irreducible if and only if a belongs to the elliptic set
Aell.

One can also compute the dimension of the stack M. We have

dim(M) = dim(A) + dim(f).

12
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The dimensions of A and f are respectively given by (3.4.1) and the combination of proposition
4.2.2 and the assertion 2 of theorem 4.5.1. We get :

Corollary 4.5.3. — We have
dim(M) = n2 deg(D) + 1.

5 Examples of Hitchin fibers in rank 2

5.1. The situation. — In this section, we take

C = P1
k

We write P1
k = Spec(k[y]) ∪ {0} and in the affine chart Spec(k[y]), the point ∞ is defined by the

equation y = 0. We take
D = 2[0].

5.2. The base A. — The scheme A classifies pairs

(X2 − a1(y)X + a2(y), (τ1, τ2))

where, for i = 1, 2

ai(y) ∈ H0(P1
k,O(2i[0])) = {ai(y) ∈ k[y] | deg(ai) 6 2i}

are such that the discriminant (a1)2−4a2 does not vanish at y = 0 and (τ1, τ2) ∈ k2 is the ordered
pair of distinct root of

X2 − a1(0)X + a2(0).

In the following, we will restrict ourselves to the case

a1 = 0,

that is to the case of Hitchin pairs with traceless endomorphism.
Remember the open subsets

Aell ⊂ Asm ⊂ A

Let a ∈ A with a1 = 0. Then

1. a ∈ Asm if and only if a2 has only simple roots.

2. a ∈ Aell if and only if a2 is not a square in k[y].

5.3. Spectral curves. — In our situation, all spectral curves are of arithmetic genus

qYa = 1.

In figure 3 below, one finds some examples of spectral curve. From the left to the right, one
has the following cases

– a2 has only simple roots ; the curve Ya is a smooth projective curve of genus 1 : it is an
elliptic curve.

– a2 has a double root and two simple roots. Then Ya is integral and has only one singularity
which is a node.

– a2 has a triple root. Then Ya is integral and has only one singularity which is a cusp.
– a2 is the square of a polynomial with two distinct roots. Then Ya has two irreducible com-

ponents which intersect transversally.

13
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Figure 3
Examples of spectral curve

5.4. Examples of elliptic Hitchin fibers. — When a ∈ Aell, the spectral curve is an integral
curve of arithmeric genus 1 thus an elliptic curve or a plane cubic with a node or a cusp. The
theorem 4.3.1 identifies the Hitchin fiberMa with the compactified Jacobian of Ya (which is simply
the Jacobian when Ya is smooth). But it is known (cf. [2]) that the compactified Jacobian for an
curve integral curve of genus 1 is (non-canonically) isomorphic to the curve. So the first three
pictures in figure 3 are also typical examples of elliptic Hitchin fibers.

5.5. A non-elliptic Hitchin fiber. — In this paragraph, we take a1(y) = 0 and

a2(y) = (y2 − 1)2.

In this case, the spectral curve Ya is the union of two projective lines which intersect transversally.
Let

U = P1
k − {−1, 1} = Spec(k[(

y + 1

y − 1
)±1]).

Let y± ∈ Ya be the points over ±1. To understand the Hitchin fiber Ma, we will use theorem
4.3.1. So let F be a torsion-free OYa -module of generic ranks 1 and degree 0. Outside the points
y±, the OYa -module F is invertible and may be trivialized. We fix such a trivialization. Then
the OYa -module F is determined by its restriction to the formal neighborhoods of y±, which is a
torsion-free

k[[y ± 1]][X]/(X2 − a2(y))

-module of generic rank 1. By the obvious local analog of theorem 4.3.1, this is nothing else but
a free k[[y ± 1]]-submodule of k((y ± 1)) of rank 2 stable under the endomorphism given by the
matrix (

y2 − 1 0
0 1− y2

)
.

So the choice of the local modules at y± amounts to a choice of points in a product of two affine
Springer fibers. These affine Springer fibers are isomorphic to the one we studied in §5. Conversely,
a point in this product gives two local modules at y± and thus a torsion-free OYa -module F of
rank 1 with a trivialization of F on Ya−{y±}. We have to get rid of this trivialization. The group

H0(U,G2
m,k) = (k×)2((

y + 1

y − 1
)Z)2 ' (k×)2 × (Z2),

which is the group of automorphism of the trivial line bundle on Ya − {y±}, acts on the product
of affine Springer fibers. But we also want F to be of degree 0 and be trivialized at the marked
point ∞1 ∈ Ya. For the first condition, we can assume that the point belongs to a fixed connected
component of the product of affine Springer fibers, namely the product of connected components
of “degree 0” of the two affine Springer fibers : this is a product of two infinite chains of projective
lines (cf. figure 4 below).

14
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Figure 4
A product of two infinite chains of P1

In bold the action of Z

The stabilizer in H0(U,G2
m,k) of both the point ∞1 and the fixed connected component is

identified with
Gm,k × Z.

The group Z acts on each chain of projective line by translation (the generator 1 ∈ Z sends a
line to the next one) and the group Z acts anti-diagonally on the product (cf. the bold arrow
in figure 4). The action of Gm,k on a chain of projective lines fixes the split lattices and the
connected components of the complement are precisely the orbits of dimension 1. The group Gm,k
acts diagonally on the product of the two chains. It preserves each square in figure 4. On the left
in figure 5 below, we extracted a square from figure 4 and we drew with a circle the four fixed
points for the Gm,k-action. Moreover we drew some 1-dimensional orbits for this action. The main
point to observe here is that upper orbits tend to the two bold orbits in the upper left corner.
Similarly, lower orbits tend to the two bold orbits in the lower right corner. So when we take the
quotient of the square by the action of Gm,k, each fixed point gives a BGm,k and the quotient of
the complement is a projective line with two non-separeted 0 and two non-separeted ∞ (pictured
in figure 5 on the right).

Figure 5
On the left : action of Gm,k on a square. On the right : the quotient (up to some BGm,k).

Finally, the Hitchin fiber Ma can be identified with the quotient of the product of the two
chains by the action of Gm,k ×Z. So, up to some BGm,k, the Hitchin fiberMa is an infinite chain
of non-separeted projective lines (as pictured in figure 6). Note that it is neither of finite type nor
separeted.
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Figure 6
The Hitchin fiber Ma (up to BGm,k)

An infinite chain of non-separeted projective lines

6 A truncated Hitchin fibration.

6.1. Properness over the elliptic locus. — Let a ∈ Aell. The spectral curve Ya is then an
integral curve. The theorem 4.3.1 identifies the Hitchin fiber Ma with the compactified Jacobian
of Ya. We can introduce the relative spectral curve Y over the elliptic set Aell and the relative
compactified Jacobian of Y over Aell can be identified with the elliptic Hitchin morphismMell →
Aell. As a consequence of the work [2] of Altman-Kleiman on the compactified Jacobian, we have
the following theorem.

Theorem 6.1.1. — The elliptic Hitchin morphism

f ell :Mell =M×A Aell → Aell

is proper and Mell is a smooth scheme over k.

Remark 6.1.2. — The properness of f ell enables Ngô to apply the decomposition theorem for
the morphism f ell : so it is crucial in Ngô’s proof of the fundamental lemma.

But outside the elliptic locus Aell, the Hitchin fibration is neither of finite type nor separeted (as
we saw in the example of §5.5). In our work with Laumon, we wanted to prove an advanced version
of the fundamental lemma introduced by Arthur (the so-called weighted fundamental lemma). For
this, we need to look outside the elliptic locus. This is why we needed to introduce a truncated
version of the Hitchin fibration.

6.2. The notion of ξ-stability. — We first introduce a parameter of stability : let ξ =
(ξ1, . . . , ξn) ∈ Rn such that

n∑
i=1

ξi = 0.

Let us introduce the following definition.
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Definition 6.2.1. — Let m = (E , θ, τ, e1) ∈M. One says that m is ξ-stable if for any subbundle

0 ( F ( E

such that θ(F) ⊂ F(D) one has

(6.2.1) deg(F) +
∑
i

ξi < 0

where the sum is over 1 6 i 6 n such that τi is an eigenvalue of θ|F∞ .

Remark 6.2.2. — When ξ = 0, on gets the usual stability for the underlying Hitchin pairs (E , θ).
But here for generic ξ, we take advantage of our third datum τ .

The notion of ξ-stability is reminiscent (through theorem 4.3.1) of the work [14] of Estèves on
the compactified Jacobian.

Remark 6.2.3. — The subbundles 0 ( F ( E such that θ(F) ⊂ F(D) are determined by
their generic fiber which must be a θ-stable linear subspace of the generic fiber of E . However,
by construction of M, the endomorphism θ is generically regular semi-simple and there is only a
finite number of θ-stable linear subspaces. Hence there is only a finite number of subbundles F
satisfying θ(F) ⊂ F(D). When m ∈M is elliptic, the characteristic polynomial of θ is generically
irreducible and there is no such subspace and no such subbundle F . So, any m ∈Mell is ξ-stable
for any ξ.

6.3. Properness of Mξ. — LetMξ be the ξ-stable sub-stack ofM. We say that ξ is generic if∑
i∈I

ξi /∈ Z

for any ∅ 6= I ( {1, . . . , n}. Concretely, for generic ξ, there is no difference between the notions of
ξ-stability and ξ-semistability (defined by large inequality in (6.2.1)).

Through theorem 4.3.1, we can deduce the following theorem from the work [14] of Estèves
(the properness can also be proved directly from methods of the paper [21] by Langton).

Theorem 6.3.1. —

1. The stack Mξ is a smooth open sub-stack of M which contains Mell. It is even an algebraic
space.

2. If ξ is generic, the ξ-stable Hitchin fibration

fξ :Mξ → A

is proper.

Remark 6.3.2. — As we shall see in the next example, if we take ξ = 0, the stackMξ is of finite
type but one cannot check the existence part of the valuative criterium of properness for fξ. If we
use a substack defined by the usual semi-stability (for Hitchin pairs) then we get a stack of finite
type which is not separeted.

Remark 6.3.3. — Over finite field we can compute the number of rational points of a truncated
Hitchin fiberMξ

a. Perhaps a more surprising fact is that, for ξ generic, we get essentially a global
weighted orbital integral constructed by Arthur (cf. section 11 of [7]). This generalizes proposition
3.6.1.

6.4. An example of a truncated Hitchin fiber. — Let’s go back to the example of §5.5.
In the pictures 7,8 and 9 below, we draw on the left the effect of stability, semi-stability and
ξ-stability (for a generic ξ). In picture 7, we find that the stability condition isolates in the figure
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4 a stair of width one (open) square . The stable Hitchin fiber Mξ=0
a is a Gm,k, thus not proper.

In picture 8, the semi-stability condition defines a stair of width three squares ; the bold lines
(which are Gm,k) and also the vertices common to four bold lines belong to the stair. Even up to
a BGm,k corresponding to these vertices, the quotient is not separeted. Finally, on picture 9, the
effect of ξ-stability (for ξ generic) is to take a stair of width two squares ; the stair contains the
bold lines but no vertex. Then the quotient has no more non-separeted points and the truncated
Hitchin fiberMξ

a is isomorphic to two projective lines intersecting transversally. Not surprisingly,
the Hitchin fiber Mξ

a is thus isomorphic to the spectral curve.

Figure 7
On the left, in grey the stable region and on the right the quotient ( ' Gm,k)

Figure 8
On the left, in grey the stable region and on the right the (non-separeted) quotient

There are two pairs of non-separeted bold points
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7 THE MAIN COHOMOLOGICAL RESULT

Figure 9
On the left, in grey the ξ-stable region (for generic ξ) and on the right the quotient

7 The main cohomological result

7.1. Invariant δ. — Let Spf(A) be a formal germ of a reduced curve. Let Ã be its normalization
in the total ring of fractions of A. We can attach to A the following invariants :

1. Serre’s invariant
δA = length(Ã/A) ;

2. The number rA of branches (which is also the number of connected components of Spf(Ã)) ;

3. The multiplicity mA ;

4. The κ-invariant defined by
κA = length(Ω1

Ã/A
)

Note that both δA and κA vanish for a non-singular germ. Note also that we have κA = mA− rA,
at least when the characteristic of A is greater than the multiplicity mA.

Let a ∈ A and Ya be the corresponding spectral curve. We define the global invariants δa and
κa by

δa =
∑
y∈|Ya|

δÔYa,y

and
κa =

∑
y∈|Ya|

κÔYa,y

where the sum is over the set of closed points of Ya and the ring ÔYa,y is the completion of the
local ring of Ya at y. Thus we get two constructible functions a 7→ δa and a 7→ κa on A. The first
one is moreover upper semi-continuous. Let δ ∈ N and Aδ be the locally closed subset of a ∈ A
such that δa = δ. For δ = 0, we have A0 = Asm the open dense subset of a ∈ A such that Ya is
smooth.

7.2. The codimension of Aδ. — For fields k of characteristic 0, in [13] Diaz and Harris have
shown the equality for the codimension of Aδ :

(7.2.1) codimA(Aδ) = δ,

but their argument which uses the tangent cone does not work in positive characteristic (see also
[22] sect. 3.3). Nonetheless, to get his main cohomological result, Ngô needs at least the inequality
> in (7.2.1) (which is unknown in positive characteristic). In his paper, Ngô is able to prove the
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desired inequality when δ is smaller than deg(D). But, outside the elliptic set, this last condition
is never satisfied. In fact, in our work with Laumon, we use an open subset of A where the
codimension of Aδ can be computed by deformation theory. Let us sketch briefly our approach. In
[8] section 9, we treated the analogous problem for the so-called cameral curve. We hope that the
following discussion will make the arguments in [8] more transparent.

It is possible to consider a slight variant B of the moduli space of pairs

(a, Ỹa →ϕ ΣD)

such that a ∈ A, the curve Ỹa is smooth and projective and the morphism ϕ is the normalization
of the spectral curve Ya ⊂ ΣD. On any connected component of B, the invariant δa of Ya must
be constant. Conversely, by the work of Teissier (cf. [12]), Aδ is in one-one bijection with some
connected components of B. In general, one does not know how to compute the dimension of B.
However, when one has

(7.2.2) κa < deg(D)− 2gC + 2,

the space B is smooth at (a, Ỹa →ϕ ΣD). Indeed it suffices to check that

(7.2.3) Ext2(L,OỸa) = 0

where L is the cotangent complex (in degrees −1 and 0)

L = [ϕ∗Ω1
ΣD/C

→ Ω1
Ỹa/C

].

One can write Ext2(L,OỸa) = Ext1(H−1(L),OỸa) where H−1(L) is the sheaf of cohomology of L
in degree −1. By Serre duality, it suffices to check that

(7.2.4) H0(Ỹa,H−1(L)⊗ Ω1
Ỹa/k

) = 0

Take π = πΣ ◦ ϕ. One can compute the degree

deg(H−1(L)⊗ Ω1
Ỹa/k

) = deg(ϕ∗Ω1
ΣD/C

)− deg(Ω1
Ỹa/C

) + deg(Ω1
Ỹa/Ya

) + deg(Ω1
Ỹa/k

).

= deg(π∗O(−D)) + κa + deg(π∗Ω1
C/k)

= −ndeg(D) + κa + n(2gC − 2)

which is negative if
κa < n(deg(D)− 2gC + 2).

This condition is satisfied by (7.2.2) and gives the vanishing assertion (7.2.3) when Ỹa is connected.
In general, a similar computation for each connected component of Ỹa gives the same result under
the condition (7.2.2).

Once we know the smoothness at (a, Ỹa →ϕ ΣD), the dimension is given by

(7.2.5) dim(Ext1(L,OỸa)) = dim(Ext0(H−1(L),OỸa) + dim(Ext1(H0(L),OỸa)).

The sheaf H0(L) = Ω1
Ỹa/Ya

is a torsion sheaf of length κa. Denoting by ra the number of con-

nected components of Ỹa, we can compute (7.2.5) by Serre duality, the Riemann-Roch formula,
the vanishing property (7.2.4) and the dimension (3.4.1) of A : this gives

dim(Ext1(L,OỸa)) = n(deg(D)− 2gC + 2)− κa + gỸa − ra + κa

= n(deg(D)− 2gC + 2) + gỸa − ra

= dim(A)− (
n(n− 1)

2
deg(D) + n(gC − 1)− gỸa + ra)

= dim(A)− qa + 1 + gỸa − ra
= dim(A)− δa
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The last two equalities come on the one hand from the formula for the arithmetic genus qa of
Ya (cf. proposition 4.2.2) and on the other hand from the long exact sequence in cohomology
associated to

(7.2.6) 0→ OYa → OỸa → OỸa/OYa → 0.

This is precisely expected by (7.2.1).

7.3. The open subset Agood. — It is defined as the biggest open subset of A such that for any
closed point a ∈ Agood the inequality (7.2.2) is true. It contains for example all a such that the
irreducible components of the spectral curve Ya are smooth.

7.4. The decomposition theorem. — Let ` be a prime number invertible in k. Let ξ be
a generic stability parameter (cf. §§ 6.2 and 6.3). By theorem 6.3.1, the algebraic space Mξ is
smooth over k and the Hitchin morphism fξ is proper. By Deligne theorem (cf. [11]), this implies
that the complexe of `-adic sheaves

Rfξ∗Q`
is pure. By the decomposition theorem of Beilinson-Bernstein-Deligne-Gabber [4], the direct sum
of perverse cohomology sheaves

pH•(Rfξ∗Q`) =
⊕
i

pHi(Rfξ∗Q`)

is semi-simple. So we can write

(7.4.1) pH•(Rfξ∗Q`[dim(M)]) =
⊕
a∈A

ia,∗ja,!∗F•a [dim(a)],

where
– the sum is over Zariski points in A ;
– ia : {a} ↪→ A is the canonical inclusion of the closure of a in A ;
– F•a is a graded local system on a smooth open subset of {a} and ja,!∗F•a is its middle extension

to {a}.

7.5. Properties of the socle. — The socle of pH•(Rfξ∗Q`[dim(M)]) is the finite set of a ∈ A
such that F•a 6= 0. A fundamental problem is to determine the socle. We shall see in the next
paragraph that it is possible to determine it at least if the Hitchin morphism fξ is restricted to
the open subset Agood. Besides Ngô’s article [24], we refer also the reader to [25] another article
of Ngô.

Meanwhile, we would like to give some properties of the socle. Let a be an element of the socle.
The amplitude of a is defined by

Ampl(a) = ma −m′a
where ma, resp. m′a, is the maximum, resp. the minimum, of integers m such that Fma 6= 0. By
Poincaré duality, we have

F−ma = (Fma )∨[dim(a)]

so m′a = −ma and
Ampl(a) = 2ma.

Moreover since Fmaa appears in Rdim(Mξ)+ma−dim(a)fξ∗Q`, we must have

(7.5.1) dim(Mξ) +ma − dim(a) 6 2 dim(fξ)

and we have equality in (7.5.1) if and only if Fmaa appears in R2 dim(fξ)fξ∗Q`. We get

(7.5.2) ma 6 dim(fξ)− dim(A) + dim(a).
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So the amplitude satisfies the first inequality (with the same case of equality as that for (7.5.1))

(7.5.3) Ampl(a) 6 2(dim(fξ)− dim(A) + dim(a)).

In what follows we will be a little sketchy (for example, we do not specify when we have to take
geometric points instead of Zariski ones). Recall (cf. §4.4) that the Picard group scheme Pic0(Ya)
acts on the Hitchin fiber Ma. In fact, this action does not preserve the open substack Mξ

a. But
the neutral component of Pic0(Ya), denoted by Pa, does act on Mξ

a. It is then possible to deduce
from it an action of the homology of Pa on the stalk of F•a at a. But we have the usual Chevalley
dévissage

0→ P aff
a → Pa → P ab

a → 0

where P aff
a is affine and the quotient is an abelian scheme. By a weight argument, (cf. [24] §7.4.8),

the action of the homology of Pa factors through an action of the homology of P ab
a ; moreover the

stalk of F•a at a is a free graded module over this homology (proposition 7.4.10 de [24], cf. also [8]
proposition 10.3.1 and proof of theorem 10.5.1). So the amplitude satisfies the second inequality

(7.5.4) Ampl(a) > 2 dim(P ab
a ).

In fact, the group scheme P ab
a can be identified with the the neutral component of the Picard

group scheme of the normalization Ỹa of Ya. We thus have

dim(P ab
a ) = dim(H1(Ỹa,OỸa))

and by the long exact sequence in cohomology associated to the short exact sequence (7.2.6) and
theorem 4.5.1, we get

dim(P ab
a ) = −1 + ra − δa + dim(Pa)(7.5.5)

= −1 + ra − δa + dim(fξ)

where ra is the number of connected components of Ỹa. Combining (7.5.4) and (7.5.3), we get

(7.5.6) codimA(a) 6 δa − ra + 1.

7.6. The support theorem on Agood. — From now on, we assume that we are working on the
open subset Agood. So we should introduce new notationsMξ,good =Mξ ×AAgood and so on. By
abuse, we will keep the former ones. We can state the main cohomological theorem which is the
key of the fundamental lemma.

Theorem 7.6.1. — The socle of pH•(Rfξ∗Q`) contains a single element which is the generic point
of A.

In other words, the only support of a simple constituent of pH•(Rfξ∗Q`) is A itself.

Remark 7.6.2. — This theorem is due to Ngô on the elliptic set and to Laumon and myself for the
extension outside the elliptic set. By the theorem, the perverse cohomology of the Hitchin fiber is
determined by its restriction to any open dense subset of A. Thanks to the Grothendieck-Lefschetz
trace formula and the countings of proposition 3.6.1 and remark 6.3.3, the stalks of the perverse
cohomology are related to global (weighted) orbital integrals. So the theorem gives a technical
sense to the vague assertion that global (weighted) orbital integrals are “limits” of the simplest
orbital integrals (those associated to smooth spectral curves which can be computed “by hands”).

Remark 7.6.3. — For general groups, the support theorem is not true as stated : in general,
there are other supports besides A. But all new supports fit perfectly in the theory of endoscopy :
they are the bases of Hitchin fibration associated to endoscopic groups. The determination of the
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supports is the key to the solution of the fundamental lemma. Indeed, Ngô first checks by hand
a global variant of the fundamental lemma on a smaller set. Then, by his support theorem, the
identity extends to a larger set. Finally he gets from it the local statement by local-global methods.

Let us briefly explain how to get theorem 7.6.1. Let a be an element in the socle. If a does not
belong to the elliptic set Aell, the spectral curve has at least two irreducible components so we
have ra > 1. Thus (7.5.6) gives

codimA(a) < δa

in contradiction with (7.2.1) (here we use that a ∈ Agood). If a ∈ Aell then ra = 1. By (7.2.1), the

inequalities (7.5.6) and (7.5.1) must be equalities. Hence Fmaa must appear in R2 dim(fξ)fξ∗Q`. But
on the elliptic set, the Hitchin fibers are irreducible (cf. theorem 4.5.1) and this sheaf is simply
the constant sheaf Q` on Aell. So a must be the generic point of A.

Remark 7.6.4. — For Hitchin fibrations for general reductive groups, the elliptic fibers are
in general not irreducible : this explains in part why there are new supports besides A in the
decomposition theorem.
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[4] A. Bĕılinson, J. Bernstein, and P. Deligne. Faisceaux pervers. In Analysis and topology on
singular spaces, I (Luminy, 1981), volume 100 of Astérisque, pages 5–171. Soc. Math. France,
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