From étale P, -representations to
G-equivariant sheaves on G/ P

Peter Schneider, Marie-France Vigneras, Gergely Zabradi *

December 6, 2012

Abstract

Let K/Q, be a finite extension with ring of integers o, let G be a connected reductive
split Q,-group of Borel subgroup P = T'N and let a be a simple root of 7" in N. We
associate to a finitely generated module D over the Fontaine ring over o endowed with a
semilinear étale action of the monoid T, (acting on the Fontaine ring via «), a G(Qp)-
equivariant sheaf of o-modules on the compact space G(Q,)/P(Q,). Our construction
generalizes the representation D X P! of GL(2,Q,) associated by Colmez to a (p,T)-
module D endowed with a character of Qj.
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1 Introduction

1.1 Notations

We fix a finite extension K/Q, of ring of integers o and an algebraic closure @p of K.
We denote by G, = Gal(Q,/Q,) the absolute Galois group of Q,, by A(Z,) = o|[[Z,]]
the Iwasawa o-algebra of maximal ideal M(Z,), and by Og the Fontaine ring which is
the p-adic completion of the localisation of A(Z,) with respect to the elements not in
pA(Z,). We put on Og the weak topology inducing the M (Z,)-adic topology on A(Z,),
a fundamental system of neighborhoods of 0 being (p"Og + M(Z,)")nen. The action of
Z, — {0} by multiplication on Z, extends to an action on Og.

We fix an arbitrary split reductive connected Q,-group G' and a Borel Q,-subgroup
P = TN with maximal Q,-subtorus 7" and unipotent radical N. We denote by wg the
longest element of the Weyl group of T in G, by ®, the set of roots of T in N, and



by uq : G = N,, for a € &, a Qp-homomorphism onto the root subgroup N, of N
such that tua(2)t™" = ua(a(t)z) for v € Q, and t € T(Qy), and No = [],cq, ta(Zp)
is a subgroup of N(Q,). We denote by T the monoid of dominant elements ¢ in T'(Q,)
such that val,(a(t)) > 0 for all @ € @4, by Ty C T4 the maximal subgroup, by T+
the subset of strictly dominant elements, i.e. val,(a(t)) > 0 for all « € @4, and we
put Py = NoTy,Py = NoTp. The natural action of T} on Ny extends to an action
on the Iwasawa o-algebra A(Ny) = o[[Ny]]. The compact set G(Q,)/P(Q,) contains the
open dense subset C = N(Q,)woP(Q,)/P(Q,) homeomorphic to N(Q,) and the compact
subset Cop = NowoP(Q,)/P(Q,) homeomorphic to Nog. We put P(Q,) = woP((@p)wo_l.

Each simple root a gives a Qp-homomorphism z, : N — G, with section u,. We
denote by ¢, : Ng —+ Zy, resp. iq : Zy, — Ny, the restriction of z, resp. uq, to N, resp.
L.
For example, G = GL(n), P is the subgroup of upper triangular matrices, N consists
of the strictly upper triangular matrices (1 on the diagonal), T is the diagonal subgroup,
Ny = N(Z,), the simple roots are a,...,a,—1 where o;(diag(t,...,t,)) = t,»t;ll, T,
sends a matrix to its (i,7 4+ 1)-coefficient, uq,(.) is the strictly upper triangular matrix,
with (4,4 4 1)-coefficient . and 0 everywhere else.

We denote by C*°( X, 0) the o-module of locally constant functions on a locally profinite
space X with values in o, and by C2° (X, o) the subspace of compactly supported functions.

1.2 General overview

Colmez established a correspondence V' — II(V) from the absolutely irreducible K-
representations V' of dimension 2 of the Galois group G, to the unitary admissible ab-
solutely irreducible K-representations II of GL(2,Q,) admitting a central character [6].
This correspondence relies on the construction of a representation D(V)XP! of GL(2,Q,)
for any representation V' (not necessarily of dimension 2) of G, and any unitary character
6 : Q5 — o*. When the dimension of V' is 2 and when ¢ = (z[x|)~'dy, where dy is the
character of QQ, corresponding to the representation det V' by local class field theory, then
D(V)XP! is an extension of II(V') by its dual twisted by dodet. It is a general belief that
the correspondence V' — II(V) should extend to a correspondence from representations
V of dimension d to representations I of GL(d, Q,).

We generalize here Colmez’s construction of the representation D X P! of GL(2,Q,),
replacing GL(2) by the arbitrary split reductive connected Q,-group G. More precisely, we
denote by Og , the ring Og with the action of T via a simple root o € A (if the rank of G
is 1, a is unique and we omit ). For any finitely generated Og o-module D with an étale
semilinear action of T, we construct a representation of G(Q). It is realized as the space
of global sections of a G(Q,)-equivariant sheaf on the compact quotient G(Q,)/P(Q,).
When the rank of G is 1, the compact space G(Q,)/P(Q,) is isomorphic to P*(Q,) and
when G = GL(2) we recover Colmez’s sheaf.

We review briefly the main steps of our construction.

1. We show that the category of étale T';-modules finitely generated over Og , is
equivalent to the category of étale T';-modules finitely generated over A, (Ny), for a
topological ring Ay (Np) generalizing the Fontaine ring Og, which is better adapted to
the group G, and depends on the simple root «.

2. We show that the sections over Cy ~ Ny of a P(Qp)-equivariant sheaf S of o-
modules over C ~ N is an étale o[Py|-module S(Cy) and that the functor S — S(Cp) is
an equivalence of categories.

3. When S(Cp) is an étale T -module finitely generated over Ay (Np), and the root
system of G is irreducible, we show that the P(Q,)-equivariant sheaf S on C extends to
a G(Qp)-equivariant sheaf over G(Q,)/P(Q,) if and only if the rank of G is 1.

4. For any strictly dominant element s € T, we associate functorially to an étale
T -module M finitely generated over Ay, (Ny), a G(Qp)-equivariant sheaf ), of o-modules



over G(Q,)/P(Q,) with sections over Cy a dense étale A(Ny)[T']-submodule M of M.
When the rank of G is 1, the sheaf 2)s does not depend on the choice of s € T,
and MY = M; when G = GL(2) we recover the construction of Colmez. For a general
G, the sheaf ), depends on the choice of s € T, the system (),)scr,, of sheaves
is compatible, and we associate functorially to M the G(Qp)-equivariant sheaves )y
and Yn of o-modules over G(Q,)/P(Q,) with sections over Cy equal to User, , M4 and
Nser, , MY, respectively.

1.3 The rings A, (Ny) and Og¢,

Fixing a simple root o € A, the topological local ring A, (Ng), generalizing the Fontaine
ring Og, is defined as in [II] with the surjective homomorphism ¢, : Ng — Z,.

We denote by M(Ng, ) the maximal ideal of the Iwasawa o-algebra A(Ng, ) = o[[IN, ]]
of the kernel Ny_ of £,. The ring Ay (Np) is the M(Ny,_ )-adic completion of the localisation
of A(Ny) with respect to the Ore subset of elements which are not in M(Ny_ )A(Ng). This
is a noetherian local ring with maximal ideal M,_(Ny) generated by M(N,, ). We put
on Ay, (No) the weak topology with fundamental system of neighborhoods of 0 equal to
(M, (No)™ + M(No)™")nen- The action of T on Ny extends to an action on Ay (Ny). We
denote by Og¢ o the ring Og with the action of T induced by (¢, z) — a(t)x : Ty X Z, —
Zyp. The homomorphism £, and its section ¢, induce T -equivariant ring homomorphisms

lo : Ao (No) = O Lot Og.0 = Ay, (Np) , such that £, 014 =1id.

1.4 Equivalence of categories

An étale T'y-module over Ay (Np) is a finitely generated Ay, (Ng)-module M with a semi-
linear action Ty x M — M of T which is étale, i.e. the action p; on M of each t € T
is injective and

M = @y s(Ng/tNgt-1yup: (M)

if J(No/tNot™1) C Ny is a system of representatives of the cosets Ng/t Not~!; in particular,
the action of each element of the maximal subgroup Ty of T is invertible. We denote by
¥y the left inverse of ¢; vanishing on up, (M) for u € Ny not in tNyt~!. These modules
form an abelian category Mf{;a (No) (T4)-

We define analogously the abelian category M%EYQ(TJF) of finitely generated Og -
modules with an étale semilinear action of 7. The action ¢; of each element t € T
such that a(t) € Z; is invertible. We show that the action 7y x D — D of T on
D € /\/lggya(TJr) is continuous for the weak topology on D; the canonical action of the
inverse T_ of T' is also continuous.

Theorem 1.1. The base change functors Og ®¢, — and Ay, (No) ®,, — induce quasi-
1mverse isomorphisms

D: M?\ZQ(NO)(T-‘!') - Mg, (T) , M: MG, (T4) — Mf\tga(No)(TH :

Using this theorem, we show that the action of T} and of the inverse monoid 7T_
(given by the operators v) on an étale Ty -module over Ay (Ny) is continuous for the
weak topology.

1.5 P-equivariant sheaves on C

The o-algebra C'*°(Np,0) is naturally an étale o[P;]—module, and the monoid Py acts
on the o-algebra End, M by (b, F) — ¢ o F' o 15,. We show that there exists a unique
o[ P4 ]-linear map

res : C°°(Ny,0) = End, M



sending the characteristic function 1y, of Ny to the identity idas; moreover res is an
algebra homomorphism which sends 1, n, to ¢y 0 ¢y for all b € Py acting on x € Ny by
(b,z) — b.x.

For the sake of simplicity, we denote now by the same letter a group defined over Q,
and the group of its Q,-rational points.

Let M T be the o[P]-module induced by the canonical action of the inverse monoid P_
of Py on M; as a representation of IV, it is isomorphic to the representation induced by
the action of Ny on M. The value at 1, denoted by evg : M¥ — M, is P_-equivariant,
and admits a P,-equivariant splitting oo : M — M?T sending m € M to the function
equal to n — nm on Ny and vanishing on N — Ny. The o[P]-submodule M of M
generated by oo(M) is naturally isomorphic to A[P] ® 4;p,) M. When M = C*°(Ny,0)
then M = C(N,0) and M¥ = C*°(N, o) with the natural o[ P]—module structure. We
have the natural o-algebra embedding

F s o090 Foevy: End, M — End, M* .

sending idys to the idempotent Ry = o o evg in End, M.

Proposition 1.2. There exists a unique o[P]-linear map
Res : C2°(N,0) — End, M¥

sending 1y, to Ro; moreover Res is an algebra homomorphism.

The topology of N is totally disconnected and by a general argument, the functor of
compact global sections is an equivalence of categories from the P-equivariant sheaves on
N ~ C to the non-degenerate modules on the skew group ring

CSO(N7 O)#P = @bEPbC::X}(Na 0) .
in which the multiplication is determined by the rule (b1 f1)(baf2) = blbgfo fa for b; €
P, fi € C>°(N,0) and f2(.) = f1(bs.).

Theorem 1.3. The functor of sections over Ny ~ Cqy from the P-equivariant sheaves on
N ~C to the étale o[Py]-modules is an equivalence of categories.

The space of global sections of a P-equivariant sheaf S on C is S(C) = S(Cp)F.

1.6 Generalities on G-equivariant sheaves on G/P

The functor of global sections from the G-equivariant sheaves on G/P to the modules on
the skew group ring Ag/p = C°°(G/P,0)#G is an equivalence of categories. We have the
intermediate ring A

Ac =CX(C,0)#P C A:@geggC’g"(gﬂCOC,o) C Ag/ps

and the o-module

Z = Byec9C(C,0)
which is a left ideal of Ag,p and a right A-submodule.
Proposition 1.4. The functor

ZY(Z)=Z04Z

from the non-degenerate A-modules to the Ag,p-modules is an equivalence of categories;
moreover the G-sheaf on G/P corresponding to Y (Z) extends the P-equivariant sheaf on
C corresponding to Z| 4.



Given an étale o[P.]-module M, we consider the problem of extending to A the o-
algebra homomorphism

Res : Ac — End,(MF) beb — boRes(fp) .
beP

We introduce the subrings

Ag = 1CO~A100 = @geGgC‘”(g‘lcO n CO,O) c A,
Aco = 1COAC1C0 = @bepbcoo(b71C0 N Cy, 0) c Ac .
The skew monoid ring Ac, = C*(Co,0)#Py = Dpep, bC*(Co,0) is contained in Aco.
The intersection g~'Cy N Cp is not 0 if and only if g € NgPNy. The subring Res(Aco) of
End,(M?) necessarily lies in the image of End,(M).

The group P acts on A by (b,y) — (blG/P)y(blg/p)_l for b € P, and the map
b®y— (bl p)y(blg/p)~" gives o[ P] isomorphisms

o[P] ®(p,] Ao = A and o[P] @,p,] Aco = Ac .

Proposition 1.5. Let M be an étale o[Py]-module. We suppose given, for any g €
NoPNy, an element Hy € Endo(M). The map

Ro : Ao = Endo(M) Yo afem D Hgores(fy)

g€N, PNy gENo PN
is a Py -equivariant o-algebra homomorphism which extends Res | ., if and only if, for all
g,h € NgPNy, b € PN NogPNy, and all compact open subsets V C Cyp, the relations
Hi. res(ly) oHg = Hgores(ly-1pnc,)
H2. HgoHp =Hgnores(lp-1¢,nc,)
H3. Hp =bores(Ly-1¢ync,) -

hold true. In this case, the unique o[ P]-equivariant map R : A — Ends(MF) extending
Ro is multiplicative.

When these conditions are satisfied, we obtain a G-equivariant sheaf on G/P with
sections on Cy equal to M.

1.7  (s,res, €)-integrals H,

Let M be an étale T -module M over A, (Np) with the weak topology. We denote
by Endgont(M ) the o-module of continuous o-linear endomorphisms of M, and for g in
NoPNy, by Us € Ny the compact open subset such that

UngP/P = 971C0 ﬁCO .

For u € Uy, we have a unique element a(g,u) € NoT such that guwoN = a(g, u)uwoN.
We consider the map
g0+ No —EndS™™ (M)
ag.0(u) = Res(1¢,) o a(g, u) o Res(1eg,) for u € Uy and ago(u) = 0 otherwise.
The module M is Hausdorff complete but not compact, also we introduce a notion of
integrability with respect to a special family € of compact subsets C' C M, i.e. satisfying:

€(1) Any compact subset of a compact set in € also lies in €.



€(2) If C1,C,...,Cp € € then |J; C; is in €, as well.
€(3) For all C € € we have NyC € €.
€(4) M(Q):=cee C is an étale o[ Py |-submodule of M.
A map from M(€) to M is called €-continuous if its restriction to any C € € is

continuous. The o-module Hom$™ (M (€), M) of €-continuous o-linear homomorphisms

from M(C€) to M with the €-open topology, is a topological complete o-module.

For s € T, the open compact subgroups N, = s*Ngs~* Cc N for k € Z, form a
decreasing sequence of union N and intersection {1}. A map F: Ny — Hom%"" (M (€), M)
is called (s, res, €)-integrable if the limit

/NO Fdres := klim Z F(u) ores(lyn,) ,

—00
u€J(No/Ng)

where J(Ng/Ny) C Ny, for any k € N| is a set of representatives for the cosets in Ny/Ny,
exists in Hom§°™ (M (€), M) and is independent of the choice of the sets J(No/Ny). We
denote by Hy, j(ny/n,) the sum in the right hand side when F' = oy o(.)|ar(e)-

Proposition 1.6. For all g € NgPNy, the map ag,0()|ar(e): No — Homi‘mt(M(@), M)
is (s, res, €)-integrable when
€(5) For any C € € the compact subset 15(C) C M also lies in €.

%(1) For any C € € such that C = NoC, any open A[Ny|-submodule M of M, and any
compact subset Cy. C Ly there exists a compact open subgroup Py = Py (C, M, Cy) C
Py and an integer k(C, M, C4) > 0 such that

s*(1—P)C ¥ C E(C,M)  for any k > k(C,M,CY) .

The integrals Hy of ago(.)a(e) satisfy the relations H1, H2, H3, when they belong to
End4(M(€)), and when
€(6) For any C € € the compact subset ¢,(C) C M also lies in €.

T(2) Given a set J(No/Ny) C Ny of representatives for cosets in No/Ny, for k > 1, for
any x € M(€) and g € NgPNy there exists a compact A-submodule Cy , € € and a
positive integer ky 4 such that Hy j(n,/n,) () C Cu g for any k > kg 4.

When € satisfies €(1),...,€(6) and the technical properties T(1),%(2) are true, we
obtain a G-equivariant sheaf on G/P with sections on Cy equal to M (€).

1.8 Main theorem

Let M be an étale T -module M over Ay, (Ny) with the weak topology and let s € T ..
We have the natural T’ -equivariant quotient map

EM:M—>D=(957OC®(QM , m—1@m
from M to D =D(M) € Mo, ,(T4), of T -equivariant section
tip:D—->M=A, (Np)®,, D , d—1®d.

We note that o[No|¢p(D) is dense in M. A lattice Dy in D is a A(Z,)-submodule generated
by a finite set of generators of D over Og. When D is killed by a power of p, the o-module

MY (Dg) :== {m € M | £y (¥ (u"'m)) € Dy for all u € Ny and k € N}

of M is compact and is a A(Np)-module. Let €, be the family of compact subsets of
M contained in M (Dy) for some lattice Dy of D, and let MY = Up, Mb(Dg) the



union being taken over all lattices Dy in D. In general, M is p-adically complete, M /p™ M
is an étale T -module over Ay (Ny), and D/p"D = D(M/p™"M). We denote by p,, :
M — M/p™M the reduction modulo p", and by €, the family of compact subsets
constructed above for M /p" M. We define the family €, of compact subsets C C M such
that p,(C) € €, for all n > 1, and the o-module M of m € M such that the set of
Oar(YE(u=tm)) for k € N,u € Ny is bounded in D for the weak topology.

By reduction to the easier case where M is killed by a power of p, we show that &,
satisfies €(1),...,€(6) and that the technical properties T(1),T(2) are true.

Proposition 1.7. Let M be an étale T -module M over Ay (No) and let s € T .

(i) M*? is a dense A(No)[Ty]-étale submodule of M containing tp (D).

(ii) For g € NoP Ny, the (s,res, €s)-integrals Hy s of ag,0|Mgd exist, lie in End,(M??),
and satisfy the relations H1, H2, H3.

(iii) For s1,s3 € Ty, there exists s3 € Tyy such that M contains MP® U ME4 and
Hysy = Hg,s, on M2 DML

The endomorphisms H, s € End,(M??) induce endomorphisms of Nser, M bd and of
User, MY = ZSGT++ MY satisfying the relations H1, H2, H3. Moreover User, M?b and
Nser,, Mb are A(No)[T;]-étale submodules of M containing ¢p(D). Our main theorem
is the following:

Theorem 1.8. There are faithful functors
Y, (Yo)ser,,, Yu: M?gtg’a (Ty) — G-equivariant sheaves on G/P ,

sending D = D(M) to a sheaf with sections on Cy equal to the dense A(Ny)[T4]-submodules
of M
m M§d7 (Mgd)S€T++7 and U Mfd )

se€T 4 seTy
respectively.

When G = GL(2,Q,), the sheaves Y,(D) are all equal to the G-equivariant sheaf on
G/P ~P'(Q,) of global sections D K P! constructed by Colmez. When the root system
of G is irreducible of rank > 1, we check that User, , M2 is never equal to M.

1.9 Structure of the paper

In section 2, we consider a general commutative (unital) ring A and A-modules M with two
endomorphisms v, ¢ such that 1 o ¢ = id. We show that the induction functor Indl%w =
I'&H " is exact and that the module A[Z] ®n , M is isomorphic to the subrepresentation of

Ind%w(M) = yglw M generated by the elements of the form (% (m))pen.

In section 3, we consider a general monoid Py = Ny X L; contained in a group P
with the property that Ny is a group such that tNot~! C Ny has a finite index for all
t € Ly and we study the étale A[P;]-modules M. We show that the inverse monoid
P_ = L_Ny C P acts on M, the inverse of ¢t € L, acting by the left inverse v of the
action @y of t with kernel " up;(M) for u € Ny not in tNot~!. We add the hypothesis
that L, contains a central element s such that the sequence (s* Nos™*).¢z is decreasing of
trivial intersection, of union a group IV, and that P = N x L is the semi-direct product of
N and of L = UgenL_s®. An A[P,]-submodule of M is étale if and only if it is stable by
5. The representation M of P induced by M|p_, restricted to N is the representation
induced from M]|y,, and restricted to sZ is the representation @ ” M induced from

M |4-n. The natural A[P, ]-embedding M — M? generates a subrepresentation M of M*
isomorphic to A[P]® 4(p .M. When N is a locally profinite group and Ny an open compact
subgroup, we show the existence and the uniqueness of a unit-preserving A[P,]-map



res : C°(Np, A) — End 4 (M), we extend it uniquely to an A[P]-map Res : C*>°(N, A) —
Enda(M?T), and we prove our first theorem: the equivalence between the P-equivariant
sheaves of A-modules on N and the étale A[P;]-modules on Nj.

In section 4, we suppose that A is a linearly topological commutative ring, that P is
a locally profinite group and that M is a complete linearly topological A-module with a
continuous étale action of P} such that the action of P_ is also continuous, or equivalently
1), is continuous (we say that M is a topologically étale module). Then M* is complete
for the compact-open topology and Res is a measure on N with values in the algebra
E°°m of continuous endomorphisms of M. We show that £ is a complete topological
ring for the topology defined by the ideals E¢°™ of endomorphisms with image in an open
A-submodule £ C MP, and that any continuous map N — E"™ with compact support
can be integrated with respect to Res.

In section 5, we introduce a locally profinite group G containing P as a closed subgroup
with compact quotient set G/ P, such that the double cosets P\G/P admit a finite system
W of representatives normalizing L, of image in Ng(L)/L equal to a group, and the image
C = PwoP/P in G/P of a double coset (with wg € W) is open dense and homeomorphic
to N by the map n — nwyP/P. We show that any compact open subset of G/P is a
finite disjoint union of g~ *UwyP/P for g € G and U C N a compact open subgroup. We
prove the basic result that the G-equivariant sheaves of A-modules on G/P identify with
modules over the skew group ring C*°(G/P, A)#G, or with non-degenerate modules over a
(non unital) subring A, and that an étale A[Py]-module M endowed with endomorphisms
Hy € Enda(M), for g € NoPNy, satisfying certain relations H1, H2, H3, gives rise to a
non-degenerate A-module. For g € G we denote N, C N such that N,woP/P = g~'CNC.
We study the map « from the set of (g, u) with g € G and v € N, to P defined by guwoN =
a(g, u)uweN. In particular, we show the cocycle relation a(gh, u) = a(g, h.u)a(h,u) when
each term makes sense. When M is compact, then M is compact and the action of P
on MY induces a continuous map P — E". We show that the A-linear map A —
Econt given by the integrals of a(g,.)f(.) with respect to Res, for f € C°(Ny, A), is
multiplicative. As explained above, we obtain a G-equivariant sheaf of A-modules on
G/ P with sections M on Cy.

In section 6, we do not suppose that M is compact and we introduce the notion
of (s,res, @)-integrability for a special family € of compact subsets of M. We give an
(s,res, €)-integrability criterion for the function ago(u) = Res(1n,)a(gh, u) Res(ln,) on
the open subset U, C Ny such that UywoP/P = g='Co N Cy, for g € NowoPwoNo, a
criterion which ensures that the integrals H, of a4 satisfy the relations H1, H2, H3,
as well as a method of reduction to the case where M is killed by a power of p. When
these criterions are satisfied, as explained in section 5, one gets a G-equivariant sheaf of
A-modules on G/ P with sections M on Cy.

The section 7 concerns classical (,I')-modules over Og, seen as étale O[Pf)]—module

D, where the upper exponent indicates that Pf) is the upper triangular monoid Py of
GL(2,Q,). Using the properties of treillis we apply the method explained in section 6 to
this case and we obtain the sheaf constructed by Colmez.

In section 8 we consider the case where Ny is a compact p-adic Lie group endowed
with a continuous non-trivial homomorphism £ : Ny — Né2) with a section ¢, that L, C L
is a monoid acting by conjugation on Ny and L(N(§2)), that ¢ extends to a continuous
homomorphism ¢ : P, = Ny x L, — Pf) sending L, to Lf) and that ¢ is L, equivari-
ant. We consider the abelian categories of étale L,-modules finitely generated over the
microlocalized ring Ay(Ny) resp. over Og (with the action of L, induced by ¢). Between
these categories we have the base change functors given by the natural L,.-equivariant
algebra homomorphisms ¢ : Ay(Ng) — Og and ¢ : Og — Ay(Np). We show our second
theorem: the base change functors are quasi-inverse equivalences of categories. When L,
contains an open topologically finitely generated pro-p-subgroup, we show that an étale



L,-module over O¢ is automatically topologically étale for the weak topology; the result
extends to étale L.-modules over Ay(Np), with the help of this last theorem.

In the section 9, we suppose that ¢ : P — P(Q)((@p) is a continuous homomorphism
with ¢(L) € L®(Q,), and that ¢ : N®(Q,) — N is a L-equivariant section of /|y (as L
acts on N®(Q,) via ¢) sending £(Ny) in Ny. The assumptions of section 8 are satisfied
for L, = Ly. Given an étale L-module M over Ay(Ny), we exhibit a special family €
of compact subsets in M which satisfies the criterions of section 6 with M (€,) equal to
a dense A(Np)[L.]-submodule M? C M. We obtain our third theorem: there exists a
faithful functor from the étale L;-modules over Ay(Ny) to the G-equivariant sheaves on
G/P sending M to the sheaf with sections M?® on Cy.

In section 10, we check that our theory applies to the group G(Q,,) of rational points of
a split reductive group of @,, to a Borel subgroup P(Q,) of maximal split torus T'(Q,) = L
and to a natural homomorphism ¢, : P(Q,) — P® (Qy) associated to a simple root a. We
obtain our main theorem: there are compatible faithful functors from the étale T'(Q,)4-
modules D over Og (where T(Q,)+ acts via a) to the G(Qp)-equivariant sheaves on
G(Q,)/P(Q,) sheaves with sections M(D)% on Cy, for all strictly dominant s € T(Q,).
When the root system of G is irreducible of rank > 1, we show that Us M@ # M = M(D).
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heartily C.I.LR.M., I.A.S., the Fields Institute, as well as Durham, Cordoba and Caen
Universities, for their invitations giving us the opportunity to present this work. Finally,
we would like to thank the anonymous referee for a very careful reading of the manuscript
and his suggestions for improving the presentation.

2 Induction Ind% for monoids H C G

A monoid is supposed to have a unit.

2.1 Definition and remarks

Let A be a commutative ring, let G be a monoid and let H be a submonoid of G. We
denote by A[G] the monoid A-algebra of G and by 94 (G) the category of left A[G]-
modules, which has no reason to be equivalent to the category of right A[G]-modules.
One can construct A[G]-modules starting from A[H]-modules in two natural ways, by
taking the two adjoints of the restriction functor Res% : 94 (G) — M4 (H) from G to H.
For M € Ma(H) and V € M4 (G) we have the isomorphism

Hom (g (A[G] @ agm) M, V') — Hom gz (M, V)
and the isomorphism
(1) Hom 46 (V, Hom 171 (A[G], M) — Hom 4 (V, M)
For monoid algebras, restriction of homomorphisms induces the identification
Hom 4[5 (A[G], M) = Ind§} (M)
where Ind% (M) is formed by the functions

f: G — M such that f(hg) =hf(g) forany he H,g € G ;
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the group G acts by right translations, gf(z) = f(xg) for g,2 € G. The isomorphism
pairs ¢ of the left side and ® of the right side satisfying ([14] 1.5.7)

P(v)(g) = ®(gv) for (v,9) €V xG.

It is well known that the left and right adjoint functors of Resfl are transitive (for monoids
H C K C G), the left adjoint is right exact, the right adjoint is left exact.

We observe important differences between monoids and groups:

1) The binary relation g ~ ¢’ if g € Hg' is not symmetric, there is no “quotient space”
H\G, no notion of function with finite support modulo H in Ind% (M).

2) When hM = 0 for some h € H such that hG = @G, then Ind% (M) = 0. Indeed
f(hg) = hf(g) implies f(hg) =0 for any g € G.

3) When G is a group generated, as a monoid, by H and the inverse monoid H ! :=
{he G| h! e H}, and when M in an A[H]-module such that the action of any element
h € H on M is invertible, then f(g) = gf(1) for all g € G and f € Ind$(M). This
can be seen by induction on the minimal number m € N such that g = ¢; ... g, with
gi € HUH™'. Then g; € H implies f(9) = 91f(92-.-gm), and g € H~1 implies
(g2 gm) = f(97 9192 - - - gm) = g7 f(g). The representation Ind$ (M) is isomorphic
by f — f(1) to the natural representation of G on M.

2.2 From N to Z

An A-module with an endomorphism ¢ is equivalent to an A[N]-module, ¢ being the action
of 1 € N, and an A-module with an automorphism ¢ is equivalent to an A[Z]-module.
When ¢ is bijective, A[Z] ® syy M and Ind%(M) are isomorphic to M.

In general, A[Z] ® sy M is the limit of an inductive system and Ind% (M) is the limit
of a projective system. The first one is interesting when ¢ is injective, the second one
when ¢ is surjective.

For r € N let M, = M. The general element of M, is written z, with x € M. Let
lién (M, @) be the quotient of Li.enM,. by the equivalence relation generated by p(z),4+1 =
2, with the isomorphism induced by the maps z,, — ¢(x), : M, — M, of inverse induced
by the maps ©, — x,41 : M, — M,41. Let  — [z] : Z — A[Z] be the canonical map.
The maps z, — [-r]®@z : M, — A[Z] ®apy M for r € N induce an isomorphism of
A[Z]-modules

lim M —  A[Z] @y M

Let

(2) @ M = {:C = (xm)meN S H M : @(Im-‘rl) =z, for any m € N}
meN

seen as an A[Z]-module via the automorphism

T (@('xo)vavxl? .- ) = (gO(l‘o), 90('1:1)’ (p($2) .- )

of inverse x — (z1,Z2,...) . The map f +— (f(—m))men is an isomorphism of A[Z]-
modules
Indg(M) = lim M
The submodules of M
MeT=0 = UkeNMsOk:O s (M) = Npen ¢™(M)

are stable by . The inductive limit sees only the quotient M/M¥%™=C and the projective
limit sees only the submodule o> (M),

lim M = lim (M/M?7=%) , lim M = lim (p>(M))

11



Lemma 2.1. Let 0 - My — My — M3 — 0 be an exact sequence of A-modules with an
endomorphism ¢.
a) The sequence
0—>li$ M1—>Iigq MQ—HQ Ms; — 0
18 exact.
b) When ¢ is surjective on My, the sequence

0 —lim M; — lim M; — lim Mz — 0
18 exact.

Proof. This is a standard fact on inductive and projective limits. O

2.3 (p,¢)-modules

Let M be an A-module with two endomorphisms ), ¢ such that ¥ o ¢ = 1. Then ¥ is
surjective, ¢ is injective, the endomorphism ¢ o 9 is a projector of M giving the direct
decomposition

(3) M=9oM)®M"=" | m = (pot)(m) + m*="

for m € M and m¥=" € M¥=0 the kernel of 1. We consider the representation of Z
induced by (M, ) as in (2.2)),

Indf (M) = lim M .
P
On the induced representation 1 is an isomorphism and we introduce ¢ := ¢!, As 1) is
surjective on M, the map evq : Indgw(M ) — M, corresponding to the map

%1 M — M, (mm)meN = o

is surjective. A splitting is the map og : M — Indéw(M) corresponding to

(4) M = Im M,z (9" (@)men
P

Obviously evg is ¥-equivariant, oq is p-equivariant, evg o og = idys, and
Ry := ogoevy € EndA(IndI%W(M))

is an idempotent of image oo(M).

Definition 2.2. The representation of Z compactly induced from (M) is the subrepre-
sentation C—Ind§7w(M) of Indgw(M) generated by the image of oo(M).

We note that, for any k& > 1, the endomorphisms ¥, o satisfy the same properties
as 10, ¢ because ¥ o ¥ = 1. For any integer k > 0, the value at k is a surjective map
evy Indgw(M) — M, corresponding to the map

(5) m M — M, (xm)meN — T
P

of splitting o, : M — Ind%w)(M) corresponding to the map

—_

(6) Moo m M, ae @), @),z o), (@), ..
P

12



The following relations are immediate:
k
evy = evpoy' = Yoevgyy = evpy10vY
_ k _ _
O = Y 0090 = Ok4109 = POOTkK41 -

We deduce that o, (M) C op41(M). Since o, (M) is p-invariant we have

(7) c-Indig (M) = Y 9*(oo(M)) = Y on(M) = [ ow(M).

keN keN keN

In lim (M) the subspace of (., )men such that zy 1, = ©*(x,) for all k € N and for some

»
r € N, is equal to c—Ind%W(M). The definition of c—Ind%W(M) is functorial. We get a

functor c—Indg,w from the category of A-modules with two endomorphisms 1), ¢ such that
1 o =1 (a morphism commutes with ¢ and with ¢) to the category of A[Z]-modules.

Proposition 2.3. The map

A[Z) @ apn,p M — Homap»(A[Z], M) = Indy ,(M)
[kl@m — (¢"o0o)(m)

induces an isomorphism from the tensor product A[Z] ® o), M to the compactly induced
representation C-Indgw (M) (note that 1 and ¢ appear).

Proof. From and the relations between the o) we have for m € M,k € NJk > 1,
i (m) = ox—1(1p(m)) + ox(m*=°) .

By induction Y, oy ok(M) = 0o(M) + 3451 0k(M¥=?). Using @) one checks that the
sum is direct, hence by @, B

cIndf (M) = oo(M) & (Br>10%(MY=0)) .
On the other hand, one deduces from that

AZ @app M = (0]® M) & (Sxz1(—K © MY=0)) .

With the lemma 2.7] we deduce:
Corollary 2.4. The functor c—Indéﬂb s exact.

We have two kinds of idempotents in EndA(Indg,,w(M)), for k € N, defined by
— k k ,_ k k _
(8) Ry := opop otp¥oevy , R_; = Y oRygo¢” =oroevy

The first ones are the images of the idempotents ry := ¥ o 1)* € End (M) via the ring
homomorphism

(9) End4(M) — EndaIndf,(M) , f+ o000 foevy

The second ones give an isomorphism from Indl%w(M ) to the limit of the projective system
(O'k(]w)7 R_j: Ok_;,_l(M) — O'k(M)).
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Lemma 2.5. The map f +— (R_i(f))ken s an isomorphism from Ind%)d,(M) to

h&l(ak(M)) = A(fe)ren | fx €o0k(M), fr = R_p(fx41) for keN}

R_g

of inverse (fr)ren — f with evig(f) = evi(fi)-
Remark 2.6. As ¢ is injective, its restriction to N,ene™ (M) is an isomorphism and the

following A[Z]-modules are isomorphic (section [2.2)):

Indg,(M) =~ lmM = Nueng™(M).
©

As 1) is surjective, its action on the quotient M /M ¥7=0 is bijective and the following
A[Z)-modules are isomorphic (section [2.2)):

AlZ] @apyp M~ lim M~ M/MY™=0.
P

Remark 2.7. When the A-module M is noetherian, a -stable submodule of M which
generates M as a @-module is equal to M.

Proof. Let N be a submodule of M. As M is noetherian there exists k € N such that
the ¢-stable submodule of M generated by N is the submodule Ny C M generated by
N,o(N),...,o"(N). When N is t-stable we have ¢¥(Ny) = N and when N generates M
as a p-module we have M = Nj.. In this case, M = ¢*(M) = ¢*(N}) = N. O

3 Etale P,-modules

Let P = N x L be a semi-direct product of an invariant subgroup N and of a group L and
let Ng C N be a subgroup of N. For any subgroups V. C U C N, the symbol J(U/V) C U
denotes a set of representatives for the cosets in U/V .

The group P acts on N by
(b=nt,z) = bax = ntxt™"
for n,z € N and t € L. The P-stabilizer {b € P | b.Ng C Ny} of Ny is a monoid
P, = NoL.

where Ly C L is the L-stabilizer of Ny. Its maximal subgroup {b € P | b.Ng = Ny} is the
intersection Py = Ny x Lo of Py with the inverse monoid P- = L_ Ny where L_ is the
inverse monoid of Ly and Lg is the maximal subgroup of L.

We suppose that the subgroup t.Ng = tNot~' C Ny has a finite index, for all t € L.
Let A be a commutative ring and let M be an A[Py]-module, equivalently an A[Ny]-
module with a semilinear action of L .

The action of b € P, on M is denoted by . If b € Py then ¢, is invertible and we also
write @p(m) =bm , ¢, ' (m) = b~"tm for m € M. The action ¢, € Enda(M) of t € L is

A[Ngl-semilinear:

(10) or(zm) = pe(x)pe(m) for x € A[Ng], me M .

14



3.1 Etale module M

The group algebra A[Ny] is naturally an A[P;]-module. For ¢ € L the map ¢, is injective
of image A[tNot~1], and

A[No] = Bues(No/tNot- 1 UA[ENot 1] .
Definition 3.1. We say that M is étale if, for any t € Ly, the map ¢; is injective and
(11) M = @yuey(Ny/tNgt—1) U we(M) .
An equivalent formulation is that, for any t € Ly, the linear map
A[No] @ aNgl,pe M = M, 2@ m — zpi(m)

is bijective. For M étale and t € L., let ¢y € Enda(M) be the unique canonical left
inverse of ¢ of kernel

M¥=0 = Z upr(M) .
u€(No—tNot—1)

The trivial action of Py on M is not étale, and obviously the restriction to Py of a
representation of P is not always étale.

Lemma 3.2. Let M be an étale A[Py]-module. For t € L., the kernel M¥+=C is an
A[tNot~1]-module, the idempotents in End 4 M

(wo @i ot ou™ ") ues(No/tNot—1)
are orthogonal of sum the identity. Any m € M can be written
(12) m= Z wpy (M t)

u€J(No/tNot—1)

for unique elements my; € M, equal to my ¢ = Pr(u="'m).

Proof. The kernel M¥+=% is an A[tNyt~1]-module because Ny — tNot ! is stable by left
multiplication by tNgt~!. The endomorphism ¢; o 1; is an idempotent because 1; o @; =
idas. Then apply and notice that m € M is equal to

m = Z (o @ oth, oub)(m) .

u€J(No/tNot—1)
O

Remark 3.3. 1) An A[P;]-module M is étale when, for any ¢ € L, the action ¢; of ¢
admits a left inverse f; € End 4 M such that the idempotents (uo(ptoftou_l)ueJ(NO/tNUtfl)
are orthogonal of sum the identity. The endomorphism f; is the canonical left inverse ;.

2) The A[P;]-module A[Ny] is étale. As A[Ny] is a left and right free A[tNot~!]-module
of rank [Ny : tNot '] we have for z € A[Np] ,

T = Z Upe (T ) = Z o), Ju?

u€J(No/tNot—1) u€J(No/tNot—1)

where 1 = ¢ (u" '), Ty, = Ye(zu) and ¢ is the left inverse of ¢; of kernel

S wARNet = Y ARfNgt uh

u€No—tNot—1 u€ENg—tNot—1
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Let M be an étale A[P;]-module and t € L. We denote m +— m¥+=% : M — M¥+=0
the projector idp; —¢¢ o 1y along the decomposition M = @, (M) @& M¥+=0.

Lemma 3.4. Let x € A[Ny] and m € M. We have
Vi(pe(a)m) = ahe(m) ,  Y(zp(m)) = d(x)m
(e(2)m)" =0 = @u(a)(m¥=%) . (2pe(m))" =" = 2V (m)

Proof. We multiply m = (p; o ¢¢)(m) + m¥*=% on the left by ¢;(z). By the A[Ng]-
semilinearity of ¢; we have i(z)m = ¢;(x:(m)) + @i(x)(m¥*=%). As M¥*=% is an
A[tNot~1]-module, the uniqueness of the decomposition implies ¥ (p:(x)m) = w1 (m)
and (pu(2)m)*=0 = gy () (m¥=")

We multiply z = (@, 0 ¥¢)(z) + 2¥*=° on the right by ¢;(m). By the semilinear-
ity of ¢; we have z¢;(m) = (Vs (x)m) + z¥=Cp;(m). As A[No|¥*=Cp,(M) = M¥+=0
the uniqueness of the decomposition implies ¥y (zpi(m)) = ¥i(x)m , (wpi(m))¥+=0 =
2¥t=0p;(m). O

Lemma 3.5. Let z € A[Ny| and m € M. We have

Pe(xm) = > be(zu)pe(u™rm) .

u€J(No/tNot—1)

Proof. Using (12), replace m by ZuGJ(NO/tNOt,l) wpy(My,e) iIn Py (zm). We get

P(xm) = Py ( Z TuP(Myy)) = Z P (zu)my,

u€J(No/tNot—1) u€J(No/tNot—1)

= > Gr(zu)y(u™m)

u€J(No/tNot—1)

using the first line of Lemma O

Proposition 3.6. Let M be an étale A[P,]-module. The map
bl = (ut)™ = ¢y :=tpyout : P. — Endsa(M) for teL,,ucNy ,
defines a canonical action of P_ on M.

Proof. We check that vp,p, = ¥p, 0 Pp, for by = uiti,ba = uate € Py. We have ¢p,p, =
Yyt 0 (urtrunty ) ™1 and ahy, 01y, = by, ouy !t othy, oup . As uy oty = by, otyuy 'ty it
remains only to show ¢;,1:, = 1,1,. For the sake of simplicity, we note v; = @y,, ¥ = ¥,.
For m € M we have m = 1 (2 0 12 (101(m)) + 11 (m)¥2=0) + m¥1=C. This is also

m = (Ptyt, © 2 0 Y1) (M) + 1 (1 (m)¥2=0) + m¥1=0

because @1 0 Y2 = ¢y, 1,. By the uniqueness of the decomposition m = (¢, 1, 0 4,1, )(m) +
m¥t12=9 we are reduced to show that

Ml/’tth:O — @1(M¢2:0) + M"/’IZO

It is enough to prove the inclusion M¥t1t2=9 C o (M¥2=9) 4 M¥1=0 o get the equality
because M = 4,1, (M) @&V with V equal to any of them. Hence we want to show
(13)

> upnn,(M) C oi( > upa(M) + Y uer(M) .

u€No—t1t2No(t1t2) ! u€No—t2Noty " u€No—t1 Noty "
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As p1ouopy = tlutl_l 0 ¢, t, the right side of is

Z UPtyty (M) + Z wPl(M)

uethotl_lftﬂzNo(htz)_l u€N07t1Not1_1
As @44, = 1 0 2 we have @41, (M) C 1(M). Hence is true. O

Lemma 3.7. Let f : M — M’ be an A-morphism between two étale A[Py]-modules M
and M’'. Then f is Py-equivariant if and only if f is P_-equivariant (for the canonical
action of P_).

Proof. Let t € L. We suppose that f is Ng-equivariant and we show that fop; = pso f
is equivalent to f ot = ¢y o f. Our arguments follow the proof of ([5] Prop. 11.3.4).

a) We suppose f o = ¢y o f. Then f(pi(M)) = ¢i(f(M)) is contained in ¢y (M)
and f(MY*=0) =3 N _enge-r wpe(f(M)) is contained in M'¥+=0. By Lemma this
implies fo @01 = proyo f. As fop, = o f and @, is injective this is equivalent to
Jotr=1yof.

b) We suppose fo; = ;0 f. Let m € M. Then f(p:(m)) belongs to ¢:(M) because
@¢(M) is the subset of z € M such that ¢, (u=1z) = 0 for all u € Ny — tNot~! and we
have

Ye(u f(e(m) = f(We(u™ (pe(m))) -
Let z(m) € M be the element such that f(¢:(m)) = @¢(x(m)). We have

z(m) = ipr(x(m)) = Yu(f(pr(m))) = f(Prpr(m)) = f(m) .

Therefore f(p:(m)) = oi(f(m)). =

Proposition 3.8. The category Ma(Py) of étale A[Py]-modules is abelian and has a
natural fully faithful functor into the abelian category Mo(P-) of A[P_]-modules.

Proof. From the proposition [3.6] and the lemma it suffices to show that the kernel
and the image of a morphism f : M — M’ between two étale modules M, M’, are étale.
Since the ring homomorphism ¢ is flat, for ¢t € L, the functor ®; := A[No] ® a[ny)
sends the exact sequence

Pt

(14) (E) 0— Ker f - M — M’ — Coker f — 0
to an exact sequence
(15) (D,(E)) 0 — Oy(Ker f) — (M) — ®y(M') — &y(Coker f) — 0 ,

and the natural maps j_ : ®;(—) — — define a map ®;(F) — (E). The maps jp and
Jmr are isomorphisms because M et M’ are étale, hence the maps jker f and jooker f are
isomorphisms, i.e. Ker f and Coker f are étale. O

Note that a subrepresentation of an étale representation of Py is not necessarily étale
nor stable by P_.

Remark 3.9. An arbitrary direct product or a projective limit of étale A[Py]-modules is
étale.

Proof. Since the A[tNyt~!]-module A[Ny] is free of finite rank, for t € L., the tensor
product A[No] ® afn,¢-1] — commutes with arbitrary projective limits. O
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3.2 Induced representation M?"

Let P be a locally profinite group, semi-direct product P = N x L of closed subgroups
N, L, let Ny C N be an open profinite subgroup, and let s be an element of the centre
Z(L) of L such that L = L_s” (notation of the section @ and (Ny := s*Nos™F) ez is a
decreasing sequence of union N and trivial intersection.

As the conjugation action L x N — N of L on N is continuous and Ny is compact
open in IV, the subgroups Lo C L, Py C P are open and the monoids P, P_ are open in
P.

We have

P=P s* = s'p,
ko, ok

because, for n € N and t € L, there exists k € N and ng € Ny such that n = s "ngs
and ts™% € L_. Thus tn = ts *ngs* € P_s* and (tn)~! € s~*P,. In particular P is
generated by P, and by its inverse P_.

Let M be an étale left A[P;]-module. We denote by ¢ the action of s on M and by 1
the canonical left inverse of ¢, by

MP = Indp (M)

the A[P]-module induced from the canonical action of P_ on M (section [2.T).
When f: P — M is an element of M*, the values of f on s" determine the values of
f on N and reciprocally because, for any u € Ny, k € N,

Fls™Pus®) = (WF o w)(F(s7))
(16) M= Y ot (f(sFuish)) .

veJ(No/Ny)

The first equality is obvious from the definition of Ind? , the second equality is obvious

by the first equality as the idempotents (v o ¢* o 1% o v_l)veJ(NO/Nk) are orthogonal of
sum the identity, by the lemma 3.2

Proposition 3.10. a) The restriction to s* is an A[s”]-equivariant isomorphism
MP & Ind (M)
b) The restriction to N is an N-equivariant bijection from MY to Ind%ﬂ (M).
Proof. a) As P = P_s” and s~ C P_nNs” (it is an equality if N is not trivial), the

restriction to sZ is a s’-equivariant injective map MP — Ind®"«(M). To show that the
Z
map is surjective, let ¢ € Ind_n(M) and b € P. Then, for b=b_s" with b_ € P_,r € Z,

fo) = b_o(s")

is well defined because the right side depends only on b, and not on the choice of (b_, ).
Indeed for two choices b =b_s" = b s" with b_,¥_ € P_,r >’ in Z, we have

b_g(s™) = b_s" ""p(s") = b_o(s")

The well defined function b — f(b) on P belongs obviously to M and its restriction to
s” is equal to ¢.

b) As P_ N N = Nj the restriction to N is an N-equivariant map M* — Ind%0 (M) .
The map is injective because the restriction to N of f € MT determines the restriction

of f to s by which determines f by a). We have the natural injective map

(17) foe= ¢y 0 IndSlu (M) — M - dY, (M)
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dp(s Fush) = (WP ou)(f(s¥) for keNue Ny ,

and we have the map

¢ — fp : IdN (M) — Inds.(M)
defined by
fo(s®) = Z (vo®)(p(s Fv~1sF)) for keN.
v€J(No/Ny)

Indeed the function f, satisfies ¥(f,(s**1)) = f4(s*) : since ¥ o uo 1 = s7lus o pF
when u € Ny and is 0 otherwise, we have

V(fe(s TN =9 Y (o) (g(sTF T s )

vEJ(No/Nky1)

= Z (s tws o ") (p(s Lot sR L))

vENINJ(No/Nit1)

The last term is

Yo woeh)(d(sTr i) = fu(sh)

v€J(No/Ny)
because s~1(Ny N J(No/Ngs1))s is a system of representatives of No/Nj and each term
of the sum does not depend on the representative. Indeed for u € Ny,
(vsFus™" 0 ") (p(sF (vsPus™*)71s%)
= (vop*ou)(p(uts T uTs")) = (vo t)(e(sFu ")) .

For u € Ny, k € N, we have

5, (s Pus®) = (V" ou) fu(s")
= Z (YF ouv o ®)(d(s v 1sk)) = p(s Fus®)

v€J(No/Ny)

where the last equality comes from Ker¢* = Y e No—Ny, up® (M) . Moreover, we have
fo;, = [ as a consequence of Lemma O

Proposition 3.11. The induction functor
Indb  : Ma(P) = Ma(P_) = Mu(P)
18 exact.

Proof. The canonical action of any element of P_ on an étale A[Py]-module is surjective.
Apply Lemma [2.1 O

Proposition 3.12. Let f € M . Let n,n' € N and t € Ly and denote by k(n) the
smallest integer k € N such that n € N_j. We have :

(nf)(s™) = (s"ns"™)(f(s™)) for all m > k(n),
(™) = e (f(s™)  and  (sf)(s™) = f(s™T)  for all m € Z,
(s")(n') = Z v (f(s v In's®))  for all k> 1,

vEJ(No/Nk)

() = u(f(tn't™)) and  (nf)(n') = f(n'n) .
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Proof. The formulas (sf)(s™) = f(s™1), (nf)(n') = f(n'n) are obvious. It is clear that
(™) = f(s™Th) = F(ETs™) = tTH(F(s™) = el f(s™))
() = fnt™h) = fFE 't =t (f(tn'tTh) = e(ftn'tT1))

nf(s™) = f(s™n) = f(s™nss™) = (sMns ™) f(s™)

Using Lemma we write

e R (U O (CICRIN

v€J(No/Ny)
PP W) = 9 T (f(0'sh) = 9t (fomtnsh) = f(sTRuin'sb)
We obtain (s*f)(n') = D ve T (No/Ny) vo(f(s Fv~In/sk)) . O

Definition 3.13. The s-model and the N-model of MF are the spaces Indzz_ (M) ~
@ M and Ind%o(M), respectively, with the action of P described in proposition |3.12
(

3.3 Compactly induced representation M

The map
evo : M = M | f — f(1)

admits a splitting
og: M — M P

For m € M, ao(m) vanishes on N — Ny and is equal to nm on n € Ny and to ¢*(m) on
s* for k € N. In particular, by proposition b, og is independent of the choice of s.

Lemma 3.14. The map evq is P_-equivariant, the map oo is Py -equivariant, the A[Py]-
modules oo(M) and M are isomorphic.

Proof. It is clear on the definition of M ¥ that evg is P_-equivariant. We show that oy is
L, -equivariant using the s-model. Let ¢ € L. We choose t’ € L, ,r € N with t't = s".
Then ¢y = ¢" and ¢, = 1y @". We obtain for tog(m)(s*) = ao(m)(s*t) the following
expression

ao(m)(t' ™" s*7) = gy (00(m)(s*17))
= "t (m) = ot (m) = " or(m) = oo (tm)(s*) .

Hence tog(m) = oo(tm). We show that oy is Np-equivariant using the N-model. Let
ng € No and m € M. Then ngog(m) = gg(ngm), because for k € N, u € Ny,
nooo(m) (s Fusk) = oo(m) (s *us*ng) = oo(m) (s Fustngs=*s)

= (YF ous®ngs™ 0 ) (m) = (YF o u 0 ©*)(ngm) = oo (nem) (s Fus®) .

The compact induction of M from P_ to P is defined to be the A[P]-submodule

c-Indb (M) .= MFP
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of M generated by oo(M). The space MY is the subspace of functions f € M with
compact restriction to N, equivalently such that f(s*+") = ©*(f(s")) for all k € N and
some r € N. The restriction to sZ is an s“-isomorphism (proposition [3.10))

MP 5 eIndsla (M)
By proposition the map
A[P)®ap,) M — cIndp (M)
[s™M@m = (p~" o ag)(m)
is an isomorphism.

Lemma 3.15. The compact induction functor from P_ to P is isomorphic to
(18) cIndp ~ A[P|®@ap,) @ Ma(Py)" — Ma(P),
and is exact.

Proof. For the exactness see Corollary O

3.4 P-equivariant map Res: C°(N, A) — Enda(M7”)

Let C°(N, A) be the A-module of locally constant compactly supported functions on N
with values in A, with the usual product of functions and with the natural action of P,

PxCE(N,A) — CE(N,A) (b f) = (bf)(@) = fF(b~" @)

For any open compact subgroup U C N, the subring C*°(U, A) C C°(N, A) of functions
f supported in U, has a unit equal to the characteristic function 1y of U, and is stable
by the P-stabilizer Py of U. We have bly = 1 y. The A[Py]-module C*°(U, A) and the
A[P]-module C*(N, A) are cyclic generated by 1. The monoid Py = NoL; acts on
Enda (M) by

P, x Ends(M) — Endj(M)

(b7F) H‘pboFowb
Note that we have ¥, = 1), ou™".

Proposition 3.16. There exists a unique Py -equivariant A-linear map
res : C°(Ng,A) — Enda(M)
respecting the unit. It is a homomorphism of A-algebras.

Proof. If the map res exists, it is unique because the A[Py]-module C*°(Ny, A) is gen-
erated by the unit 1y,. The existence of res is equivalent to lemma as we will show
below. For b € P, we have the idempotent

(19) res(lb,NO) =poYp € EndA(M)

We claim that for any finite disjoint union b.No = [];c; b;.No with b; € Py, the idempo-
tents res(1p, n,) are orthogonal of sum res(1; y,). We may assume that b = 1, since the
inclusion b;.Ng C b.Ny yields b=1b; € P,. Write b; = u;t; with u; € Ny and t; € L, and
choose t' € Ly such that t' € t;L, say t' = t;l; (with [; € Ly). Let (n;;); be a system of
representatives for Ny /l;.Ny. Since M is étale, lemmashows that, for each 4, the idem-
potents (¢n,;1; © Yn,;1,); are orthogonal, with sum ida;. Note that (v := uitmijt;l)(iyj)
form a system of representatives for Ny/t'.Np, so again by lemma the idempotents
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(@vi 7 ©%u,;11)(i,5) are orthogonal with sum idy;. The claim follows, since v;t" = b;(n;l;),
SO
SD’UUt/ © d)vijt’ = Solh o Sﬁnmb © ¢n”l7 © 7/’!;7 .

The claim being proved, we get an A-linear map res : C*°(Ny, A) — End 4 (M) which is
clearly Pi-equivariant and respects the unit. It respects the product because, for fi, fo €
C°°(Np, A), there exists t € L, such that f; and f, are constant on each coset utNot~! C
No. Hence res(f1f2) = 3 e 7w jtnot-1) J1(0)f2(V) res(Lor.ng ) = res(f1) o res(f2). O

The group P = N L acts on End 4 (M*) by conjugation. We have the canonical injective
algebra map

(20) F — opoFoevg : EndgM — Ends(MFP).
It is Pj-equivariant since, by the 1emma for b € Py, we have
(21) boogoFoevgob ™! = ggopyoFotyoevy .
We consider the composite P;-equivariant algebra homomorphism
C>®(Np,A) == Enda(M) — Enda(MF) .

sending 1y, to Rg := 0 o evy and, more generally, 1, n, to bo Rgob~! for b € P,.

For f € MY, Ro(f) € M¥ vanishes on N — Ny and Ro(f)(s*) = ¢*(f(1)). In the
N-model, Ry is the restriction to Ng.

We show now that the composite morphism extends to C2°(N, A).

Proposition 3.17. There exists a unique P-equivariant A-linear map
Res : CX(N,A) — Enda(MT)
such that Res(1n,) = Ro. The map Res is an algebra homomorphism.

Proof. If the map Res exists, it is unique because the A[P]-module C2°(N, A) is generated
by 1N0.
For b € P we define
Res(1p.n,) = boRyo b=t

We prove that bo Ry o b~! depends only on the subset b.Ny C N, and that for any finite
disjoint decomposition of b.Ny = U;crb;.Ng with b; € P, the idempotents b; o Ry o bi_1 are
orthogonal of sum bo Ryob™!.

The equivalence relation b.Ng = b'. Ny for b, b’ € P is equivalent to b’ Py = bP, because
the normalizer of Ny in P is Py. We have bo Ry o b~! = Ry when b € P, because
res(1p v, ) = res(ly,) = id (proposition. Hence bo Ryob~! depends only on b.Ny. By
conjugation by b~!, we reduce to prove that the idempotents b; o Ry o bi_1 are orthogonal
of sum Ry for any disjoint decomposition of Ny = L;c7b;-Ny and b; € P. The b; belong
to Py, and the proposition |3.16|implies the equality.

To prove that the A-linear map Res respects the product it suffices to check that,
for any t € L,k € N, the endomorphisms Res(1,;n,-1) € End4(M7T) are orthogonal
idempotents, for v € J(N_/tNot~1). We already proved this for £ = 0 and for all t € L,
and s*J(N_j,/tNot=1)s™F = J(Ny/s¥tNot—1s%). Hence we know that

(Sk o Res(lvtNOtfl) o S_k)veJ(N,k/tNUtfl)

are orthogonal idempotents. This implies that (Res(1,¢n,t-1))ves(N_, /tNot-1) are orthog-
onal idempotents. O
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Remark 3.18. (i) The map Res is the restriction of an algebra homomorphism
C>®(N,A) — Enda(M?),

where C*°(N, A) is the algebra of all locally constant functions on N. For this we
observe
1. The A[Py]-module C*°(Ny, A) is étale. Fort € Ly, the corresponding ¢ satis-
fies (e f) (@) = f(tat™?).
2. The map (f,m) — res(f)(m) : C°(No, A) x M — M is 1ps-equivariant, hence
induces to a pairing C>=(Ny, A)F x MP — MPF.
3. The A[P]-module C™=(Ny, A)F is canonically isomorphic to C*(N, A).
(ii) The monoid Py x Py acts on Enda(M) by 0, p)F := @, 0 F othy,. For this action
Enda(M) is an étale A[Py x Py]-module, and we have ¥, ) F = 1y, 0 F 0 @y, .

Definition 3.19. For any compact open subsets V. .C U C Ny and m € M, we denote
resy :=res(ly) , My :=resy(M) , my :=resy(m) , res‘U/ :=resy |y, 1 My — My .

For any compact open subsets V.C U C N and f € M¥

Resy := Res(1y) , My := Resy(MF) |, fu = Resy (f) , Resg := Resy |my, : My — My

Remark 3.20. The notations are coherent for U C Ny, as follows from the following
properties. For b € P, we have

— resp.y = @p o resy oy, (proposition [3.16) ;
—~ boResy = 0goyyoresyoevy and Resyob™! = ogoresy oy oevy ;

~ (Resy f)(1) = resy(f(1)) -
We note also that the proposition |3.17] implies:

Corollary 3.21. For any compact open subset U C N equal to a finite disjoint union
U = UierU; of compact open subsets U; C N, the idempotents Resy, are orthogonal of
sum Resy .

Corollary 3.22. For u € N, the projector Res,n, is the restriction to Nou™! in the
N-model.

Proof. We have Res,n, = u o Resy, ou~! and Resp, is the restriction to Ny in the N-
model. Hence for z € N, (Resyn, f)(z) = (Resy, u™! f)(zu) vanishes for x € N — Nou™*
and for v € Ny, (Resyn, f)(vu™1) = (u=1f)(v) = flvu™?). O

The constructions are functorial. A morphism f : M — M’ of A[P;]-modules, being
also A[P_]-equivariant induces a morphism Ind}p (f): MP — M'F of A[P]-modules. On
the other hand, M ¥ is a module over the non unital ring C°(N, A) through the map Res.
The morphism Ind5 (f) is C°(N, A)-equivariant. Since Res is P-equivariant , it suffices

to prove that Indi (f) respects Ry = o o evg which is obvious.

3.5 P-equivariant sheaf on N
We formulate now the proposition [3.17]in the language of sheaves.

Theorem 3.23. One can associate to an étale A[Py]-module M, a P-equivariant sheaf
Sy of A-modules on the compact open subsets U C N, with

- sections My on U,

- restrictions Resg for any open compact subset V C U,

- action f = bf =Respy(bf) : My — Myy of be P.
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Proof. a) Resg is the identity on My = Resy (M) because Resy is an idempotent.

b) Res}y o Resy, = Resy, for compact open subsets W € V' C U C N. Indeed, we have
Resy o Resy = Resy on M.

c) If U is the union of compact open subsets U; C U for i € I, and f; € My,
satisfying Resgijj(fi) = Resgijj (f;) for 4,5 € I, there exists a unique f € My such
that Resgi(f) = fiforalli eI

cl) True when (U;);es is a partition of U because I is finite and Resy is the sum of
the orthogonal idempotents Resy,.

¢2) True when [ is finite because the finite covering defines a finite partition of U by
open compact subsets V; for j € J, such that V; N U; is empty or equal to V; for all
1€ 1,5 € J . By hypothesis on the f;, if V; C U;, then the restriction of f; to V; does not
depend on the choice of 4, and is denoted by ¢;. Applying c1), there is a unique f € My
such that Resy, (f) = ¢; for all j € J. Note also that the V; contained in U; form a finite
partition of U; and that f; is the unique element of My, such that Resy, (f;) = ¢; for
those j. We deduce that f is the unique element of My such that Resy, (f) = f; for all
iel.

¢3) In general, U being compact, there exists a finite subset I’ C I such that U is
covered by U; for i € I'. By ¢2), there exists a unique fir € My such that f; = Resy, (f1/)
for all i € I'. Let 7' € I not belonging to I’. Then the non empty intersections U; N U;
for j € I’ form a finite covering of U;s by compact open subsets. By ¢2), fis is the unique
element of My, such that Resy,, v, (f;) = Resy, nu; (fi) for all non empty Uy NU;. The
element Resy,, (f1+) has the same property, we deduce by uniqueness that f; = Resy, (f1/).

d) Let f € My. When b = 1 we have clearly 1(f) = f. For b, € P, we have
(b)) (f) = Resqy).u((b0')f) = Resp .0y (b(b'f)) = b(V'f). For a compact open subset
V C U, we have bo Resy o Resyy = Respy obo Resy in End 4 M hence bResg = Resy.v b.

O

Proposition 3.24. Let H be a topological group acting continuously on a locally compact
totally disconnected space X. Any H-equivariant sheaf F (of A-modules) on the compact
open subsets of X extends uniquely to a H-equivariant sheaf on the open subsets of X.

Proof. This is well known. See [4] §9.2.3 Prop. 1.
O

Remark 3.25. The space of sections on an open subset U C X is the projective limit of
the sections F (V') on the compact open subsets V of U for the restriction maps F (V) —
FV') for V' C V.

By this general result, the P-equivariant sheaf defined by M on the compact open
subsets of N (theorem 7 extends uniquely to a P-equivariant sheaf Sy on (arbitrary
open subsets of) N. We extend the definitions to arbitrary open subsets U C N.
We denote by Resg the restriction maps for open subsets V' C U of N, by Resy = Res{}[
and by My = Resy(MP). In this way we obtain an exact functor M — (My)y from
M (P )¢ to the category of P-equivariant sheaves of A-modules on N. Note that for a
compact open subset U even the functor M — My is exact.

Proposition 3.26. The representation of P on the global sections of the sheaf Sy is
canonically isomorphic to M* .

Proof. We have the obvious P-equivariant homomorphism

MP (Resv)v My — l'glMU .
U
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The group N is the union of s7% Ny = s *Nys* for k € N. Hence My = r&lk Mpy_,.In
the s-model of M we have Resg-« n, = R_j and by the lemma the morphism

[ (Resg—r ny (f))ken MP = My
is bijective. O

Corollary 3.27. The restriction Resg : My — My from the global sections to the
sections on an open compact subset U C N 1is surjective with a natural splitting.

Proof. Tt corresponds to an idempotent Resyy = Res(1y) € Enda(M7T). O

3.6 Independence of N,

Let U C N be a compact open subgroup. For n € N and ¢ € L, the inclusion ntUt~' c U
is obviously equivalent to n € U and tUt™' C U. Hence the P-stabilizer Py = {b €
P | b.U C U} of U is the semi-direct product of U by the L-stabilizer Ly of U. As the
decreasing sequence (N = s¥Nys™*)ren forms a basis of neighborhoods of 1 in N and
N = U,ezN_,, the compact open subgroup U C N contains some N and is contained in
some N_,.. This implies that the intersection Ly N sV is not empty hence is equal to s@
where sy = s*U for some ky > 1. The monoid Py = ULy and the central element sy of
L satisfy the same conditions as (P = NgLy,s), given at the beginning of the section
Our theory associates to each étale A[Py]-module a P-equivariant sheaf on N.

The subspace My ¢ MF (deﬁnition is stable by Py because boResy = Resy. 7 ob
for b € P and Myy = Resp.y(M) C Resy(M) = My. As My = ©yejwr.oyuMyu for
t € Ly the A[Py]-module My is étale.

Proposition 3.28. The P-equivariant sheaf Sy on N associated to the étale A[Py]-
module M is equal to the P-equivariant sheaf on N associated to the étale A|Pyl-module
My .

Proof. For b € Py we denote by ¢y the action of b on My and by ¥y the left inverse
of PU,b with kernel MUfb‘U~ We have MU = Mb.U (S MUfb,U and for fU € MU,

(22) wup(fv) = bfu, Yus(fu) = b ' Respu(fu) s (pupotvy)(fu) = Respu(fv) .

By the last formula and the remark the sections on b.U and the restriction maps
from My to My in the two sheaves are the same for any b € Py. This implies that
the two sheaves are equal on (the open subsets of) U. By symmetry they are also equal
on (the open subsets of) Ny. The same arguments for arbitrary compact open subgroups
U, U’ C N imply that the P-equivariant sheaves on N associated to the étale A[Py]-
module My and to the étale A[Py/]-module My are equal on (the open subsets of) U
and on (the open subsets of) U’. Hence all these sheaves are equal on (the open subsets
of) the compact open subsets of N and also on (the open subsets of) N. O

3.7 Etale A[P,]-module and P-equivariant sheaf on N

Proposition 3.29. Let M be an A[Py]|-module such that the action ¢ of s on M is étale.
Then M is an étale A[Py]-module.

Proof. Let t € L. We have to show that the action ¢; of t on M is étale. As L =
L, sV with s is central in L, there exists k € N such that s*¢~! € L,. This implies
©F = @1 0@ in Enda(M) and s¥Nos™* C tNot~!. As ¢ is injective, ¢; is also
injective. For any representative system J(tNot~1/s¥ Nos™*) of tNgt =1 /s* Nys~* and any

representative system J(No/tNot™1) of No/tNot~!, the set of uv for u € J(No/tNot™1)
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and v € J(tNot~1/s¥ Nys™F) is a representative system J(Ng/s*Ngs=*) of Ny/s*Nos~F.
Let 1 be the canonical left inverse of . We have

id= Z U o Z vopfoyFov toy™?

u€J(No/tNot—1) vEJ(tNot—1/sk Nos—Fk)

= E U o E VO Q4 O P14k oypFovtou!

u€J(No/tNot—1) vEJ(tNot—1/skNys—F)

= Z uwo o Z vo g o ov ) ou Tt

u€J(No/tNot—1) vEJ(No/t—1ts* Nos—Fkt)

We deduce that ¢, is étale of canonical left inverse 1, the expression between parentheses.
O

Corollary 3.30. An A[Py]-submodule M' C M of an étale A[Py]-module M is étale if
and only if it is stable by the canonical inverse ¥ of .

Proof. If M' is 1-stable, for m’ € M’ every m, ; belongs to M’ in (12). Hence the action
of s on M’ is étale, and M’ is étale by Proposition [3.29 O

Corollary 3.31. The space S(Ny) of global sections of a P -equivariant sheaf S on Ny
is an étale representation of Py, when the action ¢ of s on S(Ny) is injective.

Proof. By proposition it suffices to show that S(No) = @yer(nNy/sngs—1)US(S(No))-
But this equality is true because Ny is the disjoint sum of the open subsets usNys~! =
us. Ny and S(us.Ng) = us(S(Ny)). O

The canonical left inverse 1 of the action ¢ of s on S(Ny) vanishes on S(usNys™1)
for u # 1 and on S(sNgs~!) is equal to the isomorphism S(sNgs~1) — S(Np) induced by
-1
s

Theorem 3.32. The functor M — Spr is an equivalence of categories from the abelian
category of étale A[Pi]-modules to the abelian category of P-equivariant sheaves of A-
modules on N, of inverse the functor S — S(Ny) of sections over Ny.

Proof. Let S be a P-equivariant sheaf on N. By the corollary the space S(Ng) of
sections on Ny is an étale representation of P, because the action ¢ of s on S(INVg) is
injective.

We show now that the representation of P on the space S(IV).. of compact sections on N
depends uniquely of the representation of P, on S(Ny). The representation of N on S(N),
is defined by the representation of Ny on S(Ny), because S(N). = @yes(n/Ny)S(uNg) and
S(ulNg) = uS(Np) for u € N. The group P is generated by N and L,. For ¢t € L, the
action of t on S(N), is defined by the action of N on S(N). and by the action of ¢ on
S(Np), because tS(ulNg) = tut~*tS(No) with tut=! € N for u € N.

We deduce that the A[P]-module S(N). is equal to the compact induced representation
S(No)’, and that the sheaves S and Ss(,) are equal.

Conversely, let M be an étale A[Py]-module. The A[P;]-module Sy(Np) of sections
on Ny of the sheaf Sys is equal to M (Theorem .

O
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4 'Topology

4.1 Topologically étale A[P,]-modules

We add to the hypothesis of section[3.2) the following

a) A is a linearly topological commutative ring (the open ideals form a basis of neigh-
borhoods of 0).

b) M is a linearly topological A-module (the open A-submodules form a basis of
neighborhoods of 0), with a continuous action of Py

P, xM—M
(b,x2) — wp(x) .

We call such an M a continuous A[Py]|-module. If M is also étale in the algebraic sense
(definition and the maps )y, for t € L, are continuous we call M a topologically
étale A[P.]-module.

Lemma 4.1. Let M be a continuous A[Py]-module which is algebraically étale, then:
(i) The maps 1y fort € Ly are open.
(i1) If v =g is continuous then M is topologically étale.

Proof. (i) The projection of M = My @ M; onto the algebraic direct summand M, (with
the submodule topology) is open. Indeed let V' C M be an open subset, then MoN(V + M)
is open in My and is equal to the projection of V. We apply this to M = ¢(M) & Ker 1),
and to the projection ¢y o ¢;. Then we note that 1, (V) = ¢; * (s 0 ¥ ) (V).

(ii) Given any t € Ly we find ¢ € Ly and n € N such that t't = s™. Hence
Py = Py 0Py = Y™ is continuous by assumption. As 1y is surjective and open, for any
open subset V' C M we have ¥; 1(V') = 1y (¢ 0 )~ (V) which is open. O

Lemma 4.2. (i) A compact algebraically étale A[P]-module is topologically étale.
(ii) Let M be a topologically étale A[Py]-module. The P_-action (b1, m) > p(m) :
P_xM — M on M is continuous.

Proof. (i) The compactness of M implies that

M =@ (M) ® @ wpy (M)
uE(NoftNotfl)

is a topological decomposition of M as the direct sum of finitely many closed submod-
ules. It suffices to check that the restriction of ¥ to each summand is continuous. On all
summands except the first one v; is zero. By compactness of M the map ¢; is a home-
omorphism between M and the closed submodule ¢;(M). We see that 1;|p:(M) is the
inverse of this homeomorphism and hence is continuous.

(ii) Since Py is open in P_ = LI_1P0 we only need to show that the restriction of
the P_-action to t~*Py x M — M, for any t € L, is continuous. We contemplate the
commutative diagram

tilpo XM———M

t~><idl th

Pyx M M

where the horizontal arrows are given by the P_-action. The FPy-action on M induced
by P_ coincides with the one induced by the P,-action. Therefore the bottom horizontal
arrow is continuous. The left vertical arrow is trivially continuous, and 1, is continuous
by assumption. O
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Lemma 4.3. For any compact subgroup C C Py, the open C-stable A-submodules of M
form a basis of neighborhoods of 0.

Proof. We have to show that any open A-submodule M of M contains an open C-stable
A-submodule. By continuity of the action of P, on M, there exists for each ¢ € C, an open
A-submodule M, of M and an open neighborhood H. C Py of ¢ such that ¢, (M,.) C M
for all x € H.. By the compactness of C, there exists a finite subset I C C such that
C = Ueer(H. N C). By finiteness of I, the intersection M"” := N.e; M. C M is an open
A-submodule such that M’ := 37 - p.(M") C M. The A-submodule M’ is C-stable
and, since M"” C M’ C M, also open. O

Let M be a topologically étale A[P;]-module. Since Py is open in P the A-module
M? is a submodule of the A-module C(P, M) of all continuous maps from P to M.
We equip C(P, M) with the compact-open topology which makes it a linear-topological
A-module. A basis of neighborhoods of zero is given by the submodules C(C, M) :=
{f € C(P,M) |f(C) C M} with C and M running over all compact subsets in P
and over all open submodules in M, respectively. With M also C(P, M) is Hausdorff. It
is well known that the regular action of P on C(P, M) is continuous (see for instance
Proposition i) for a proof). Therefore MT is characterized inside C'(P, M) by closed
conditions and hence is a closed submodule. Similarly, IndiyiN (M) and Ind%0 (M) are closed
submodules of C(s* M) and C(N, M), respectively, for the compact-open topologies.
Clearly the homomorphisms of restricting maps (proposition MP — IndiZ,N (M)
and M¥ — Indj, (M) are continuous.

Lemma 4.4. The restriction maps M¥ — Ind{iN(M) and MY — Ind%o (M) are topo-
logical isomorphisms.

Proof. The topology on M* induced by the compact-open topology on the s-model
7
Ind_~ M is the topology with basis of neighborhoods of zero

Bim = {feMP | f(s™) eMforall —k<m<k},
for all k£ € N and all open A-submodules M of M. One can replace By a by
Crom = {feM” | f(s") e M},

because By a4 C Ck amq and conversely given (k, M) there exists an open A-submodule
M’ C M such that ™ (M') C M for all 0 < m < 2k as v is continuous (lemma [1.2)),
hence Ck_/\/[/ C Bk,M~

The topology on M* induced by the compact-open topology on the N-model Ind%0 M
is the topology with basis of neighborhoods of zero

Dem = {feM”| f(N_x) C M},

for all (k, M) as above.

We fix an auxiliary compact open subgroup P C Fy. It then suffices, by Lemma
to let M run, in the above families, over the open A[P/]-submodules M of M.

Let C' C P be any compact subset and let M be an open A[P§]-submodule of M. We
choose k € N large enough so that Cs~% C P_. Since Cs~* is compact and P} is an open
subgroup of P we find finitely many by, ..., b,, € Py such that Cs~* C b7 ' PjuU...Ub,' P}.
The continuity of the maps 1, implies the existence of an open A[P}]-submodule M’ of
M such that ¢y, (M’) C M for any 1 < i < m. We deduce that

Crm C C(| by Pys™, M) c C(C, M) .
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Furthermore, by the continuity of the action of P, on M, there exists an open submodule
M such that 35, 7 n, /n) V9" (M”) C M. The second part of the formula then
implies that

D € Cpopm -

O
The maps evg : MT — M and o : M — M?T are continuous (section [3.3)). We denote

by Endy"™ (M) C Enda(M) and E™ C E := Enda(M?T) the subalgebra of continuous
endomorphisms. We have the canonical injective algebra map

fr—ogofoevyg Endfqom(M) _y [eont

Proposition 4.5. Let M be a topologically étale A[Py]-module.
(i) If M is complete, resp. compact, the A-module MT is complete, resp. compact.
(ii) The natural map P x MY — MY is continuous.

(iii) Res(f) € E<™ for each f € C°(N, A) (proposition[3.17).

Proof. (i) If M is complete, by [3] TG X.9 Cor. 3 and TG X.25 Th. 2, the compact-open
topology on C(P, M) is complete because P is locally compact. Hence, M as a closed
submodule is complete as well.

If M is compact, the s-model of M* is compact as a closed subset of the compact
space MY, Hence by Lemma MPT is compact.

(ii) Tt suffices to show that the right translation action of P on C(P, M) is continuous.
This is well known: the map in question is the composite of the following three continuous
maps

PxCP,M)— PxC(PxP M)
(b, f) — (b, (2, 9) = f(yz))

P x C(P x P,M)— P x C(P,C(P,M))
(b, F)— (byz = [y = F(z,9)]) ,
and

P x C(P,C(P,M)) —s C(P, M)
(b, @) — ©(b) ,

where the continuity of the latter relies on the fact that P is locally compact.
(iii) Tt suffices to consider functions of the form f = 1y, for some b € P. But then
Res(f) = bo g oevgob™! is the composite of continuous endomorphisms. O

4.2 Integration on N with value in End{™(M7T)
We suppose that M is a complete topologically étale A[P.]-module.

We denote by £°°™ the ring of continuous A-endomorphisms of the complete A-module
MPT with the topology defined by the right ideals

Bt = Homf;{mt(MP,E)

for all open A-submodules £ C MT.

Lemma 4.6. E°™ is a complete topological Ting.
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Proof. Tt is clear that the maps (z,y) — = —y and (z,y) — z oy from E" x E<nt o
Econt are continuous, i.e. that E<°™ is a topological ring. The composite of the natural
morphisms

<_

Econt - lim Econt/Ezont N I-&HHomiont(MP, MP/,C)
L L

is an isomorphism (the natural map M — @1 - MY /L is an isomorphism), hence the two

morphisms are isomorphisms since the kernel of the map E™ — Hom%"™ (M* M /L)
is E%"™. We deduce that E°™ is complete. O

Definition 4.7. An A-linear map C°(N,A) — E“™ is called a measure on N with
values in E™.

The map Res is a measure on N with values in E°°™ (proposition [4.5).
Let C.(N, E<™) be the space of compactly supported continuous maps from N to

Ecmt. We will prove that one can “integrate” a function in C.(N, E<") with respect to
a measure on N with values in E",

Proposition 4.8. There is a natural bilinear map
C.(N, E™) x Hom4(C>°(N, A), E™) — [t

UA)HtAfdk

Proof. a) Every compact subset of N is contained in a compact open subset. It follows
that C.(N,E®") is the union of its subspaces C(U, E®™) of functions with support
contained in U, for all compact open subsets U C N.

b) For any open A-submodule £ of MT | a function in C(U, E°"/E%®") is locally
constant because E®"™/E®™ is discrete. An upper index co means that we consider
locally constant functions hence

C(U, Econt/Ezont) — COO(U, Econt/Ezont) — COO(U, A) ®A Econt/Ez(mt .
There is a natural linear pairing

(COO(U’ A) ®A Econt/Ezont) X HOIHA(COO(U, A)7Econt) N Econt/Ezont
(fox,\) — zA(f) .

Note that E™ /ES™ is a right E“"-module.

c) Let f € C.(N, E") and let A € Homa(C°(N, A), E«°™). Let U C N be an open
compact subset containing the support of f. For any open A-submodule L of M* let
fr € C(U, B /E®™) be the map induced by f. Let

/ f[l d\ c Econt/Ezont
U

be the image of (fz,A) by the natural pairing of b). The elements [;; fz dA combine in
the projective limit E°™ = lim . Ent [E@™ to give an element [, f dA € E®". One

checks easily that fU f dX does not depend on the choice of U. We define

Afw = Afw
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We recall that J(N/V) is a system of representatives of N/V when V' C N is a compact
open subgroup.

Corollary 4.9. Let f € C.(N, E®™) and let X be a measure on N with values in E<™.
Then

im S 0) AMLy) = /N f

V= iy
limit on compact open subgroups V. .C N shrinking to {1}.
Proof. We choose an open compact subset U C N containing the support of f. Let L be

an open o-submodule of M7* and a compact open subgroup V C N such that uV C U
and f, (proof of the proposition is constant on uV for all w € U. Then fU fr d\is

the image of
Y S Alw)
veJ(N/V)

by the quotient map E" — Econt | peont, O
Lemma 4.10. Let f € C.(N,E®™) be a continuous map with support in the compact
open subset U C N, let A be a measure on N with values in E°™, and let £L C MT be

any open A-submodule. There is a compact open subgroup Vy; C N such that UV, = U
and

/ fluvd)\ — f(u)A(luv) S Ezont
N
for any open subgroup V- C Vp and any u € U.

Proof. The integral in question is the limit (with respect to open subgroups V' C V) of

the net
> (fluv) = f)A(Luwvr) -

vweJ(V/V")
Since E§°™ is a right ideal it therefore suffices to find a compact open subgroup V; C N
such that UV, = U and
fluv) — f(u) € EE™ for any u € U and v € V.
We certainly find a compact open subgroup V C N such that UV = U. The map

UxV — B
(w,v) = fluv) — f(u)

is continuous and maps any (u, 1) to zero. Hence, for any u € U, there is an open neigh-
borhood U,, C U of w and a compact open subgroup V,, C V such that U, x V,, is mapped
to F¢"t. Since U is compact we have U = U, U...UU,, for finitely many appropriate
u; € U. The compact open subgroup V; :=V,, N...NV,, then is such that U x V. is
mapped to B¢, O

Let C(N, E<™) be the space of continuous functions from N to E<°"¢. For any contin-
uous function f € C(N, E®™) for any compact open subset U C N and for any measure
A on N with values in E°°™ we denote

/deA ::/NflUdA

where 17 € C*°(U, A) is the characteristic function of U hence f1y € C.(N, E“™) is the
restriction of f to U. The “integral of f on U” (with respect to the measure \) is equal
to the “integral of the restriction of f to U”.
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Remark 4.11. For f € C.(N, E“") and ¢ € C2°(N, A) we have

/qubdRes = /Nqbdees = /NdeesoRes(@.

Proof. This is immediate from the construction of the integral and the multiplicativity of
Res. O

5 G-equivariant sheaf on G/P

Let G be a locally profinite group containing P = N x L as a closed subgroup satisfying
the assumptions of section [3.2 such that

a) G/P is compact.

b) There is a subset W in the G-normalizer Ng(L) of L such that

— the image of W in N¢(L)/L is a subgroup,
— @ is the disjoint union of PwP for w € W.

We note that PwP = NwP = PwN.
¢) There exists wy € W such that NwP is an open dense subset of G. We call

C := NwoP/P

the open cell of G/P.
d) The map (n,b) — nweb from N x P onto NwgP is a homeomorphism.

Remark 5.1. These conditions imply that
G = PPP = C(w)C(wy ')
where P := woPwy " and C(g) = PgP for g € G.

Proof. The intersection of the two dense open subsets gC and C in G/P is open and not
empty, for any g € G. O

The group G acts continuously on the topological space G/ P,

G x G/P - G/P
(g,2P) — gzP .
For n,x € N and t € L we have ntzwoP = ntxt~'woP = (nt.x)woP hence the action

of P on the open cell corresponds to the action of P on N introduced before proposition
ie. the homeomorphism

N —C, u+rxy :=uwoP

is P-equivariant.
When M is an étale A[P;]-module, this allows us to systematically view the map Res
in the following as a P-equivariant homomorphism of A-algebras

Res: C°(C, A) — Enda(M7T)

and the corresponding sheaf (theorem as a sheaf on C. Our purpose is to show that
this sheaf extends naturally to a G-equivariant sheaf on G/P for certain étale A[Py]-
modules. When M is a complete topologically étale A[P,]-module we note that also inte-
gration with respect to the measure Res (proposition will be viewed in the following
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as a map
CC(C7 Econt) N Econt

f— / f dRes
c
on the space C,(C, E°™) of compactly supported continuous maps from C to E¢™.

5.1 Topological G-space G/P and the map «

Definition 5.2. An open subset U of G/ P is called standard if there is a g € G such that
gU is contained in the open cell C.

The inclusion gf C NwoP/P is equivalent to U = g~ 'UwyP/P for a unique open
subset U C N. An open subset of a standard open subset is standard. The translates by
G of NowoP/P form a basis of the topology of G/P.

Proposition 5.3. A compact open subset U C G/P is a disjoint union

U=||g 'VwoP/P
gel

where V. C N is a compact open subgroup and I C G a finite subset.

Proof. We first observe that any open covering of U can be refined into a disjoint open
covering. In our case, this implies that U has a finite disjoint covering by standard compact
open subsets. Let g~ *UwoP/P C G/P be a standard compact open subset. Then U =
UyeguV (disjoint union) with a finite set J C U and V' C N is a compact open subgroup.
Then g~ 'UwoP/P = Uperh™'VwoP/P (disjoint union) where I = {u=lg |u e J}. O

For g € G and x in the non empty open subset g~'C N C of G/P (remark , there
is a unique element «(g,z) € P such that, if x = uwoP/P with u € N, then

guwoN = a(g, z)uweN .

We give some properties of the map «.

Lemma 5.4. Let g € G. Then

(i) g7'CNC =C if and only if g € P.

(ii) The map a(g,.): g~'1CNC — P is continuous.

(iii) We have gx = a(g,z)x for x € g7'CNC and we have a(b,z) = b for b € P and
xeCl.

Proof. (i) We have g~'C NC = C if and only if gNwoP C NwoP if and only if g € P.
Indeed, the condition hPwoP C PwgP on h € G depends only on PhP and for w €
W, the condition w PwyP C PwyP implies wwy € PwyP hence wwy € woL by the
hypothesis b) hence w € L.

(i) Let Ny, C N be such that NywoP/P = g~'CNC. It suffices to show that the map
u — afg,uwoP)u : Ny — P is continuous. This follows from the continuity of the maps
u — guwoN : Ny = PwoP/N = PwoN/N and bwoN — b: PwgN/N — P.

(iii) Obvious. O

Lemma 5.5. Let g,h € G and x € (gh)"'CNh='CNC. Then hx € g~'CNC and we have

a(gh,z) = a(g, hz)a(h,z) .
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Proof. The first part of the assertion is obvious. Let * = uwwoP and hx = vwgP with
u,v € N. We have

huwoN = a(h, z)uwoN, govwoN = a(g, hz)vweN, and a(gh, x)uwyN = ghuwyN .

The first identity implies a(h, x)uwoP = vwo P, hence v a(h,z)u € P NwoPwy ' Hy-
pothesis d) easily yields P N wonal = L, hence a(h,z)u = vt for some ¢t € L. Multiply-
ing the second identity on the right by waltwo we obtain gutwoN = a(g, hz)vtwgN =
a(g, hx)a(h, r)uweN. Finally, by inserting the first identity into the right hand side of
the third identity we get

a(gh, z)uwgN = ga(h, x)uweN = gvtwgN = a(g, he)a(h, z)uweN
which is the assertion. O

It will be technically convenient later to work on IV instead of C. For g € G let therefore
N, be the open subset of N such that C N g~'C = NywoP/P. We have N, = N if and
onlyifg € P (lemma (i)). We have the homeomorphism u + 2, := uwoP/P : N = C
and the continuous map (lemma (ii))

Ny — P
ur— alg, Tu)
such that
(23) gu = a(g, z,)ufi(g,u) for some (g, u) € N := woNwy ',
alg, zy)u = n(g,u)t(g,u) for some n(g,u) € N,t(g,u) € L .

Lemma 5.6. Fiz g € G and let V C g~ *CNC be any compact open subset. There exists
a disjoint covering V =V, U...UV,, by compact open subsets V; and points x; € V; such
that

alg,z;)V; C gV forany 1 <i<m.

Proof. We denote the inverse of the homeomorphism u + x,, : N = C by x + u,. The
image C' C P of V under the continuous map = — a(g,x)u, : V — P is compact. As
(lemma [5.4] (iii)) a(g, z)z = gz € gV for any & € V, under the continuous action of P on
C, every element in the compact set C' maps the point wgP into gV'. It follows that there
is an open neighborhood Vy C C of wgP such that CVy C gV'. This means that

alg, )u, Vo C gV for any z € V.

Using the proposition we find, by appropriately shrinking V{, a disjoint covering of V'
of the form V = w1 VyU...Uu,,Vy with u; € N. We put x; := u;woP. O

We denote by Gx := {z € G | X C X} the G-stabilizer of a subset X C G/P and
by
G}::{g€G|g€GX ,9'eGx} = {reG|2X = X}
the subgroup of invertible elements of Gx. If Gx is open then its inverse monoid is open
hence G} is open (and conversely).

Lemma 5.7. The G-stabilizers Gy and GZ, are open in G, for any compact open subset
UucG/P.
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Proof. By proposition it suffices to consider the case where Y = UwoP/P for some
compact open subgroup U C N. As UwygP C G is an open subset containing wg there
exists an open subgroup K C G such that Kwg C UwgP. The set U/(K NU) is finite
because U is compact and (K NU) C U is an open subgroup. The finite intersection
K = ﬂueU/(UmK) uKu™' =, ey uKu™! is an open subgroup of K which is normalized
by U. But K'U = UK’ implies that K'UwyP = UK'wgP C U(UwoP)P = UwyP, and
hence that K’ C Gy. We deduce that Gy, is open. Hence GL is open. O

Remark 5.8. The G-stabilizer of the open cell C is the group P.

Proof. Lemma (i). O
For U C C the map

(24) GyuxU — P , (g,2) = ag,x)

is continuous because, if Y = UwyP/P with U open in N, then the map (g, u) — guwoN :
Gy x U — PwoP/N = PwoN/N is continuous (cf. the proof of lemma (i1)).

5.2 Equivariant sheaves and modules over skew group rings

Our construction of the sheaf on G/P will proceed through a module theoretic interpreta-
tion of equivariant sheaves. The ring C°(C, A) has no unit element. But it has sufficiently
many idempotents (the characteristic functions 1y of the compact open subsets V' C C).
A (left) module Z over C°(C, A) is called nondegenerate if for any z € Z there is an
idempotent e € C°(C, A) such that ez = z.

It is well known that the functor

sheaves of A-modules on C — nondegenerate C°(C, A)-modules

which sends a sheaf S to the A-module of global sections with compact support S.(C) :=
Uy S(V), with V' running over all compact open subsets in C, is an equivalence of cat-
egories. In fact, as we have discussed in the proof of the theorem [3.23] a quasi-inverse
functor is given by sending the module Z to the sheaf whose sections on the compact
open subset V' C C are equal to 1y Z.

In order to extend this equivalence to equivariant sheaves we note that the group P
acts, by left translations, from the right on C2°(C, A) which we write as (f,b) — f°(.) :=
f(b.). This allows to introduce the skew group ring

Ac = CZ(C, A)#P = Gpep bCZ(C, A)
in which the multiplication is determined by the rule
(b f1)(bafa) = bibafi2fa  for by € P and f; € C2(C, A).
It is easy to see that the above functor extends to an equivalence of categories
P-equivariant sheaves of A-modules on C — nondegenerate A¢-modules.

We have the completely analogous formalism for the G-space G/P. The only small
difference is that, since G/P is assumed to be compact, the ring C*°(G/P, A) of locally
constant A-valued functions on G/P is unital. The skew group ring

Ag/p = C¥(G/P, A)#G = Dyeq gC™(G/P, A)
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therefore is unital as well, and the equivalence of categories reads
G-equivariant sheaves of A-modules on G/P =, unital Ag ,p-modules.

For any open subset 4 C G/P the A-algebra C°(U, A) of A-valued locally constant
and compactly supported functions on U is, by extending functions by zero, a subalgebra
of C*(G/P, A). It follows in particular that Ac is a subring of Ag/p. There is a for our
purposes very important ring in between these two rings which is defined to be

A:=Acca/p = Bgea gCﬁ-"J(g*lC nc,A) .

That A indeed is multiplicatively closed is immediate from the following observation. If
supp(f) denotes the support of a function f € C*(G/P, A) then we have the formula

(25)  supp(fYf2) = g~ supp(f1) Nsupp(f2) for g € G and f1, fo € C*°(G/P,A).

In particular, if f; € C°(g; *C N C, A) then
supp(f{” f2) C g3 (97 'CNC) N (92 'CNC) C (qag2)~'CNC.
We also have the A-submodule
Z = 8geq 9C7(C, A)

of Ag,p. Using again one sees that Z actually is a left ideal in Ag,p which at the
same time is a right .A-submodule. This means that we have the well defined functor

nondegenerate A-modules — unital Ag,p-modules
Z s Zou7 .

Remark 5.9. The functor of restricting G-equivariant sheaves on G/P to the open cell
C is faithful and detects isomorphisms.

Proof. Any sheaf homomorphism which is the zero map, resp. an isomorphism, on sections
on any compact open subset of C has, by G-equivariance, the same property on any
standard compact open subset and hence, by the proposition on any compact open
subset of G/P. O

Proposition 5.10. The above functor Z — Z ® 4 Z is an equivalence of categories; a
quasi-inverse functor is given by sending the Ag,p-module Y to )y, o 1vY where V' runs
over all compact open subsets in C.

Proof. We abbreviate the asserted candidate for the quasi-inverse functor by R(Y) :=
Uvce IvY. It immediately follows from the remark that the functor R, which in
terms of sheaves is the functor of restriction, is faithful and detects isomorphisms.

By a slight abuse of notation we identify in the following a function f € C*(G/P, A)
with the element 1f € Ag,p, where 1 € G denotes the unit element. Let V' C C be a
compact open subset. Then 1y Ag,/ply is a subring of Ag,p (with the unit element 1y),
which we compute as follows:

lyAg/ply = Z lygC=(V,A) = Z glg-1yC™(V, A)

geG geG
=Y gC=(g7'VNV,A).
geG

We note:
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— If U CV CC are two compact open subsets then 1y Ag,ply D lyAg/plu.

— Let f € C*(g~'CNC, A) be supported on the compact open subset U C g~'C NC.
Then V := U U gU is compact open in C as well, and U C g~'V N V. This shows
that C°(g7'CNC, A) =Uyce C(g 'V NV, A).
We deduce that
U lyvAg/ply = Accag/p=A .

vce

A completely analogous computation shows that
lvZ=1pA.
Given a nondegenerate A-module Z the map

W(Z0aZ)=1vZ)®aZ=1vA)@aZ — lvZ
lya® z=1y ® lyaz — lyaz

therefore is visibly an isomorphism of 1y,.Ag,ply-modules. In the limit with respect to V'
we obtain a natural isomorphism of A-modules

R(Z®aZ) = Z.
On the other hand, for any unital Ag,p-module Y there is the obvious natural homomor-
phism of Ag,p-modules

ZRaRY) - Y
a@z — az .

It is an isomorphism because applying the functor R, which detects isomorphisms, to it
gives the identity map. O

Remark 5.11. Let Z be a nondegenerate A-module. Viewed as an Ac-module it corre-
sponds to a P-equivariant sheaf Z on C. On the other hand, the Ag,p-moduleY := Z&@4Z

corresponds to a G-equivariant sheaf Y on G/P. We have ?\C = Z, i. e., the sheaf Y
extends the sheaf Z.

We have now seen that the step of going from A to Ag/p is completely formal. On
the other hand, for any topologically étale A[P;]-module M, the P-equivariance of Res
together with the proposition [I.5]imply that Res extends to the A-algebra homomorphism

Res : Ac — End{¥™(MP)

beb — ZboRes(fb).

beP beP

When M is compact it is relatively easy, as we will show in the next section, to further
extend this map from A¢ to A. This makes crucially use of the full topological module
M? and not only its submodule MZ of sections with compact support. When M is not
compact this extension problem is much more subtle and requires more facts about the
ring A.

We introduce the compact open subset Cy := NowoP/P of C, and we consider the
unital subrings

Ao == 1c,Acsple, = Y gC™ (g7 CoNCo, A)
geG

and
Aco = le,Acle, = Y bC™(b7'Co N Co, A)

beP
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of A and Ac, respectively. Obviously Aco € Ap with the same unit element 1¢,. Since
g 1Co N Cy is nonempty if and only if g € NgPNy we in fact have

Ao = Z gC>®(g™'CoNCo, A) .
gENo PNy

The map A[G] — Ag/p sending g to glg/p is a unital ring homomorphism. Hence we
may view Ag/p as an A[G]-module for the adjoint action

G x .Ag/p — Ag/p
(9,y) — (9la/p)y(9la/p)

One checks that Az C A are A[P]-submodules, that Aco C Ay are A[P;]-submodules,
and that the map Res : Ac — E°°"" is a homomorphism of A[P]-modules.

Proposition 5.12. The homomorphism of A[P]-modules
APl ®arp,1 Ao = A
b@y— (bl p)y(bla p)”"
is bijective; it restricts to an isomorphism A[P) ®arp,] Aco =, Ac.

Proof. Since P = s~V P, the assertion amounts to the claim that

A= J (s "gp)Ao(s"1c)p)

n>0
and correspondingly for A¢. But we have
(s™"1g/p)(9C™(97'CoNCo, A))(s"1g p) = s~ "gs"C=((s "g~'s")s "Co N s "Cy, A)
for any n > 0 and any g € G. O

Suppose that we may extend the map Res : Acg — End¥™(M7T) to an A[Py]-
equivariant (unital) A-algebra homomorphism

Ro: Ao — Enda(MT) .

By the above proposition it further extends uniquely to an A[P]-equivariant map
R:A— Enda(M7T).

Lemma 5.13. The map R is multiplicative.

Proof. Using proposition[5.12] we have that two arbitrary elements y, z € A are of the form
y = (s"1g/p)yo(s™1lg/p), 2z = (s "1g/p)20(s"1g/p) with m,n € N and yo,20 € Ap.
We can choose m = n. It follows that
yz = (s~ "la/p)Yoz0(s"1a/p) = (s~ "1lg/p)ro(s™ 1a/p)
with xg := ygzo € Ao, and that
R(yz) = R((s™"1a/p)ro(s"1q/p)) = s~ 0 Ro(wo) 0 s™
=5 ™o Ro(yo) o Ro(z0) o s™
=(s7" o Ro(yo) 0s™) o (s7™ 0 Ro(z0) © s™)
=R(y)oR(z) .
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Note that the images Res(Aco) and Ro(Ap) necessarily lie in the image of End4 (M) =
Enda(Res(1c,)(MT)) by the natural embedding into Enda(M7T). This reduces us to
search for an A[Py]-equivariant (unital) A-algebra homomorphism

Ro : .A() — EndA(M)

which extends Res | Acg. In fact, since for g € NgPNy and f € C>®(g71CyNCoy, A) we have
gf = (glg-1conc,)(1f) with 1f € Ago it suffices to find the elements

Mg =Ro(91l4-1¢,nc,) € Enda(M) for g € NoPNy .
Note that P, = NoL. is contained in NgPNy = NoLN Ny.

Proposition 5.14. We suppose given, for any g € NoPNy, an element Hy € Enda(M).
Then the map

Ro : Ao — End (M)
Z gfg — Z Hg ores(fy)
gEN()FNU gENoFNO

is an A[Py]-equivariant (unital) A-algebra homomorphism which extends Res|Aco if and
only if, for all g,h € NgPNy, b € PN NoP Ny, and all compact open subsets V C Cy, the
relations

H1. res(ly) oHy = Hgores(ly-1pnc,)
H2. HgoHp =Hgn ores(lign)-1conh-1concy) »
H3. My =bores(ly-1¢,nc,) -
hold true. When H1 is true, H2 can equivalently be replaced by

Hg o Hh S th o I‘eS(lh—lcomco) .
Proof. Necessity of the relations is easily checked. Vice versa, the first two relations imply
that R is multiplicative. The third relation says that R extends Res |Aco.

The last sentence of the assertion derives from the fact that we have
Hgn ores(1(gn)-1conn-1conco) = Hagn 0 res(Ligny-1c,ne,) © res(ln-1c,nc, )
= th o res(lhflcomco)

since Hyp o res(1gh)-1¢,nc,) = Hgn by the first relation.
The P,-equivariance is equivalent to the identity

Ro((clg p)afy(cla p) ™) = e 0 Rolgfy) © e

where ¢ € Py and f, is any function in C*°(¢g='Cy N Cp). By the definition of Ry and the
P, -equivariance of res the left hand side is equal to

Hcgc*1 O Yo res(fg) ° T/)c
whereas the right hand side is
we 0 Hgores(fq) 0. .

Since 1. is surjective and res(f,;) = res(1,-10,nc,)ores(fy) we see that the P, -equivariance
of Ry is equivalent to the identity

Hege—1 0 @eores(lg-10nc,) = Pe © Hg ores(lg-105nc,) -

But as a special case of the first relation we have H4 o res(1,-1¢,n¢,) = Hq. Hence the
latter identity coincides with the relation

7-[cgc*1 O Pec © I‘eS(lg—lcoch) = Pc© Hg .

This relation holds true because ¢. = H. and by the second relation H.go-1 0 He = Heg
and HeoHg = Heg ores(ly-10nc,)- O
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5.3 Integrating o when M is compact

Let M be a compact topologically étale A[P,]-module. Then M’ is compact, hence the
continuous action of P on M¥ (proposition |4.5)) induces a continuous map P — E°",

We will construct an extension Res of Res to Accq/p by integration. For any g € G,
we consider the continuous map

g g cnc —>a(g") P — Ec™

We introduce the A-linear maps
p i A=Accap — CeC, Eeonty

ngg — Zagfg.

geG geG

and
f{\e/s : AZ.Accg/p — Eeont
a — /p(a)dReS .
c

For b € P the map «y is the constant map on C with value b (lemma iii). It follows
that s
Res| Ac = Res .

is an extension as we want it.

Theorem 5.15. Res is a homomorphism of A-algebras.

Proof. Let g,h € G and let V,; and V}, be compact open subsets of g~'CNC and h='CNC,
respectively. We have to show that

Res((glv, ) (hlv;)) = Res(glv,) o Res(hly, )

holds true. This is, by definition of f{\er, equivalent to the identity
/ agnlp-1v,ny, dRes = / agly, dRes o / aply, dRes .
c c ' c
Let Uy, Uy, be the open compact subsets of N corresponding to V;, V, and let f be the
map ayly, , seen as a map on N with support on U,. Let £ C MY be an open A-submodule

and let V be chosen as in lemma with A = Res. If we let Ny, = a(h,z,).(vNy),
then the P-equivariance of Res combined with remark yield, for v € Uy and k > 1

/ozglvngesoa(h,xv) o Res(1yn,) :/ fdRes o Res(1n, ) o a(h,x,)
c N

:/(lem)dResoa(h,:zrv).
N

Writing a(h,x,) = nyt, with n, € N and ¢, € L, for k large enough we have
Uty Nity, b C Uy and t,Nit; ' C Vi for all v € Uy, (by compactness of (t,)yer, ). Since

Nk = (a(h, zy).0)t,Nit, b, we deduce that Ni ,NU, # 0 < a(h,z,).v € Uy < hx, €V,
and hence, by lemma for all sufficiently large k we have, uniformly in v € Uy,

/ fln, ,dRes = 1, cp-1v,nv, fla(h, zy).0) o Res(1n, ) =
N

= 1m,,€h71VgﬂVh,Oé(97 hl‘v) O Res(lNky/u) (mod Ezont) ]
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Combining the last two relations with lemma[5.5] and using again the P-equivariance
of Res, we obtain for k£ large enough and for all v € Uy

/ agly,dResoa(h,z,) oRes(lyn, ) = 1zlyeh71anVha(gh, 7,)oRes(l,n,) (mod ES™) .
. .
The result follows by summing over v and letting k — oo (Cor. . O

5.4 (G-equivariant sheaf on G/P

Let M be a compact topologically étale A[P;]-module. We briefly survey our construction
of a G-equivariant sheaf on G/P functorially associated with M.
From proposition we obtain an A-algebra homomorphism

Res : C°(C, A)#P — E<n

which gives rise to a P-equivariant sheaf on C as described in detail in the theorem [3.23]
By theorem [5.15] it extends to an A-algebra homomorphism

f/{evs : .Accg/p — Bt

This homomorphism defines on the global sections with compact support M of the
sheaf on C the structure of a nondegenerate A, p-module. The latter leads, by propo-
sition to the unital C2°(G /P, A)#G-module Z ® 4 MF which corresponds to a G-
equivariant sheaf on G/P extending the earlier sheaf on C (remark [3.24). We will denote
the sections of this latter sheaf on an open subset Y C G/P by M K U. The restric-
tion maps in this sheaf, for open subsets V C U C G/P, will simply be written as
Resft : MXU — MXV.

We observe that for a standard compact open subset 4 C G/P with g € G such that
gU C C the action of the element g on the sheaf induces an isomorphism of A-modules
MRU S M XgU = My,. Being the image of a continuous projector on M ¥ (proposition
, Mgy is naturally a compact topological A-module. We use the above isomorphism
to transport this topology to M X U. The result is independent of the choice of g since,
if g = hid for some other h € G, then hid C (gh~!)"1C N C and, by construction, the
endomorphism gh~! of M X hlf is given by the continuous map ﬁves(ghfllhu).

A general compact open subset U C G/P is the disjoint union U = Uy U...UU,, of
standard compact open subsets U; (proposition . Weequip MXU =MXU &...D
M XU, with the direct product topology. One easily verifies that this is independent of
the choice of the covering.

Finally, for an arbitrary open subset U C G/P we have M XU = @M XV, where V
runs over all compact open subsets V C U, and we equip M XU with the corresponding
projective limit topology.

It is straightforward to check that all restriction maps are continuous and that any
g € G acts by continuous homomorphisms. We see that (M XU )y, is a G-equivariant sheaf
of compact topological A-modules.

Lemma 5.16. For any compact open subsetUd C G /P the action GZ{ x(MRU) — MRU
of the open subgroup G}, (lemma on the sections on U is continuous.

Proof. Using proposition it suffices to consider the case that &/ C C. Note that GL
acts by continuous automorphisms on M XU = M. By the map

GL xU — E™

(9,2) = ay(z)
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is continuous. Hence ([3] TG X.28 Th. 3) the corresponding map
Gl — CcU,E=™)

is continuous, where we always equip the module C'(U, E<™) of E°°"-valued continuous
maps on I/ with the compact-open topology. On the other hand it is easy to see that, for
any measure A on C with values in E°°™, the map

/ LA 2 C(U E™) — Bt
u

is continuous. It follows that the map
GL N Econt
g — Res(gly)

is continuous. The direct decomposition M = My & Me_y gives a natural inclusion map
End%"™ (M) — E™ through which the above map factorizes. The resulting map

Gf; — End™(My)

is continuous and coincides with the GL—action on My. As My, is compact this continuity
implies the continuity of the action G’L X My — My. O

The same construction can be done, starting from the compact topologically étale
A[Py]-module My, for any compact open subgroup U C N.

Proposition 5.17. Let U C N be a compact open subgroup. The G-equivariant sheaves
on G/ P associated to (No, M) and to (U, My) are equal.

Proof. As the P-equivariant sheaves on the open cell associated to (N, M) and to (U, My)
are equal by proposition [3.28 and as the function o, depends only on the open cell, our
formal construction gives the same G-equivariant sheaf. O

6 Integrating o when M is non compact

Recall that we have chosen a certain element s € Z(L) such that L = L_s% and (N, =
s*Nos™*)rez is a decreasing sequence with union N and trivial intersection. We now
suppose in addition that (N}, := s*kwoNowo_lsk)kez is a decreasing sequence with union
N =woNwy " and trivial intersection.

We have chosen A and M in section We suppose now in addition that M is a
topologically étale A[Py]-module which is Hausdorff and complete.

Definition 6.1. A special family of compact sets in M is a family € of compact subsets
of M satisfying :

€(1) Any compact subset of a compact set in € also lies in €.
€(2) If C1,Cs,...,Ch € € then U, C; is in €, as well.

&€(3) For all C € € we have NoC € €.

C4) M(Q) :=Ugee C is an étale A[Py]-submodule of M.

Note that M is the union of its compact subsets, and that the family of all compact
subsets of M satisfies these four properties.

Let € be a special family of compact sets in M. A map from M(€) to M is called
¢-continuous if its restriction to any C' € € is continuous. We equip the A-module
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Hom&%" (M (€), M) of €-continuous A-linear homomorphisms from M (€) to M with the
¢-open topology. The A-submodules

E(C,M) = {f € Hom5" (M (¢), M): f(C) C M} ,

for any C' € € and any open A-submodule M C M, form a fundamental system of
open neighborhoods of zero in Hom5" (M (€), M). Indeed, this system is closed for finite
intersection by €(2). Since Ny is compact the E(C, M) for C such that NoC C C and
M an A[Ny]-submodule still form a fundamental system of open neighborhoods of zero.
(Lemma and €(3)). We have:

— Hom§"™ (M (€), M) is a topological A-module.

— Hom%™™ (M (€), M) is Hausdorff, since € covers M (€) by €(4) and M is Hausdorff.

— Hom%" (M (<), M) is complete ([3] TG X.9 Cor.2).

6.1 (s,res,@)-integrals

We have the P,-equivariant measure res : C°(Np, A) — End%™ (M) on Np. If M
is not compact then it is no longer possible to integrate any map in the A-module
C(No, End{™ (M)) of all continuous maps on Ny with values in End%"™ (M) against
this measure. This forces us to introduce a notion of integrability with respect to a special
family of compact sets in M.

Definition 6.2. A map F: Ny — Hom%" (M (), M) is called integrable with respect to
(s, res, €) if the limit

= 1i 1
/NU Fdres Jim Z F(u) ores(lyn,) ,

— 00
UGJ(N(]/N)C)

where J(No/Ny) C Ny, for any k € N, is a set of representatives for the cosets in No/N,
exists in HomG" (M (€), M) and does not depend on the choice of the sets J(Ny/Ny).

We suppress € from the notation when € is the family of all compact subsets of M.

Note that we regard res(1,y, ) as an element of End%" (M (€)). This makes sense as the
algebraically étale submodule M (€) of the topologically étale module M is topologically
étale.

One easily sees that the set C***(Ny, Hom5" (M (€), M)) of integrable maps is an
A-module. The A-linear map

/ .dres : C"™(No, HomG™ (M (€), M)) — Hom %™ (M (<), M)
No

will be called the (s, res, €)-integral.

We give now a general integrability criterion.

Proposition 6.3. A map F : Ny — Hom%"" (M(€), M) is (s, res, € )-integrable if, for
any C € € and any open A-submodule M C M, there exists an integer ko, > 0 such
that

(F(u) = F(uv)) ores(lyn,,,) € E(C, M) for any k > ko am, u € Ny, and v € Ni.
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Proof. Let J(No/Ny) and J'(No/Ny), for k > 0, be two choices of sets of representatives.
We put

sip(F) == Z F(u)ores(l,y,) and s (F):= Z F(u')ores(lun,) -

u€J(No/Ny) u'€J’(No/Nx)

Since Hom%°™ (M (€), M) is Hausdorff and complete it suffices to show that, given any
neighborhood of zero E(C, M), there exists an integer ko > 0 such that

sk(F) — sp1(F), sp(F) — s, (F) € E(C,M)  for any k > k.

For w € J(No/Niy1) let @ € J(No/Ny) and v’ € J'(Ny/Ng+1) be the unique elements
such that uNy, = aNy and uNgy1 = u' Ni41, respectively. Then

si(F) = > F(w)ores(luy,,,)

u€J(No/Ni41)
and hence
(26) si(F) — sp+1(F) = > (F(u(u™'aw)) — F(u)) ores(lun,,,) -
u€J(No/Np41)

Since u~1u € N}, it follows from our assumption that the right hand side lies in E(C, M)
for k > ko amq. Similarly

sirt(F) = sia(F) = D> (F(u) = Flu(u™'u))) ores(lun,.,) ;
u€J(No/Nit1)

again, as u~ v’ € Njy1 C Ng, the right hand sum is contained in E(C, M) for k >
ko 0

6.2 Integrability criterion for «

Let Uy C No be the compact open subset such that UgwoP/P = g~ 'CyNCy. This intersec-
tion is nonempty if and only if g € NgP Ny, which we therefore assume in the following.
We consider the map

ag0: No — End¥"™ (M)

N Res(1n,) 0 ag(xy) o Res(ly,) if u e Uy,
0 otherwise

(where we identify End$™ (M) with its image in E°"* under the natural embedding
using that Res(ly,) = 0¢ o evy). Restricting ayo(u) € End{™ (M) to M(€) for
any u € Ny we may view a, o as a map from Ny to End§™ (M (€)) since M (€) is an
étale A[Py]-submodule of M. However, as we do not assume M (€) to be complete, it
will be more convenient for the purpose of integration to regard agy0 as a map into
Hom %™ (M (€), M). We want to establish a criterion for the (s, res, €)-integrability of the
map o.0.

By the argument in the proof of lemma (applied to V = g=1CyNCy) we may choose
an integer kéo) > 0 such that, for any £ > k,go), we have Uy N, C U, and

(27) a(g, z,). ulNy C gU, for any u € U,.
Lemma 6.4. Foruec U, and k > kéo) we have

ago(u) ores(lyn,) = a(g, z4) o Res(lyn, ) -
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Proof. Using the P-equivariance of Res we have

a(g, zy) o Res(lun, ) = Res(la(g,z,).uny ) © @(g, 2u) o Res(1un;,)
= Res(lNo) © Res(la(g,£u).uNk) °© a(g, mu) ° Res(luNk)
= Res(1n,) o a(g, ) o Res(1n,) o Res(lun, )

= ago(u)ores(lyn,)
where the second identity follows from . O

Foru € Uy and k > k:_((,o) we put
(28) Mg, J(No/Ny) = Z a(g,z,) o Res(lun,,) -

w€U,NJ(No/Ny,)

By Lemma each summand on the right hand side belongs to Enda (M (€)). If a0 is
(s, res, €)-integrable, the limit

(29) Hoi= Hm - Houwvo/ny
ZRg ~,R—00

exists in Hom$”™ (M (€), M) and is equal to the (s, res, €)-integral of ag g

(30) / agodres =H, .
No

We investigate the integrability criterion of Prop. [6.3] for the function ag4. We have
to consider the elements

(31) Ag(u, k,v) i= (ag,0(u) = ago(uv)) ores(luny.,,)
forue Uy, k > kéo), and v € Nj. By Lemma we have

Ag(ua kv ’U)

ago(u) ores(lun,) — ago(uv) o res(luyn,)) o res(lun, )
a(g ) o RGS( UNk) - a(g, l‘uv) o Res(lquk-)) o Res(luJVk-H)
a(g; Tu) — a(g, Tuv)) © Res(lun,,, )

(

alg, T ) —oz(g,a:uv))ouORes(lNHl)ou_l

(
= (
=(
=

Recall that Ny, C N is the subset such that NywoP/P = g~'CNC.
Lemma 6.5. For v € Ny and v € N such that uv € Ny we have:
. v € Npgu);
ii. (g, Tyy) = alg, vy )uc(n(g, u), z,)u"t.
Proof. i. Because of gu = (g, z,)un(g,u) we have
a(g, o )un(g,u)v = guv € alg, Ty, ) uvN

and hence
(g, w)vwoP = u (g, y) " talg, Ty ) uvweP € PwyP .

ii. By i. the equation 7(g, u)vwoN = a(n(g,u), x,)vweN holds. Hence
guvwoN = a(g, z)un(g, u)owoN = a(g, zu)ue(n(g, u), z,)vweN

and therefore (g, Ty )uv = alg, T, )ua(i(g, w), T,)v. O
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Let f: Uy, — P be the map u +— «(g, z,)u. The previous computation shows that for
all w € Uy and v € N, we have

(32) Ag(u, k,v) = (f(u) — fluv)v™) o Res(1n,,,)o© u .

Let f(u) = n(g,u)t(g,u), with n(g,u) € Ny and t(g,u) € L. Also, write gu = f(u)n(g, u)

with n(g,u) € N. Since t(g,U,;) C L and n(g,U,) C N are compact subsets, there is
kjél) > kéo) such that

(33) Ay =t(g,U,)s* c Ly, m(g,U,) C N_jo -

Proposition 6.6. For any compact open subgroup Py of Py there is kf)(Pl) > kél) such
that for all k > k{(Py), u € U, and v € Ny,
flu) — fluv)v™! € Nosk*k.gl)(l — Py)Ags7F.

Proof. We abbreviate n(u) = n(g,u) and similarly for ¢(u) and 7(u). Since f(uw)f(u)v =
guv = f(uv)m(uv), we have

flu) = fuv)r™ = fu)(1 —n(u)va(uww) o™t =
= n(u)(1 — t(w)a(w)or(uw) o (w) ().

Since n(u) € Ny, t(u) € s*kgl)Ag and (t(u))uev, is compact, it suffices to prove that for
any compact open subgroup P, of Py we have n(u)vn(uv) o™ € s¥Pys™" for sufficiently
large k. But if v = s¥ngs™*, we can write

a(u)va(uww) o = sk(s_kﬁ(u)sk)no(s_kﬁ(uv)_lsk)ngls_k

kT T -1\ .—k
€s Nk—kél)( U noNk_kgl)’rLO )S .
no€No

The result follows from the compactness of Ny and the fact that the N’s shrink to {1}
as k — oo.
O

Corollary 6.7. For any compact open subgroup Py of Py and k > kgz)(Pl)
AUy, Nig) © Nosh ™5 (1 = Pr) A" No.
Proof. Proposition and relation show that
Ag(Ug, k, Nip) C Nos™ 55" (1= Pr)Ags o s~ 1 o Res(1,,,) o No.

The P-equivariance of Res yields s~**Y oRes(1x,,,) = Res(1n,) 0os™*~1, and this is the
image of ¥**1 € End}™ (M) in End$™ (MT). The result follows. O

This leads to an integrability criterion for a4, which depends only on (s, M, ).
Proposition 6.8. We suppose that (s, M, €) satisfies:

€(5) For any C € € the compact subset (C) C M also lies in €.

%(1) For any C € € such that C = NoC, any open A[Ny|-submodule M of M, and any
compact subset Cy. C Ly there exists a compact open subgroup Py = Py (C, M, Cy) C
Py and an integer k(C, M, Cy) > 0 such that

(34) s (1= P)Cyp*(C) S M for any k > k(C, M, Cy) .
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Then the map ag0: No — Homi‘mt(M(@), M) is (s, res, €)-integrable for all g € NoPNy.

Proof. By the general integrability criterion of Prop. the map «g ¢ is integrable if for
any (C, M) as above, there exists kc g,y > 0 such that

(35) Ag(u, k,v) € E(C, M) for any k > kc a9, u € Ug, and v € Ny.
By (6.7), this is true if ko g > kS (Py) and
(36) s (1 — P AspR T (C) c M|

because NgM = M and NoC = C.
We note that the set C = Ays is contained in L by and is compact, that the

set O = wkél)"’l(C) C M is compact and NyC’ = C’ because the map ) is continuous
and Nytp(C) = ¢p(sNos~1C) = 4(C), and that is equivalent to

sFR (1 — PyCyt R c B(C, M)

By our hypothesis, there exists an open subgroup P; C P, such that this inclusion is
satisfied when k > k" + k(C’, M, C,.). For

(37) ko g = max(k{D + k(C', M, C1), k(P (P1)).

lj is satisfied. By construction, P; depends on wkél)H(C’),M,Ags, hence only on
C, M,g. O

Later, under the assumptions of Prop. [6.8] we will use the argument in the previous
proof in the following slightly more general form: for C, M, C, as in the proposition and
an integer k' > 0 we have

(38) s (1 — PR (C), M, CL))C ek € B(C, M)

for any k > k' + k(¥ (C), M, C).

6.3 Extension of Res

Proposition 6.9. Suppose that (s, M, €) satisfies the assumptions of Prop. gnd that
the (s,res, €)-integral Hy of ago is contained in Enda(M(€)) for all g € NoPNy. In
addition we assume that:

€(6) For any C € € the compact subset (C) C M also lies in €.

T(2) Given a set J(No/Ny) C Ny of representatives for cosets in No/Ny, for k > 1, for
any v € M(€) and g € NgPN, there exists a compact A-submodule Cy 4 € € and a
positive integer ky 4 such that Hy (N, /n,) () € Copg for any k> kg 4.

Then the H, satisfy the relations H1, H2, H3 of Prop.|5.14)

Remark 6.10. The properties €(3),&(5),€(6) imply that for any u € No,k > 1, and
C € € also res(1,n, )(C) lies in €. Indeed, res(l,n,) = uo @F ok oyt

We prove now H1 and H3, which do not use the last assumption. The proof of ii. is
postponed to the next subsection.

Proof. For the proof of H1 let V C Cy be a compact open subset and let Uy, Us be the
compact open subsets of Ny corresponding to V and g~ *VNCy. To prove that res(1y)oH, =
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Hy ores(ly-1pnc, ), it suffices to verify that if & is large enough, then for all u € Uy we
have

(39) Res(1y, ) o a(g, ) o Res(lyn, ) = a(g, x,) o Res(1yn, ) o Res(1y,) -
If Nio = (g, xy).(ulNy), then by P-equivariance of Res, is equivalent to

(40) Res(1y,nn,.. ) © a(g, zu) = alg, zy) o Res(lun,nus) -

Write a(g,z,) = nyt, with n, € N and ¢, € L. If k is large enough, then for all
u € Uy we have Uy Ny, C Uy and Uyt Nyt ' C Uy. Since Ny, = (a(g, xy,).u)ty, Nyt ', we
obtain
UiN Ny # 0 alg,zy)u €Uy < gr, €V

Sz, €9 VNC e uely, < uN, CU;.

Hence (40)) is equivalent to 0 = 0 or to Res(1n, ,)oa(g, zu) = a(g, ) o Res(1yn, ), which
is true as Res is P-equivariant.
H3. For b € PN NyPNy we have

ap0 = constant map on Ny with value res(1le,) o bores(1e,)

and hence
Hy =res(le,) obores(le,) = bores(ly-1¢,nc,) -

6.4 Proof of the product formula

We invoke now the full set of assumptions of Prop. and we prove the product formula
HgoHy = Hgnores(lp-1¢,nc,) -

for g,h € NyPNy. This suffices by Prop. [5.14

Let ko := max(ky”, k", k{0)) + 1 and let k > ko.

As k > kgo) (because k:}(ll) > k,(LO) ), the set U is a disjoint union of cosets uNj.
We choose a set J(Ny/Ny) C Ny of representatives of the cosets in Ny /N and for each
u € J(No/Ni)NUp, aset Jy,(No/Ni—1,) C No of representatives of the cosets in No/Ng_g,
with n(g, u) € Ju(No/Ni—r,) (see (23)).

We write Hy o Hp — Hgn o res(lp-1¢,n¢,) as the sum over u € J(No/Ny) N Uj, of
(41) (Hg oHy — th o Res(lU,L)) o Res(luNk) = Qk,u + b;ﬁu + Cku
where

g :=(Hg © Hn = Mg, 1, (No/Ni—ry) © Hioa(o/ny)) © Res(Luny)
breu =My, (No/Ni_1y) © Hha(No/Ny) — Hgn,a(vo/Ni)) © Res(1y,, ) o Res(Luny,)

o =(Hgn,1(No/Ny) — Hgn) © Res(1y, ) o Res(1un, ).

The product formula follows from the claim that b;, = 0 and that for an arbitrary
compact subset C' € € such that NyC = C, and an arbitrary open A[Ny]-module M C M,
ag.y and ¢y, lies in E(C, M) when k is very large, independently of w.

The claim results from the following three propositions.
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Because (s, M, €) satisfies Prop. we associate to (C, M, g) the integer ko a,g
defined in which is independent of the choice of the J(Ny/Ny). For the sake of
simplicity, we write

(42) M =My gnoym) » 55 = HIT —HP.

By (26), we have, for k > k",

sék) = Z Ag(u, k,vy)

w€UyNJ(No/Niy1)

for some v, € Ni. It follows from (6.7) that, for any given compact open subgroup
P, C Py, we have

(43) s € < Nos" " (1= P)Ags* T Ny >4 for k> kP(Py)

where we use the notation < X >4 for the A-submodule in End 4 (M) generated by X.
We deduce from the proof of Prop. m that sék) € E(C,M) for any k > ko pm,g-

Proposition 6.11. (H, — Hy j(n,/n,)) © Res(lun, ) € E(C, M) for any k> ko a,g.

Proof. When k > 0, ko > max(k — 1,k§°)), v € Uy,v € N we have that Ag(u, k2, v) o
Res(1un, ) is equal either to Agy(u/, ka,v) or to 0. If follows that

S!(sz) oRes(1yn,,) € E(C, M) for any ky > max(k — 1, kc am,9) and k& > 0,

Now we fix k > ko am,4- Note that Res(1,n, )(C) is contained in € by the stability of €

by v, ¢, and uT'. Therefore the sequence (’;’-[_5;162)ORes(luN,c ))&, converges to HgoRes(1yn, )
in Hom5°" (M (€), M). In particular, we have

(Hg — H¥)) o Res(Luw, ) € E(C, M) for any ko > max(k — 1, ko) and k > 0.
The statement follows by taking ke = k. O

This establishes that cg,, lies in E(C, M) when k > kc aq g

Note that the proposition is true also for any other system J'(No/Nj) C Ny of repre-

sentatives for the cosets in Ny/Ny for the same integer ko aq,q. We write ’H;(k) and sfq(k)

for the elements defined in for J'(No/Ny).

Proposition 6.12. There exists an integer ko a,g,hk, € N, independent of the choices
of J(No/Ny) and J'(No/Ny), such that:

i, HEETITRO) o (D) g h=ko) o 1K) ¢ B(CL M), for all k > kepginkg, and the
sequence (’H;(kfko) o Hgk)) converges to Hy o Hy, in Hom G (M(€), M).

ii. (Mg oMy — HE) 0 1™y o Res(Lun, ) € E(C, M), for all k > ke gy -
Proof. i. To prove the first assertion, we write

(44) H/g(k+1—ko) o HELIHU _ ng(k—ko) o ’H;Lk) — H;(k+1—kg) o sgk) + S/g(k—kg) OH,Sk)-

Note that, when k& > kgl), the endomorphisms ”H;(k) and ”Hék) are contained in the A-
module < Nos’“_kél)Ag@[}kNo > 4, because

(g, z4) o Res(lyn, ) = n(g, w)t(g, u)u tusFypru=" C Nosk_kgl)AgwkNo for u € Uy.
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We consider any compact open subgroup P; C Py and we assume k > max(k‘g(f)(Pl) +
ko, k:gz)(Pl)). With we obtain that is contained in
< Nosk"'l_ko_k;l)Agﬂ)k-’_l_koNoSk_kS)(1 — P1)Aps" T Ny >4
+ < Nost—ko=ki" (1 — Py A sypb—Ro L N sk =R Ay Ny > 4 .

Recalling that 1*(No@p®T?(m)) = ¥%(No)®(m) = Nop®(m) for a,b € N and m € M, we
see that this is contained in

(1)
< Noskti=ho—k? A Nysko=kn ' =1(1 — Py) A sy Ny > 4
1)
+ < Nost=ko=ke" (1 = Pr)A,Nosko=5n" Apyp* No > 4 .

Ask+1—ko— kél) > k:ég)(Pl) +1- kél) >1 and as A, C L, we have

—ko—kD ko —k)
Nos"H1=ko =k A Ny € Nys"+17ko ks A

g
and this is contained in
< Nosh+i—ko=hV A sko=ki"=1(1 _ p)A, spb+1Ny >4
+ < Nost=Ro=k (1 — P A, s =R AP N > 4 .

We assume, as we may, that the compact open subgroup P; of P, satisfies tP;t~! C P, for

all t in the compact set Agsk"*ks)*1 of L. Then we finally obtain that is contained
in

< N08k+1—ko_k§1) (1 _ P1)AgSk°_k§11)Ahwk+lNo >4
+ < Nost=ho=k (1 = P A sk Appb N > 4 .
This subset of End 4(M) is contained in E(C, M) when

SRk (1 P A st R At (0) and sFRRY (1 A sRo R A (O)

are contained in E(C, M) because NoC = C and M is an A[Ny]-module. By (38), this is
true when P; is contained in P1(¢k°+kél> (), M, Agsko_k;l)Ah) and k > ke g.h, ko Where

(1)
(45)  keagh = max(k(D (Py) + ko, k{7 (PL), k(045" (C), M, Ags 0" Ay)).

The first assertion of i. is proved. We deduce the second assertion from the following claim
and the last assumption of Prop. 6.9

Let (An)nen and (By,)nen be two convergent sequences in Hom§°™* (M (€), M) with
limits A and B, respectively; assume that (B, )neny and B are in End 4 (M (€)) and that,
for any x € € there exists an A-submodule C € € such that B, (z) € C for any large n.
Then, if the sequence (A,, o B, )nen is convergent, its limit is A o B.

Let D be the limit of the sequence (A, o B,,),. It suffices to show that, for any open
A-submodule M C M and any element z € M (€) we have (D — Ao B)(x) € M. We write

D—AoB=(D—-A,0B,)—(A-—A,)0oB,—Ao(B—-B,).

Obviously (D — A, o B,)(z) € M for large n. Secondly, the elements B, (x) for any large
n are contained in some compact A-submodule C € €, hence also (B — B,,)(z). Moreover
A— A, € E(C,M) for large n. Hence (A — A,) o B,(z) € M for large n. Finally, A
being €-continuous there is an open A-submodule M’ C M such that A(M' N C) C M.
Furthermore (B — By,)(xz) € M'NC for large n. Hence Ao (B — B,,)(z) € M for large n.

ii. This follows from the second assertion in i. together with remark O
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We have now proved that ay, € E(C, M) when k > kc a,g,h,ko-
Proposition 6.13. For u € J(No/Ny) N Uy, we have

(46)  Hgy 1.(No/Nuiy) © Hia(Noyny) © Res(Luny,) = Hgn s (No/ni) © Res(Luny).-
Proof. The left side of is

Z a(g, ) o Res(lyn, ) © a(h,zu) o Res(luny,) -
UeUngu(NO/Nkka)

The right side of is a(gh, x,) o Res(lyn,) if u € J(No/Ni) N U, N Uy, and is 0 if
does not belong to Uyp,. We recall that

alh, z,)u = n(h,u)t(h,u) with n(h,u) € Ny and t(h,u) € L+57k§bl).
It follows that

a(h, 2y )uNgwo P C n(h,u)N,  cywoP C n(h, u)Ny_k,woP.
h

We obtain

alh,z,) oRes(lyn,) if ONg_g, = n(h,u)Nk_pq,

Res(Low, 4, ) oa(h, ) oRes(lun, ) = {0 otherwise.

We check now that u € Uy, MUy if and only if n(h, u) € Uy. Indeed z,, = uwoP/P belongs
to h_lco NCy = thoP/P,

IS (gh)_l(,’o Nh'CyNCy if and only if hz, € g1Co N Co

and hx, = a(h,z,)z, = n(h,w)weP/P. It follows that u € Uy, N Uy if and only if
n(h,u) € Uy. As Jyu(No/Nk—k,) contains n(h,u), we have v = n(h,u) when vNp_p, =
n(h,u)Ng—_k,. We deduce that the left side of is 0 when u does not belong to Uy,
and otherwise is equal to

a(g, hxzy) o a(h, x,) o Res(lyn, ) = al(gh, z,) o Res(lun, ) ,
where the last equality follows from the product formula for o (Lemma . O

We have proved that by, = 0, therefore ending the proof of the product formula.

6.5 Reduction modulo p"

We investigate now the situation that will appear for generalized (¢, I')-modules M, where
the reduction modulo a power of p allows to reduce to the simpler case where M is killed
by a power of p. We will use later this section to get a special family €, in M such that
the (s,res, €;)-integrals H, exist for all g € NoPNy and satisfy the relations H1, H2, H3
of Prop.

We assume now that (A, M) satisfies:

a. A is a commutative ring with the p-adic topology (the ideals p™A for n > 1 form a
basis of neighborhoods of 0) and is Hausdorff.

b. M is a linearly topological A-module with a topology weaker than the p-adic topol-
ogy (a neighborhood of 0 contains some p™M ) and M is a Hausdorff and topological
A[Py]-module as in section @ (we do not suppose that M is complete).
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c. The submodules p" M, for n > 1, are closed in M.

d. M is p-adically complete: the linear map M — @nZI(M/p"M) is bijective.

For all n > 1, we equip M/p™M with the quotient topology so that the quotient map
Pn : M — M/p™M is continuous. The natural homomorphism
M = Lim(M/p"M)

H
n>

[ai

is a homeomorphism, and the natural homomorphism

End " (M) — lim End ™ (M/p" M)

n>1

is bijective. We have:

- For a subset C of M, let C be the closure of C. Then C = fm . p (C) and if C'is
closed, C' = @nxpn(C). If C is p-compact (i.e. p,(C) are compact for all n > 1),
then C' is compact, and conversely (|2] 1.29 Cor. and 1.64 Prop.8).

- An endomorphism f of M which is p-continuous (i.e. the endomorphism f,, induced
by f on M/p™M is continuous for all n > 1) is continuous, and conversely.

- An action of a topological group H on M which is p-continuous (i.e. the induced
action of H on M /p™M is continuous for all n > 1) is continuous, and conversely.

- If the M/p™M are complete for all n > 1, then M is complete.

- The image €, in M/p"M, for all n > 1, of a special family € of compact subsets in
M such that, for all positive integers n,

p"M A M(€) = p" M ()

is a special family. In this case, one has M(<,) = M(€)/p"M(€).

- M is a topologically étale A[P;]-module if and only if M /p™ M is a topologically étale
A[Py]-module, for all n > 1. If we replace “topologically” by “algebraically”, this
is the same proof as for classical (¢,T')-modules (see subsection . The canonical
inverse 1, of the action ¢ of s is continuous if and only if it is p-continuous.

We introduce now our setting which will be discussed in this section.

We suppose that :
- M is a topologically étale A[Py]-module, and M /p™M is complete for all n > 1.

- We are given, for n > 1, a special family &, of compact subsets in M,, = M /p"M
such that €, contains the image of €,,1 in M,, for alln > 1.

Let € be the set of compact subsets C C M such that p,(C) € €, for all n > 1.

Lemma 6.14. € is a special family in M and M(€) = @nE M(e,).
Proof. €(1) It is obvious that a compact subset C’ of C' € € is in € because p,, is continuous
and p,(C") is compact.

&(2) p, commutes with finite union hence € is stable by finite union.

&(3) pn, commutes with the action of Ny hence C € € implies NoC € €.

€(4) By definition x € M(€) if and only if p,(x) € M(€,) for all n > 1. The
compatibility of the €, implies that the M(&,) form a projective system. We deduce
M(€) = im _ M (€,,). As the latter ones are topologically étale, the topological A[P,]-

module M(€) is topologically étale by Remark O
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We have the natural map

@HomA(M(Cn),M/p"M) — HomA(@M(Qn),@M/p"M) = Homu (M (€), M) .

n

Lemma 6.15. The above map induces a continuous map

(47) lim Hom " (M (€,,), M/p" M) — Hom§*™ (M(€), M)

for the projective limit of the €, -open topologies on the left hand side.

Proof. Let f = lglfn be a map in the image, and let C € €. Then f|¢ is the projective
limit of the f,[,, (o) hence is continuous. This means that the map in the assertion is
well defined. For the continuity, let C' € € and M C M be an open A-submodule. The
preimage of E(C, M) is equal to

(lim Hom$ ™ (M(€,). M/p"M)) 1 ([ Epa(C), M + p"M/p"0)) .

n

Since M contains some p™° M, this intersection is equal to the open submodule

{(fn) € lim Hom§ " (M (€,), M/p"M) : fn € E(pa(C), M+ p"M/p" M) for n < no}.

O

Proposition 6.16. In the above setting assume that all the assumptions of Prop. [6-9 are
satisfied for (s, M/p"M,€,) and for alln > 1. Then, for all g € NgPNy, the functions

g0 : No — Hom%™ (M (€), M)

are (s,res, €)-integrable, their (s,res, €)-integrals H, belong to End 4 (M(C)) and satisfy
the relations H1, H2, H3 of Prop. [5.1}}

Proof. In the following we indicate with an extra index m that the corresponding no-
tation is meant for the module M/p"M with the special family €,. Then ag4o(u) is
the image of (ag0,n(u))s by the map , for u € Np. It follows that Hg v, n,)
is the image of (Hg j(Ny/Ny)n)n for g € NoPNy. By assumption the integral Hy, =
limg s 00 Hy, 7(No /Ny ),n €Xists, lies in Homi”ont(M(Cn),M/p"M), and satisfies the rela-
tions H1, H2, H3 of Prop.

The continuity of the map implies that the image of (H4,,)n is equal to the limit
limy, 00 Hg, 7(Ny/N,,)> therefore is the integral H, of ay o. The additional properties for H,
are inherited from the corresponding properties of the Hg ;. O

Under the assumptions of Prop. we associate to (s, M, €), an A-algebra homo-
morphism

R\c/ﬂ : .Accg/p — EndA(M(Q)P) .
via propositions [5.14] , [5.12] which extends the A-algebra homomorphism

Res : C(C, A)#P — Enda(M(€)P)

constructed in proposition [3:17] The homomorphism Res gives rise to a P-equivariant
sheaf on C as described in detail in the theorem The homomorphism Res defines
on the global sections with compact support M (&)L of the sheaf on C the structure of

C

a nondegenerate Accg,/p-module. The latter leads, by proposition to the unital
Cx(G/P, A)#G-module Z ®4 M(€)F which corresponds to a G-equivariant sheaf on

C

G/ P extending the earlier sheaf on C (remark [5.11)).
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7 Classical (¢, I')-modules on O¢

7.1 The Fontaine ring O¢

Let K/Q, be a finite extension of ring of integers o, of uniformizer px and residue field k.
By definition the Fontaine ring O¢ over o is the p-adic completion of the localisation of
the Iwasawa o-algebra A(Z,) := o[[Z,]] with respect to the multiplicative set of elements
which are not divisible by p. We choose a generator v of Z, of image [7] in Og and
we denote X = [y] —1 € Og. The Iwasawa o-algebra A(Z,) is a local noetherian ring
of maximal ideal M(Z,) generated by px,X. It is a compact ring for the M(Z,)-adic
topology. The ring Og can be viewed as the ring of infinite Laurent series ), a, X™ over
o in the variable X with lim,,_, _ a,, = 0, and A(Z,,) as the subring o[[X]] of Taylor series.
The Fontaine ring Og¢ is a local noetherian ring of maximal ideal px Og and residue field
isomorphic to k((X)); it is a pseudo-compact ring for the p-adic (= strong) topology and
a complete ring (with continuous multiplication) for the weak topology. A fundamental
system of open neighborhoods of 0 for the weak topology of O¢ is given by

(Onk =" Os + M(Zp)* ) ken
or by
(Buk = p"O¢ + X" N(Zp)n e
Other fundamental systems of neighborhoods of 0 for the weak topology are

(On = On,’n)nzl or (Bn = Bn,n)nzl .

7.2 The group GL(2,Q,)
We consider the group G = GL(2,Q,) and

1 Z zZx 0 Zr 0 Z,— {0} O
s (3 %) e (B 0 mn (B 0) nm (B0 ).
p

— L, = (6] >
Nk} : <0 1 > s k- ( 0 1 kap for k 1 5

Py, = LyNy for k € N, the upper triangular subgroup P, the diagonal subgroup L, the
upper unipotent subgroup N, the center Z, the mirabolic monoid P, = NyL,, and the
monoids Ly = L,Z , PL = NogL,. The subset of non invertible elements in the monoid
L, is

B a 0
Fsll\jI {0} _ {8q = <O 1> for a € pZ, —{0}} .

An element s € Fsgf{O}Z is called strictly dominant. In the following we identify the
group Z, with Ny. The action of Py on Ny induces an étale ring action of P, (trivial
on Z) on A(Np) which respects the ideal generated by p. This action extends first to the
localisation and then to the completion to give an étale ring action of P, on O¢ determined
by its restriction to Py. For the weak topology (and not for the p-adic topology), the action
P, x Og — Og of the monoid P} on Og¢ is continuous (see Lemma 8.24.i in [12]). For
t € Ly the canonical left inverse 14 of the action @; of ¢ is continuous (this is proved in a
more general setting later in Prop. .

7.3 Classical étale (p,I')-modules

Let s € Fssf{O}Z . A finitely generated étale ps,-module D over O is a finitely generated
Og-module with an étale semilinear endomorphism ;. These modules form an abelian
category MG _(¢,). We fix such a module D.
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In the following, the topology of D is its weak topology. For any surjective O¢-linear
map f : @?0O¢ — D, the image in D of a fundamental system of neighborhoods of 0 in
®90¢ for the weak topology is a fundamental system of neighborhoods of 0 in D. Finitely
generated A(Np)-submodules of D generating the Og-module D will be called lattices.
The map f sends ®?A(Z,) onto a lattice D° of D. We note O,,  := p"D + M(Z,)*D°
and B, := p"D + X*DO. Writing O,, :== O,,,, and B,, := By, (On), and (B,,), are
two fundamental systems of neighborhoods of 0 in D. The topological Og-module D is
Hausdorff and complete.

A treillis Dy in D is a compact A(Np)-submodule Dy such that the image of Dy in the
finite dimensional k((X))-vector space D/px D is a k[[X]]-lattice ([5] Déf. 1.1.1). A lattice
is a treillis and a treillis contains a lattice.

For n > 1, the reduction modulo p™ of D is the finitely generated Og-module D /p™ D
with the induced action of ¢s. The action remains étale, because the multiplication by
p” being a morphism in imgg(aps) its cokernel belongs to the category. The reduction
modulo p™ of 1, is the canonical left inverse of the reduction modulo p™ of ¢s. The
reduction modulo p™ of a treillis of D is a treillis of D/p™D.

Conversely, if the reduction modulo p™ of a finitely generated ¢s-module D over Og
is étale for all n > 1, then D is an étale ps-module over O¢ because D = ]'gln D/p"D.

The weak topology of D is the projective limit of the weak topologies of D/p"D.

When D is killed by a power of p and Dy is a treillis of D, we have :

1. Dy is open and closed in D.

2. (M(Z,)"Do)nen and (X" Dg)nen form two fundamental systems of open neighbor-
hoods of zero in D.

3. Any treillis of D is contained in X "Dy for some n € N.
4. D = UkeNX_kDO'

5. Dy is a lattice.

The first four properties are easy; a reference is [5] Prop. I.1.2. To show that Dy is
a lattice, we pick some lattice D° then Dy is contained in the lattice X "DO° for some
n € N by the property 3. Since the ring A(Np) is noetherian the assertion follows.

When D is killed by a power of p, the weak topology of D is locally compact (by
properties 2 and 5).

Proposition 7.1. Let D be a finitely generated étale ps-module over Og. Then s and
its canonical inverse s are continuous.

Proof. a) The above Og-linear surjective map f : ©?Og — D sends (a;); to >, aid; for
some elements d; € D. As ¢, is étale, the map (a;); — >, a;ps(d;) also gives an Og-
linear surjective map @?Og — D. Both surjections are topological quotient maps by the
definition of the topology on D, and the morphism ¢, of Og is continuous. We deduce
that the morphism ¢4 of D is continuous.

b) The image of ®?A(Ny) by f is a lattice Dy of D. For any k € N the A(Np)-
submodule Dy j, of D generated by (ps(X%e;))1<i<a also is a treillis of D because ¢y is
étale. Here {e; | 1 <i < d} is a generating family of Dy. We have t5(Do ) = X¥Dq (cf.
lemma .

¢) When D is killed by a power of p, we deduce that 1) is continuous by the properties
1 and 2 of the treillis. When D is not killed by a power of p, we deduce that the reduction
modulo p™ of 1) is continuous for all n; this implies that 5 is continuous because (A =
o0, D) satisfy the properties a, b, ¢, d of section and D/p™D is a (finitely generated)
étale ps,-module over Og. O
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We put
DT :={x € D: the sequence (¢¥(2))ren is bounded in D}
and

(48) DTt :={reD| klim go];(m) =0} .
—00

Proposition 7.2. (i) If D is killed by a power of p, then DT and DY are lattices in
D.

(i) There exists a unique mazimal treillis D¥ such that v(D%) = D¥.

(i4i) The set of vs-stable treillis in D has a unique minimal element DF; it satisfies
s (Dh) = D~

(iv) X~*D* is a treillis stable by v, for all k € N.

Proof. The references given in the following are stated for étale (¢, I')-modules but the
proofs never use that there exists an action of I' and they are valid for étale ¢,,-modules.

(i) For s = s, this is [5] Prop. I1.2.2(iii) and Lemma II.2.3. The properties of s, which
are needed for the argument are still satisfied for general s in the following form:

= s(X) € N (X)A(Zp)* where s = sos'z with so €', m > 1, and z € Z.

- ((pS(X)X_l)pk € p"IA(Z,) + X(p_l)pkA(Zp) for any k € N.

(ii) and (iii) For any finitely generated Og-torsion module M we denote its Pontrjagin
dual of continuous o-linear maps from M to K/o by MY := HomS"" (M, K /o). Obviously,

MY again is an Og-module by (Af)(z) := f(Az) for A € Og, f € MY, and x € M. Tt is
shown in [5] Lemma 1.2.4 that:

— MYV is a finitely generated Og-torsion module,

— the topology of pointwise convergence on MV coincides with its weak topology as
an Og-module, and
- MY =M.
Now let D be as in the assertion but killed by a power of p. One checks that DV also
belongs to ME_(ps) with respect to the semilinear map . (f) := f o, for f € DY;
moreover, the canonical left inverse is 15(f) = f o ps. Next, [5] Lemma 1.2.8 shows that:
— If Dy C D is a lattice then Dg := {d € DV : f(Dy) = 0} is a lattice in DV, and
DYV = Dy.
0 0
We now define D% := (DV)* and D! := (DY)**. The purely formal arguments in the
proofs of [5] Prop. 11.6.1, Lemma I1.6.2, and Prop. 11.6.3 show that D? and D* have the
asserted properties.
For a general D in M _ (o) the (formal) arguments in the proof of [5] Prop. I1.6.5 show
that ((D/p"D)%)nen and ((D/p™D)*),en are well defined projective systems of compact
A(Z,)-modules (with surjective transition maps). Hence

D*:=lim(D/p"D)* and D*:=lim(D/p" D)*
have the asserted properties.
(iv) X~* D is clearly a treillis. As X divides ¢s(X) = (14 X)* — 1 in A(Z,) = o[[X]]

(when s € s,Z for some a € pZ, \ {0}), there exists f(X) € o[[X]] such that ps(X*) =
Xk f(X)k. So we have

Po(XFDF) = by (05 (X M) F(X)FDF) = X Fyp(f(X)*D*) € X Fy(DF) ¢ X+ D*

since D! is 1p,-stable by definition. O
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Proposition 7.3. Let D be a finitely generated étale ps-module over Og killed by a power
of p. For any compact subset C' C D, there exists an v € N such that

U vh(voe) c x "Dt
k>0

Proof. Since NoC' is compact and DT+ and DF are treillis, there exists [ € N such that
NoC c X7'D* ¢ X~2'D*+. By iv) of prop 7.2 we obtain for all k > 0

E(NoC) € ¥F(X~IDY) ¢ X~'DF ¢ XA D+t
and we can take r = 2. -

Corollary 7.4. Let D be a finitely generated étale ps-module over Og¢. For any compact
subset C C D and any n € N, there exists kg € N such that

U #5(NeC) € D +p"D .
k>ko

Proof. We may assume that D is killed by a power of p. In view of (the proof of) prop.
it suffices to show that for all [ > 0 there exists a ko such that ¢ (X ~'D#) = D*. By

prop. [7.2{ii) and (iv) we have
DF = ¢fTH(DF) C gt (XTIDF) C (X TIDF) € XD

for any k > 0. Hence (), ¥*(X ~'D*) is a treillis in D on which vy is surjective. Therefore
it coincides with D? by the maximality of D* (Prop. ii)). On the other hand, the
Zp[[X]]-module (X~'D¥)/D* is killed by both X' and p" and hence is finite. So there
exists a ko such that ¥*(X~'D%) = D¥ for all k > k. O

For any submonoid L’ C L, containing a strictly dominant element, an étale L'-
module over O¢ is a finitely generated Og-module with an étale semilinear action of L’.
A topologically étale L’-module over Og¢ will be an étale L'-module D over Og¢ such
that the action L' x D — D of L’ on D is continuous. This terminology is provisional
since we will show later on (Cor. in a more general context that any étale L’-module
over O¢ in fact is topologically étale and, in particular, is a complete topologically étale

o[NyL']-module in our previous sense.

Let D be a topologically étale L -module over O¢ and let g = (Z Z) € GLy(Qp).

e ) -G )

w(r)wy = ar+b a
g "= \er+d ¢)

one checks that the set U, defined by g 1CoNCy = UgwoP/P is

Denote

Using the formula

ar +b 7).

Uy, =u(Xy) where X,={reZycr+d#0, me »

For each r € X, we can write

gu(r)wo = u(glr])(g, rywou ( ¢ ) |

cr+d
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where

ar + b det g 0
=0 g, tgr) = crtd .
g[r] CT'+d € y 2] (g?rr) < 0 C7'+d)

We deduce that for u(r) € U, we have

a(gv ZL'u(,«)) = u(g[r])t(gv T‘).

Let now s = sqz € L4 be strictly dominant, with z € Z and a € pZ, — {0}. There
exists a positive integer k, , such that for all & > &k, we have t(g,7)s* € L. Note
that N = s¥Nys—* = u(akZp). We deduce that for k > ky s the operators H, j(n,/ny)
introduced in are equal to the operators

Hg,s,J(Zp/akZp) = Z (1 + X)g[r]wt(g,r)skwf((l + X)ir)'
reXyNJ(Zy/a*Zy)

Proposition 7.5. Let D be a topologically étale Ly-module over Og. For the compact
open topology in End*™ (D), the maps ayo : No — EndS”™ (D), for g € NoPNy, are
integrable with respect to s and res, for all s € Ly strictly dominant, i.e. s = s,z with
a € pZ, — {0} and z € Z, their integrals

H, = agodres = lim H %
g N 9,0 hson | 1980 (Zp/a Lp)

for any choices of J(Z/a*Z,) C Z,, do not depend on the choice of s and satisfy the
relations H1, H2, H3 of Proposition|5.14).

Proof. By Prop. we reduce to the case that D is killed by a power of p and to showing
the assumptions of Prop. for the family of all compact subsets of D. The axioms €;,
for 1 < ¢ < 6, are obviously satisfied by continuity of ¢, s, and of the action of n € Ny
on D.

i. We check first the convergence criterion of Proposition[6.8] using the theory of treillis,
i.e. of lattices, in D.

Given a lattice M C D, a compact subset C' C D such that NoC C C, and a compact
subset Cy C L., we want to find a compact open subgroup P, C Py and an integer
ko € N such that

(49) sF(1— P)CyypR(C) C M

for all k > kg.
We choose 79 € N with o¥(D*T+) C M for all k > 7y, as we may by the definition of
D+ +. We choose 7, kg € N such that kg > ry and

U 11}5(0) g X*TD++ ;

k>ko

as we may by Prop. Applying C we obtain

U Cuh(©) c opx D).
k>ko

The continuity of the action of Py on D implies that Cy (X ~"D*) is compact. Hence
we can choose r’ € N such that C, (X~"DT) C X~" D™F and we obtain

U Cvh(©) c XD
k>ko
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As X~ DT+ is compact and D™ an open neighborhood of 0, the continuity of the action
of P, on D there exists a compact open subgroup P; C P, such that

(1-P)X"Dtt C Dt .

Hence we have s*(1 — Py)C 9% (C) C o¥(D*T+) € M for all k > k.

ii. To obtain all the assumptions of Prop. for the family of all compact subsets of
D, it remains to prove that, given z € D and g € NgPNy, s = s,z with a € pZ, — {0} and
z € Z, and (J(Z,/a*7Z,)), there exists a compact Cy, 4 s C D and a positive integer ky 4 5
such that Hg7s7J(Zp/akZp)(z) € Cy 9,5 for any k > k; 4 5. This is clear because D is locally
compact (by hypothesis D is killed by a power of p) and the sequence (H, s 5z, /a+z,)(Z))k
converges.

iii. The independence of the choice of s € L, strictly dominant results from the fact
that, for z € Z, e € Zj, and a positive integer r, we have (zspre)¥No(28pre) ™% = sE"Nyskr

k rk,kr

and cpfspre Zspre = P, s, as Yz, Is the right and left inverse of ¢, . O

Remark 7.6. Let D be a topologically étale L -module over Og, on which Z acts through
a character w. The pointwise convergence of the integrals | No ag odres is a basic theo-
rem of Colmez, allowing him the construction of the representation of GL2(Q,) that he
denotes D X,, P'. Our construction coincides with Colmez’s construction because our
H, € EndS® (D) are the same as the H,, of Colmez given in [6] lemma I1.1.2 (ii). Indeed,

Ot(g, zu(r)) = u(g[r])t(g, T) =

wier + dyu(glr)) <<d§5> g) — w(er +d) (9’0[7”} 9 [17"]> 7

where ¢'[r] = %. This coincides with Colmez’s formula.

The major goal of the paper is to generalize Prop. See Prop. [9.16]
8 A generalisation of (p,[')-modules

We return to a general group G. We denote G(?) := GL(2,Q,) and the objects relative to
G® will be affected with an upper index (2),

a) We suppose that Ng has the structure of a p-adic Lie group and that we have a
continuous surjective homomorphism

0:Ny— N2 .

We choose a continuous homomorphism ¢ : NéQ) — Ny which is a section of ¢ (which is
possible because Néz) ~ 7).

We have Ny = N L(Né2)) where Ny is the kernel of /.

We denote by Ly := {t € L | tNjt™' C Ny, tNot~! C Ny} the stabilizer of N, in
the L-stabilizer of No, and by Ly, := {t € L | tNet=* C Ny , to(NS)t=1 € o(N$?)} the
stabilizer of Ny in the L-stabilizer of L(NéQ)). We have Ly, C Lg 4.

b) We suppose given a submonoid L. of L,, containing s and a continuous homomor-
phism £ : L, — L(f) such that (¢,.) satisfies

C(tut™) = L) e(u)e) ™, tu(y)tt = (C()ylt)"Y) , for u € Noyy € NPt € L, .
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The sequence £(s"Nos™™) = é(s)"Némé(s)’" in N is decreasing with trivial inter-
section. The maps ¢ in a) and b) combine to a unique continuous homomorphism

¢ : P.:=NyxL,— P?.

8.1 The microlocalized ring Ay(Ny)

The ring A¢(Np), denoted by An,(Np) in [12], is a generalisation of the ring Og, which
corresponds to Aid(NéQ)). We refer the reader to [12] for the proofs of some claims in this
section.

The maximal ideal M(Ny) of the completed group o-algebra A(Ny) = o[[N,]] is gen-
erated by px and by the kernel of the augmentation map o[N;] — o.

The ring A¢(No) is the M (Ny)-adic completion of the localisation of A(Ny) with respect
to the Ore subset S¢(Ng) of elements which are not in M(N;)A(Np). The ring A(Ny)
can be viewed as the ring A(Ny)[[X]] of skew Taylor series over A(Ny) in the variable
X = [y] — 1 where v € Ny and £(7) is a topological generator of £(Np). Then Ay(Np) is
viewed as the ring of infinite skew Laurent series ), a, X™ over A(N;) in the variable
X with lim,,—,_ a,, = 0 for the pseudo-compact topology of A(Ny).

The ring Ag(Np) is strict-local noetherian of maximal ideal M,(Ny) generated by
M(Ny). Tt is a pseudocompact ring for the M (Np)-adic topology (called the strong topol-
ogy). It is a complete Hausdorff ring for the weak topology ([I2] Lemma 8.2) with funda-
mental system of open neighborhoods of 0 given by

Op.t := My(No)™ + M(No)* for ne N,k N.

In the computations it is sometimes better to use the fundamental systems of open neigh-
borhoods of 0 defined by

By = My(No)" + X¥A(No) for ne N,k €N,

and
Co = My(No)" + A(Ng)X* for neN,keN,

which are equivalent due to the two formulae
XFA(No) € A(No)X* + M(Ng)* and  A(No)X* C XFA(Ny) + M(No)* |

We write O,, :== Oy, B, := By, and C,, = C,, . Then (Oy,)n, (Bp)n, and (C,),, are
also fundamental system of open neighborhoods of 0 in A¢(Np).

The action (b = ut,ng) — b.ng = utnet~! of the monoid P, = Ng x Ly 4 on Ny
induces a ring action (¢,x) — @¢(x) of Ly 4 on the o-algebra A(Ny) respecting the ideal
A(No)M(Ny), and the Ore set S;(INy) hence defines a ring action of Ly 4 on the o-algebra
A¢(Np). This action respects the maximal ideals M (Ny) and M,(Np) of the rings A(Np)
and Ay(Ny) and hence the open neighborhoods of zero O, .

Lemma 8.1. Fort € Ly, a fundamental system of open neighborhoods of 0 in Ag(No)
18 given by
(4(On k) A(No))n ken -

Proof. We have just seen (O, x)A(Ny) C O, . Conversely, given n, k € N, we have to
find n, k" € N such that O, i C (O 1) A(Np). This can be deduced from the following
fact. Let H' C H be an open subgroup. Then given k’ € N, there is k € N such that

M(H AH) > M(H)" .
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Indeed by taking a smaller H' we can suppose that H' C H is open normal. Then
M(H'F' A(H) is a two-sided ideal in A(H) and the factor ring A(H)/M(H')A(H) is an
artinian local ring with maximal ideal M(H)/M(H')A(H). It remains to observe that in
any artinian local ring the maximal ideal is nilpotent. O

Proposition 8.2. The action of L+ on Ay(Ny) is étale : for any t € Ly 4, the map
()\,x) — )\(ﬁt(.’t) : A(NQ) ®A(N0)7@t A[(No) — AZ(N())
1s bijective.

Proof. We follow ([12] Prop. 9.6, Proof, Step 1).
1) The conjugation by ¢ gives a natural isomorphism

A¢(Np) — AtNet—l(tNOtil) .
2) ObViOuSly AtN(t71 (tNOtil) = A(tNOtil) ®A(tN0t—1) AtN(tfl (tN0t71)7 and the map
A(tN()t_l) ®A(tNot_1) AtNet—l(tNOt_l) — A(NO) ®A(tN0t_l) AtNZt—l(tNOt_l)

is injective because A;y,;—1 (tNot™1) is flat on A(ENot™1).
3) The natural map

A(No) @A (ngt-1) AtNgrl(tNOtil) — A¢(No)

is bijective.

4) The ring action @y : Ay(Ng) — Ae(Np) of ¢ on Ap(Np) is the composite of the maps
of 1), 2), 3), hence is injective.

5) The proposition is equivalent to 3) and ¢, injective. O

Remark 8.3. The proposition is equivalent to : for any ¢ € Ly 1, the map
(u, ) = ups () : 0[No] @o[ng],p, Ae(No) = Ae(No)

is bijective.

8.2 The categories MY, ) (L.) and MG, ,(L.)

By the universal properties of localisation and adic completion the continuous homomor-

phisms ¢ and ¢ between Ny and Néz) extend to continuous o-linear homomorphisms of
pseudocompact rings,

(50) K:Ag(No)—)Og,LZOg—)Ag(N@ s lor=id .

If we view the rings as rings of Laurent series, £(X) = X®), (X®) = X, and ¢ is the
augmentation map A(Ny) — o and ¢ is the natural injection o — A(Ny), on the coefficients.
We have for n, k € N,

- UM(No)) = prOe , U(Buy) =B},
LprOg) = My(No) N(O¢) [’(Br(f;c) = Bk N(O¢) -

We denote by J(Ny) the kernel of £ : A(Ny) — A(NO(Q)) and by Jy(Np) the kernel of
£: Ay(Ng) = Og. They are the closed two-sided ideals generated (as left or right ideals)
by the kernel of the augmentation map o[Ny] — 0. We have

A¢(No) = 1(Og) @ Jo(No) , My(No) = prt(Og) & Je(No) ,

(52) XEA(No) = c((XPYWANG) @ XFT(No) . B = u(BL)) @ (Je(No) N Bryk) -
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The maps ¢ and ¢ are L.-equivariant: for t € L,

(53) £°<Pt=90£(t)°€ , LOWyr) =wroL,

thanks to the hypothesis b) made at the beginning of this chapter. The map ¢ is equivariant
for the canonical action of the inverse monoid L, !, but not the map ¢ as the following
lemma shows.

Lemma 8.4. Fort € L., we have 1oy =ty ot. We have £ o)y = gy oL if and only
if Np = tNgtil.

Proof. Clearly Ny = N x L(N(()Z)) and tNot~! = tNypt=t x u(]\féz))t_1 for t € L. We
choose, as we may, for t € Ly,, a system J(No/tNot™') of representatives of No/tNot !
containing 1 such that

(54)  J(No/tNot™") = {ue(v) |u € J(Ne/tNet™Y) | v € J(NZ Jet)NPet 1))} .

We have ¢ 01y = 1y o1 because, for A € Og, we have on one hand

A= > v0u() Avet) + Aver) = Yoy (0N
veJ(NSP et)NEP o)1)

) = > L) (LA en))
veJ(NSP ety N$P o)1)
and on the other hand
L(A) = > (V)P (L (N us(w) 1) -

w€J(Ne /tNet=1),0€J(NS? /0(t) NS )e(t)=1)
where ¢(A)y,(0),c = Ye(t(v) " tu~ (X)), By the uniqueness of the decomposition,
L)yt = tuet)) s LN ue(wy,e =0 ifu#1.
Taking u = 1,v = 1, we get 1:(t(N)) = (e (V).

A similar argument shows that £ o ¢, = vy o £ if and only if Ny = tNyt~!. For
A E Ag(No),

A= Z WPt()\u,t) y Augp = 1/&(“71)\) )
u€J(No/tNot—1)
N = Y e () = > vu(y (L) v (1))
u€J(No/tNot—1) vEJ(Néz)/l(t)Né2))

By the uniqueness of the decomposition,
(Noery = >, uwe) -
uEJ(Ng/tNot—1)
We deduce that € o thy = () o £ if and only if Ny = t Nt~ O
Remark 8.5. £ o1 # 1y oL, except in the trivial case where £ : Ny — Néz) is an

isomorphism, because sNys~! # N, as the intersection of the decreasing sequence s* Nys—*
for k£ € N is trivial.

For future use, we note:

Lemma 8.6. The left or right o[ No]-submodule generated by 1(Og) in Ay(Ny) is dense.
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Proof. As o[Ny| is dense in A(NNp) it suffices to show that the left or right A(Np)-submodule
generated by ¢(Og) in A¢(Np) is dense. This will be shown even with respect to the
M (Np)-adic topology.

View A € Ay(Np) as an infinite Laurent series A = Y7, A\, X™ with A, € A(Ny)
and lim,, o A, = 0 in the M(Ny)-adic topology of A(Ny). Further, note that the
left, resp. right, A(Np)-submodule of Ay(Ny) generated by ¢(Og) contains A(Np)X ™,
resp. X ™A(Np), for any positive integer m. Finally, for each n € N there exists p, in
A(Nog)X ™, resp. X ™A(Ny), for some large m, such that A — p,, € My(Ng)™. O

Let M be a finitely generated Ay(Np)-module and let f : @ ;A¢(Nog) — M be a
Ay¢(Np)-linear surjective map. We put on M the quotient topology of the weak topology
on @ ;A;(Ny); this is independent of the choice of f. Then M is a Hausdorff and com-
plete topological A¢(Np)-module and every submodule is closed ([I2] Lemma 8.22). In the
same way we can equip M with the pseudocompact topology. Again M is Hausdorff and
complete and every submodule is closed in the pseudocompact topology, because Ay(Np)
is noetherian. The weak topology on M is weaker than the pseudocompact topology which
is weaker than the p-adic topology. In particular the intersection of the submodules p™ M
for n € N is 0. By [9) IV.3.Prop. 10, M is p-adically complete, i.e., the natural map
M — lim M /p™M is bijective.

Unless otherwise indicated, M is always understood to carry the weak topology.

Lemma 8.7. The properties a,b,c,d of section are satisfied by (o, M) and M is com-
plete.

Definition 8.8. A finitely generated module M over Ay(Ny) with an étale semilinear
action of a submonoid L' of L, 4 is called an étale L'-module over Ay(Np).

We denote by SD”(%MNO)(L’) the category of étale L’-modules on A¢(Np).

Lemma 8.9. The category Smf\te(No)(L’) is abelian.

Proof. As in the proof of Propositionand using that the ring Ay(Ny) is noetherian. [

The continuous homomorphism ¢ : L, — Lf) defines an étale semilinear action of L.,

on the ring Aid(Néz)) isomorphic to Og.

Definition 8.10. A finitely generated module D over Og with an étale semilinear action
of L, is called an étale L,-module over Og.

An element t € L, in the kernel L=! of £ acts trivially on Og hence bijectively on an
étale L,-module over Og.

Remark 8.11. The action of L=! on D extends to an action of the subgroup of L
generated by L‘=! if L= is commutative or if we assume that for each ¢t € L=! there
exists an integer k > 0 such that st~ € L,. The assumption is trivially satisfied whenever
L, = H N L, for some subgroup H C L.

Indeed, the subgroup generated by L‘=! is the set of words of the form z
with ; € L= for i = 1,...,n. So if we have an action of all the elements and all the
inverses, then we can take the products of these, as well. We need to show that this action
is well defined, i.e., whenever we have a relation

+1 +1
Ty

(55) ettt =yt yE

n

in the group then the action we just defined is the same using the z’s or the g’s. If L=!
is commutative, this is easily checked. In the second case, we can choose a big enough
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k = 37 ki + > j_ kj such that skig7! € L, and skfyj_l € L,. Then multiplying
the relation by s we obtain a relation in L, so the two sides will define the same
action on D. This shows that the actions defined using the two sides of are equal on

©*(D) c D. However, they are also equal on group elements u € NéQ) hence on the whole
D= @uEJ (NS ok (N)Y) uwf(D)

We denote by 93”(05 , (L) the category of étale L.-modules on Og.
Lemma 8.12. The category MG_ (L.) is abelian.
Proof. As in the proof of Proposition and using that the ring Og¢ is noetherian. [

We will prove later that the categories MG, (L) and MY, v | (L.) are equivalent.

8.3 Base change functors

We recall a general argument of semilinear algebra (see [12]). Let A be a ring with a
ring endomorphism ¢4, let B be another ring with a ring endomorphism ¢p, and let
f A — B be a ring homomorphism such that fops = ppo f. When M is an A-module
with a semilinear endomorphism ¢y, its image by base change is the B-module B&® 4, f M
with the semilinear endomorphism ¢p ® ¢ar. The endomorphism ¢as of M is called étale
if the natural map

a®@m—=apy(m): A®ap, M - M

is bijective.

Lemma 8.13. When @, is étale, then pp ® @ is étale.

Proof. We have

B®pB,py (BRAfM)=B®appof M =B®pop, M =B®R4 s (A®a,p, M) = B®a,z M.
O

Applying these general considerations to the L.-equivariant maps ¢ : Ay(Ng) — Og
and ¢ : Og — Ag(No) satisfying Lo = id (see (50), (53)), we have the base change functors

M — D(M) = Og ®Ag(No),€ M
from the category of As(Np)-modules to the category of Og-modules, and
D M(D) = A/(No) ®(957L D

in the opposite direction. Obviously these base change functors respect the property of
being finitely generated. By the general lemma we obtain:

Proposition 8.14. The above functors restrict to functors
D: Sm/\z NO)( )—>imog (L) and M: imog (L )%W%Z(NO)(L*) .
When M € Mg, (No) (L), the diagonal action of L, on D(M) is:

(56) @i(p ®@m) = @or) (1) @ pr(m) fort € Lu,p € Og,me M .

When D € MF_ ,(L.), the diagonal action of L, on M(D) is:

(57) ot A®d) = pi(N) @ pi(d) fort € Ly, A € Ay(Ny),d e D .
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The natural map
by : M —=D(M) , ly(m)=1m

is surjective, L-equivariant, with a P,-stable kernel M, := J;(Ng)M. The injective L,-
equivariant map
LD:D%M(D) , LD(d) =1®d

is ¢r-equivariant for t € L, (same proof as Lemma [8.4)).

For future use we note the following property.
Lemma 8.15. Letde€ D andt € L,. We have

tp(e(vid)) if u=1(v) with v € N62)7

-1 —
Yi(u” ep(d)) = {0 if u € No\ L(NéQ))tNotfl.

Proof. We choose a set J C NéQ) of representatives for the cosets in Nég)/é(t)NéQ)é(t)*l.
The semilinear endomorphism ¢; of D is étale hence

d=> vpi(dys) wheredy,y =y(v"d) .
veJ
Applying tp we obtain
(d) = Y tl0)en(i(dn)) = 3 u0)er(en(d) = 3 ehprltn(en (07 D)

The map ¢ induces an injective map from J into No/tNot~! with image included in a set
J(No/tNot=1) C Ny of representatives for the cosets in No/tNot 1. As the action ¢; of t
in M(D) is étale, we have (12])

m = Z upi(my)) where my, = Yy (u=tm)

u€J(No/tNot—1)

for any m € M(D). We deduce that v:(c(v™')ip(d)) = tp(dys) when v € J and
Pi(u=tep(d)) = 0 when u € J(No/tNot~1)\ ¢(J). As any element of Néz) can belong to a
set of representatives of Néz)/f(t)NéQ)é(t)_l, we deduce that ¥ (c(v™1)ep(d)) = tp(dys)
for any v € Néz). For the same reason ¥ (t(u=1)ip(d)) = 0 for any u € Ny which does
not belong to L(NO(Q))tNot_l. O

8.4 Equivalence of categories

Let D € MF,_ ,(L.). By definition D(M(D)) = Og @4,(ny),¢ (Ae(No) ®0,,. D), and we
have a natural map

p® A®d) — pb(N)d: Og QA (Ny),e (A¢(No) Q0Oe D)—D.
Proposition 8.16. The natural map D(M(D)) — D is an isomorphism in IMMG_ ,(L.).

Proof. The natural map is bijective because £ ot = id : Og — Ay(Ng) — Og, and
L,-equivariant because the action of ¢t € L, satisfies

Pr(p @ (A@d)) = o) (1) @ pr(A @ d) = pey (1) @ (pe(A) ® pe(d))
@ (l(N)d) = poqy ((LN) e (d) = poqy (1) (e (X)) e (d)
by , . O
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The kernel Ny of £ : Nyg — Z, being a closed subgroup of Ny is also a p-adic Lie group,
hence contains an open pro-p-subgroup H with the following property ([II] Remark 26.9
and Thm. 27.1):

For any integer n > 1, the map h — h?" is an homeomorphism of H onto an open
subgroup H,, C H, and (H,)p>1 is a fundamental system of open neighborhoods of 1 in
H.

The groups s*Nys™* for k > 1 are open and form a fundamental system of neighbor-
hoods of 1 in Ny. For any integer n > 1 there exists a positive integer k such that any
element in s*Nys~* is contained in H,, hence is a p"-th power of some element in N,. We
denote by k,, the smallest positive integer such that any element in s*» Nys=*» is a p™-th
power of some element in Ny.

Lemma 8.17. For any positive integers n and k > k,,, we have
" (Je(No)) € Me(No)™*" .

Proof. For u € Ny, and j € N, the value at u of the p’-th cyclotomic polynomial P, (u)
lies in My(Np) and

n
n

u” —1 =[] ®p(w)

§=0
lies in Mg(No)"“‘l. An element v € s¥*Nys~* is a p"-th power of some element in Ny hence
v—1 lies in M;(Np)"*1. The ideal J;(Ng) of Ag(Np) is generated by u — 1 for u € N, and
©*(Jy(Ng)) is contained in the ideal generated by v — 1 for v € s¥Nys™*. As M(Ny) is
an ideal of A;(Ny) we deduce that ©*(J,(Ng)) € My(Ng)"t1. O
Lemma 8.18. i. The functor D is faithful.

1. The functor M is fully faithful.

Proof. Obviously ii. follows from i. by proposition [8:16] To prove i. let f : My — M, be
a morphism in imf\te(No)(L*) such that D(f) = 0, i. e., such that f(M;) C Jy(No)Ma.
Since M is étale we deduce that f(Mi) C (), ¢*(Je(No))M> and hence, by lemma
in ,, M¢(No)™ M. Since the pseudocompact topology on M, is Hausdorff we have
N,, Me(No)" My = 0. It follows that f = 0. O

Let M € Mg, (No)(Lx)- By definition,
MD(M) = A¢(No) ®0¢ . (O @a,(Ng),e M) = Ne(No) @a,(Ng),0t M

In the particular case where L, = sV is the monoid generated by s, we denote the
category Z)JTAZ(NO)(L ) (resp. zmg;u( «)), by QJTAZ(NO)(@) (resp. 9)?0”( )) The category

Sﬁj\té(N ) (L) (resp. Dﬁog ,(Ly)) is a subcategory of E)JIA[(NO)(@) (resp. zmog L(©))-
Proposition 8.19. For any M € QJT%Z(NO)(QO) there is a unique morphism

On : M — MD(M) in zmAe (No) (©)

such that the composed map D' (Oy) : D(M) D®a), DMD(M) = D(M) is the identity.
The morphism Oy, in fact, is an isomorphism.

Proof. The uniqueness follows immediately from Lemma [8.18]i. The construction of such
an isomorphism O,; will be done in three steps.

Step 1: We assume that M is free over Ay(Np), and we start with an arbitrary finite
Ay¢(No)-basis (e;);cr of M. By , we have

M = (@ieIL(OS)ei) D (@iEIJZ(NO)ei) .
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The A¢(Np)-linear map from M to MID(M) sending €; to 1 ® (1 ® €;) is bijective. If
Picrt(Og)e; is @-stable, the map is also @-equivariant and is an isomorphism in the
category imffe(No) (). We will construct a Ag(Nog)-basis (1;)ier of M such that @;cre(Og)n;
is p-stable.

We have

(,0(61) = Z(am + b@j)ﬁj where amv S L(Og) , br,j7j S J[(No) .
Jjel
If the b; ; are not all 0, we will show that there exist elements z; ; € Jy(No) such that
(ni)icr defined by
N =€+ Zﬂﬁi,ﬁj :
jer

satisfies (1) = >y aijn; for i € I. By the Nakayama lemma ([I] II §3.2 Prop. 5), the
set (1;)ier is a Ag(Np)-basis of M, and we obtain an isomorphism in W%Z(NO)(QO),

Oy : M —-MD(M) , O(np)=1®(1®n) foriel,

such that D'(©yy) is the identity morphism of D(M).
The conditions on the matrix X := (x;;); jer are :

(Id+X)(A+ B) = A(Id +X)

for the matrices A := (a;;)ijer ,B = (bij)ijer- The coefficients of A belong to the
commutative ring ¢(Og). The matrix A is invertible because the A;(Nyp)-endomorphism f
of M defined by

fle)) =pl(e) foriel

is an automorphism of M as ¢ is étale. We have to solve the equation
AT'B+ A 'p(X)(A+B)=X .
For any k£ > 0 define
Up=A"1p(A™Y) . " YA ) R (AIB) " YA+ B)...0(A+ B)(A+ B) .

We have
A o(Up)(A+ B) = Upyq -

Hence X := ), ., Uy is a solution of our equation provided this series converges with
respect to the pseudocompact topology of A;(Np). The coefficients of A~! B belong to the
two-sided ideal Jy(Ny) of A¢(Ny). Therefore the coefficients of Uy belong to the two-sided
ideal generated by " (J;(Ny)). Hence the series converges (Lemma. The coefficients
of every term in the series belong to J;(Ny) and Jp(Ny) is closed in Ay(Np), hence x; ; €
Je(Np) for i, j € I.

Step 2: We show that any module M in zm;jl( No) () is the quotient of another module
My in MY, . () which is free over A¢(No) .

Let (m;);cr be a minimal finite system of generators of the Ay(Np)-module M. As
p is étale, (p(m;))ier is also a minimal system of generators. We denote by (e;);cr the
canonical Ay(Ny)-basis of ®;crA¢(Ny), and we consider the two surjective Ag(Np)-linear
maps

fr9: @ierhe(No) = M, f(e:) =m; , gle:) = p(mi) .

In particular, we find elements m, € M, for i € I, such that g(m}) = ¢(m;). By
the Nakayama lemma ([I] II §3.2 Prop. 5) the (m});c; form another Ay(Np)-basis of
@ierNe(Np). The p-linear map

@ierhe(No) = @icrhe(No) , o) Nies) =D p(N)m]
iel iel
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therefore is étale. With this map, M; := @;crA¢(Np) is a module in Dﬁ" )( ) which is
free over A¢(Np), and the surjective map f is a morphism in E)ﬁAZ(NO)( )

Step 3: As Ay(Np) is noetherian, we deduce from Step 2 that for any module M in
mg (No) () we have an exact sequence

My Lo oo

in MY ( Ny () such that My and My are free over Ay(Nog). We now consider the diagram

MD(M) 22 v Y2 M) —> 0 .

A
9M2T2 @MlTZ O |
f s !

My My M 0

Since the functors M and D are right exact both rows of the diagram are exact. By Step
1 the left two vertical maps exist and are isomorphisms. Since

D(MD(f) © Onr, = O, © f) = D(f) 0 D'(Ons,) — D' (Onr, ) o D(f) =

it follows from lemma [8.18i that the left square of the diagram commutes. Hence we
obtain an induced isomorphism ©,; as indicated, which moreover by construction satisfies
D' (©nr) = idp(ary- O

Theorem 8.20. The functors

2mogz( £) = Smf\t,z(z\/o)(L*) , D EmA@(N)( )%mg‘g,g@*),

are quasi-inverse equivalences of categories.

Proof. By proposition and lemma [8.18]ii it remains to show that the functor M is
essentially surjective. Let M € 9§ A, () (L) We have to find a D € zmgw (L) together
with an isomorphism M = M(D) in Mg (Noy(Lx)- 1t suffices to show that the morphism
© s in proposition [8:19]is L.-equivariant.

We want to prove that (O 0y — ¢ 00O )(m) =0 for any m € M and ¢ € L.. Since
D' (©xr) = idp(ar) We certainly have (© 0@, —p; 00)(m) € Jo(No)MD(M) for any m € M
and t € L,. We choose for any positive integer r a set J(No/N,) C Ny of representatives
for the cosets in No/N,.. Writing

m = Z WP (M 5r) 5 Mo or = " (u"'m)

UEJ(NO/NT)

and using that st = ts we see that

Oumopr—proOn)(m)= > 0w ((On 0@t — 10 On)(mysr))
uEJ(No/Nr)

lies, for any 7, in the Ay(Np)-submodule of MID(M) generated by " (J¢(No))MD(M). As
in the proof of lemma ii we obtain [, " (Je(No))MD(M) = 0. O

Since the functors Ml and D are right exact they commute with the reduction modulo
p", for any integer n > 1.
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8.5 Continuity

In this section we assume that L, contains a subgroup L, which is open in L, and is a
topologically finitely generated pro-p-group.

We will show that the L,-action on any étale L.-module over Ay(Np) is automatically
continuous. Our proof is highly indirect so that we temporarily will have to make some
definitions. But first a few partial results can be established directly.

Let M be a finitely generated Az(Np)-module.

Definition 8.21. A lattice in M is a A(Np)-submodule of M generated by a finite system
of generators of the Ay(No)-module M.

The lattices of M are of the form M® = >""_| A(Ny)m; for a set (m;)1<i<, of gener-
ators of the Ay(Ny)-module M.
We have the three fundamental systems of neighborhoods of 0 in M :

(58) (Z Onemi = My(No)" M + M(No)* M), ren
(59) () Buwmi = My(No)"M + X* M), e ,
(60) () Crmi = Me(No)"M + M)y ken »

where M} is the lattice > ;_; A(Ng)X*m;, and is different from the set X*My when Ny
is not commutative.

If M is an étale L,-module over Ay(Ny), for any fixed ¢ € Ly we have a fourth
fundamental system of neighborhoods of 0 in M :

(Z <Pt(On,k)A(NO)SOt(mi))n,keN )

given by Lemma because (p(m;)1<i<, is also a system of generators of the Ay(INy)-
module M.

Proposition 8.22. Let L' be a submonoid of Ly . Let M be an étale L'-module over
A¢(No). Then the maps ¢ and 1y, for any t € L', are continuous on M.

Proof. The ring endomorphisms ¢; of A;(Ng) are continuous since they preserve M (Np)
and M (Ny). The continuity of the ¢; on M follows as in part a) of the proof of proposition
The continuity of the ; follows from

U 1(0n k) AM(No)ipr (i) Zon KO (A(No))mi =D O i
i=1 =1

O

The same proof shows that, for any D € zmog +(L+), the maps ¢; and ¢, for any
t € L,, are continuous on D.

Proposition 8.23. The L.-action L, x D — D on an étale L.-module D over Og is
continuous.
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Proof. Let D bein MG _ ,(L.). Since we already know from Prop. that each individual
¢, for t € L,, is a continuous map on D and since L; is open in L, it suffices to show
that the action Ly x D — D of Li on D is continuous. As D is p-adically complete with
its weak topology being the projective limit of the weak topologies on the D/p™D we may
further assume that D is killed by a power of p. In this situation the weak topology on
D is locally compact. By Ellis’ theorem ([8] Thm. 1) we therefore are reduced to showing
that the map Ly x D — D is separately continuous. Because of Prop. [8:22] it, in fact,
remains to prove that, for any d € D, the map

Li—D, g—gd

is continuous at 1 € L. This amounts to finding, for any d € D and any lattice Dy C D, an
open subgroup H C L; such that (H —1)d C Dy. We observe that (X™ D, )mez is a fun-
damental system of L-stable open neighbourhoods of zero in D such that J,, X" D1 =
D. We now choose an m > 0 large enough such that d € XD, and XDy, C Dy.
The L; action on D induces an Li-action on X ™™D, /X™D, which is o-linear hence
given by a group homomorphism L1 — Aut,(X ™D, /X™D, ). Since D, is a finitely
generated o[[X]]-module which is killed by a power of p we see that XD, /X™D, |
is finite. It follows that the kernel H of the above homomorphism is of finite index in L.
Our assumption that L; is a topologically finitely generated pro-p-group finally implies,
by a theorem of Serre ([7] Thm. 1.17), that H is open in L;. We obtain

(H—1)dc (H—-1)X "D, C X™D,, C Dy .
O

In the special case of classical (¢, T')-modules on Og the proposition is stated as Ex-
ercise 2.4.6 in [I0] (with the indication of a totally different proof).

Proposition 8.24. Let L’ be a submonoid of Ly 1 containing an open subgroup Lo which
is a topologically finitely generated pro-p-group. Then the L'-action L' x A¢(No) — Ag(Np)
on A¢(No) is continuous.

Proof. Since we know already from Prop. and that each individual ¢y, for ¢ € L/,
is a continuous map on A;(Ny) and since Lo is open in L’ it suffices to show that the
action Ly X Ag(Ng) — Ag(Ng) of Ly on Ag(Np) is continuous. The ring Ag(Ng) is Mg (No)-
adically complete with its weak topology being the projective limit of the weak topologies
on the Ay(Ng)/M(No)"Ae(Np). It suffices to prove that the induced action of Ly on
AN = Ay(No)/Me(Np)™ is continuous. The weak topology on A’ is locally compact since
(B}, = (X®A(No) + M¢(No)™)/My(No)")rez forms a fundamental system of compact
neighborhoods of 0. By Ellis’ theorem ([§] Thm. 1) we therefore are reduced to showing
that the map Ly x A’ — A’ is separately continuous. Because of Prop. [8.22] it, in fact,
remains to prove that, for any = € A’, the map

Ly — AN, g— g2

is continuous at 1 € Lo. This amounts to finding, for any z € A’ and any large k£ > 1, an
open subgroup H C Ly such that (H — 1)z C Bj,. We observe that the B}, for k € Z, are
Lo-stable of union A’. We now choose an m > k large enough such that z € B’ . The
Lo-action on A’ induces an Lo-action on B, /B! which is o-linear hence given by a group
homomorphism Ly — Aut,(B’,,/B.,). Since B} is isomorphic to o[ X]]®,A(N¢)/ M(Ng)™
as an o[[X]]-module, and A(N;)/M(Ng)™ is finite, we see that B’ ,, /B;, is finite. It follows
that the kernel H of the above homomorphism is of finite index in Ls. Our assumption
that Lo is a topologically finitely generated pro-p-group finally implies, by a theorem of
Serre ([7] Thm. 1.17), that H is open in Ly. We obtain

(H-1)zC(H-1)B", CB, CB,.
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O

Lemma 8.25. t. For any M € DJT%Z(NO)(L*) the weak topology on D(M) is the quo-
tient topology, via the surjection €yr : M — D(M), of the weak topology on M.

1. For any D € SJT%S’Z(L*) the weak topology on M(D) induces, via the injection tp :
D — M(D), the weak topology on D.

Proof. i. If we write M as a quotient of a finitely generated free Ay(Np)-module then we
obtain an exact commutative diagram of surjective maps of the form

@1 Ae(No) ——= M

@Mi ieM

1,0 —— D(M)

The horizontal maps are continuous and open by the definition of the weak topology. The
left vertical map is continuous and open by direct inspection of the open zero neighbour-
hoods B,, i (see (51)). Hence the right vertical map ¢, is continuous and open.

ii. An analogous argument as for i. shows that ¢p is continuous. Moreover tp has
the continuous left inverse /yp). Any continuous map with a continuous left inverse is a
topological inclusion. O

An étale L.-module M over Ay(Ny), resp. over Og, will be called topologically étale

if the L,-action L, x M — M is continuous. Let E)ﬁf\te’fNo)(L*) and Emg’;@([/*) denote
the corresponding full subcategories of 93"(7\2 ( No)(L*) and 93?%57€(L*), respectively. Note

that, by construction, all morphisms in 9% NO)(L*) and in Sm%tg ,Z(L*) are automatically
continuous. Also note that by proposition [8.22|any object in these categories is a complete
topologically étale o[NgL.]-module in our earlier sense.

Proposition 8.26. The functors M and D restrict to quasi-inverse equivalences of cate-
gories

MG (L) = M0y (L) 5 D M0 (L) = MG, (L) -

Proof. Tt is immediate from lemma i that if L, acts continuously on M € ‘.mf\te( Ny (L)
then it also acts continuously on D(M).

On the other hand, let D € E)ﬁg’g)g(lj*) such that the action of L, on D is continuous.
We choose a lattice Dy in D with a finite system (d;) of generators. Given ¢ € L, we

introduce Dy := ), A(NéQ))t.di which is a lattice in D since the action of ¢ on D is étale.
Also Do + Dy is a lattice in D. The Ay(Ng)-module M(D) is generated by ¢p(Dg) as well
as by tp(Dg + D) and both

(Cntp(Do))nen  and  (Crnip(Do + Di))nen

are fundamental systems of neighbourhoods of 0 in M(D) for the weak topology. To show
that the action of L, on M(D) is continuous, it suffices to find for any ¢ € L., Ao €
A¢(Np),do € Dg,n € N a neighborhood Ly C L, of t and n’ € N such that

(61) Lt.()\obp(do) + Cn/LD(Do)) C t.)\obD(do) + CnLD(DO + Dt) .
The three maps

A= Aep(do) + Ae(No) — M(D)
d— Xotp(d) : D — M(D)
(/\,d) — /\LD(d) : Ag(NO X D) — M(D)
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are continuous because ¢p is continuous. The action of L, on D and on A;(Ny) is contin-
uous (Prop. [8.24). Altogether this implies that we can find a small L; such that

Lt.)\oLD(do) C t.)\oLD(do) + CnLD(DO + Dt) .
Since tp is Ls-equivariant we have, for any n’ € N,
Lt.Cn/LD(Do) == (Lt.Cn/) LD(Lt.Do) .

The continuity of the action of L, on Ay(Ny) shows that L;.C,, C C,, when L; is small
enough and n' is large enough.
For d € Dy we have Lt.A(NéQ))d - A(Né2))(Lt.d). The action of L, on D is continuous

hence, for any n’, we can choose a small L; such that L;.d C t.d + CS)DO. We can choose
the same L; for each d; and we obtain

Le.Do € S AN i+ CODy .

Applying ¢p, we obtain
LD(Lt.Do) C LD(Dt) + Cn/LD(Do)

and then
(Lt.On/) LD(Lt.DO) C C,LLD(Dt) + Cncn/LD(DO) .

We check that C,C,y C Cy pyns C C,, when n’ > n. Hence when n’ is large enough,
Lt.(Cn/LD(Do)) C OnLD(Dt + Do) .

This ends the proof of . O

Proposition 8.27. We have My (L) = MG_ (L) and M(y (L) = MG (L)

Proof. The first identity was shown in proposition and is equivalent to the second
identity by theorem [8:20] and proposition [8:26] O

Corollary 8.28. Any étale L.-module over Ay(Ny), resp. over Og, is a complete topo-
logically étale o[ NoL,]-module in our sense.

Proof. Use propositions [8.22] and [B:27} O

9 Convergence in L,-modules on A;(Ny)

In this section, we use the notations of section [§ where we assume that N is a p-adic Lie
group. We assume that ¢ and ¢ are continuous group homomorphisms

(:P—P®  :N® SN, Lor=id,
such that £(Ly) € LY, ¢(N) = N®, (106)(Ny) C No, and
(62) t(y)t™t = u(Lt)yl(t)™) forye N? te L.
The assumptions of Chapter [§| are naturally satisfied with L, = L. Indeed, the

compact open subgroup Ny of N is a compact p-adic Lie group, the group ¢(Ny) is a

)

compact non-trivial subgroup Né2) of N® ~ Qp hence Né2 is isomorphic to Z, and is
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open in N the kernel of ¢|y, is normalized by Ly . Note that L normalizes L(N(gz))
since ¢(L) normalises NéQ) and (62).

Let M € DﬁthANO) (Ly) and D € MG, ,(Ly) be related by the equivalence of categories

(Thm. B.20),
M = Ag(N()) ROe D = Ag(NQ)LD(D) .

We will exhibit in this chapter a special family €, of compact subsets in M such that
M(€,) is a dense o-submodule of M, and such that the P-equivariant sheaf on C associated
to the étale o[Py]-module M(€,) by the theorem extends to a G-equivariant sheaf
on G/P. We will follow the method explained in subsection which reduces the most
technical part to the easier case where M is killed by a power of p.

9.1 Bounded sets

Definition 9.1. A subset A of M is called bounded if for any open neighborhood B of 0
in M there exists an open neighborhood B of 0 in Ae(Ny) such that

BACB.

Compare with [I2] Def. 8.5. The properties satisfied by bounded subsets of M can be
proved directly or deduced from the properties of bounded subsets of Ay(Ny) ([15] §12).
Using the fundamental system of neighborhoods of 0, the set A is bounded if and
only if for any large n there exists n’ > n such that

(My(No)™ + X" A(No))A C My(No)"M + X" MO

equivalently X™ =" A C M(No)"M + M°. We obtain (compare with [I2] Lemma 8.8):

Lemma 9.2. A subset A of M is bounded if and only if for any large positive n there
exists a positive integer n' such that

AC My(No)"M + X" M° |

The following properties of bounded subsets will be used in the construction of a
special family €, in the next subsection.

— Let f: @_;A¢(No) — M be a surjective homomorphism of A;(Ny)-modules. The
image by f of a bounded subset of @]_;A;(Ny) is a bounded subset of M. For
1 <4 < r, the i-th projections A; C Ag(Ny) of a subset A of ®]_;A¢(Ng) are all
bounded if and only if A is bounded.

— A compact subset is bounded.
— The A(Ny)-module generated by a bounded subset is bounded.
— The closure of a bounded subset is bounded.

— Given a compact subset C' in A¢(Ng) and a bounded subset A of M, the subset C'A
of M is bounded.

— The image of a bounded subset by f € End“”"*(M) is bounded. The image by £/
of a bounded subset in M is bounded in D.

— A subset A of D is bounded if and only if the image A,, of A in D/p™D is bounded
for all large n.

— When D is killed by a power of p, a subset A of D is bounded if and only if A is
contained in a lattice, i.e. if A is contained in a compact subset (by the properties
of lattices given in Section [7.3)).
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Lemma 9.3. The image by tp of a bounded subset in D is bounded in M.

Proof. Let A C D be a bounded subset and let D° be a fixed lattice in D. For all n € N
there exists n’ € N such that A C p"D + (X(z))_"lDO by Lemma Applying tp we
obtain

1p(A) C pPup(D) + X 1p(D°) € My(No)"M + X~ M°

where M° = A(Np)tp(DP) is a lattice in M. By the same lemma, this means that ¢p(A)
is bounded in M. O

9.2 The module M

Definition 9.4. M?%? is the set of m € M such that the set of {3 (¥ (u=tm)) for k €
N,u € Ny is bounded in D.

The definition of M*? depends on s because v is the canonical left inverse of the action
@ of s on M. We recognize m,, s« = ¥F(u~'m) appearing in the expansion .

Proposition 9.5. M is an étale o[ Py]-submodule of M.

Proof. a) We check first that M is P,-stable. As M?® is Ny-stable and P, = NoL,, it
suffices to show that tm = ¢;(m) € M*? when t € L, and m € M. Using the expansion
([12) of m and st = ts, for k € N and ng € Ny, we write ¢ (ny 'tm) as the sum over
u e J(No/Nk) of

W* (g tug" (my 1)) = 0¥ (ng tut ™ 6" (o (my 50))) = ¥F (ng tut ™ e (mys0)
and £ (¥*(ng te(m))) as the sum over u € J(No/Ny,) of
eM(djk(naltUtil)@t(mu,sk)) = Uk,nogM(¢t(mu,sk)) = Uk,nogot(‘eM(mu,sk)) )

where vy ,, := £(¥F (ng 'tut 1)) belongs to Néz) oris 0. Asm € M?%, the set of £ (m, )
for £k € N and u € Ny is bounded in D. Its image by the continuous map ¢; is bounded
and generates a bounded 0[Né2)]-subm0dule of D. Hence ¢;(m) € M.

b) The o[P;]-module M?¢ is 1)-stable (hence M?? is étale by Corollary because
we have, for m € M u € Ny, k €N,

(63) W (wt(m)) = ¢FF (p(um)
O

The goal of this section is to show that the P-equivariant sheaf on C associated to
the étale o[ P, ]-module M?’? extends to a G-equivariant sheaf on G//P. We will follow the
method explained in subsection |6.5

Let p, : M — M/p™M be the reduction modulo p™ for a positive integer n. Recall
that M is p-adically complete.
Lemma 9.6. The o-submodule M C M is closed for the p-adic topology, in particular

M= B (M M)

n

Moreover M is the set of m € M such that p,(m) belongs to (M /p™M)* for alln € N,
and we have
M = (M b

n
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Proof. a) Let m be an element in the closure of M’ in M for the p-adic topology. For
any r € N, we choose m/. € M?® with m —m/. € p" M. For each r, we choose ' > 1 such
that £37(YF(u=tm’)) € p"D + X7 DO for all k € N,u € Ny, applying Lemma We
have

(W (w™tm)) € Lar (PP (u™ ml) + p" M) = Ly (¥ (" ml)) +p"D C p"D + X' DO .

By the same lemma, m € M. This proves that M?? is closed in M hence p-adically
complete.

b) The reduction modulo p™ commutes with £, 1, and the action of Ny. The following
properties are equivalent :

m e M,

{00 (p*(u=tm)) for k € N,u € Ny} C D is bounded,

{éM/pnM(z/)k(u_lpn(m))) for k € Nyu € No} € D/p™D is bounded for all positive
integers n,

pn(m) € (M/p" M) for all positive integers n.
We deduce that m +— (pp(m)), : M?4 — I'&nn(M/p”M)l;d is an isomorphism. O

Proposition 9.7. D = D% and M contains .p(D).

Proof. i) We show that D = D%. By Lemma we can suppose that D is killed by a
power of p. Let d € D. By Cor. for n € N, there exists kg € N such that *(v=1d) €

Dt for k > ko,v € NéQ). As D¥ C D is bounded, and as the set of 1*(v~'d) for all

0<k<kove Né2), is also bounded because the set of v=1d for v € Né2) is bounded
and ¥ is continuous, we deduce that d € D%.
ii) We show that M?%? contains ¢p(D) by showing

{0ar(F (u™ ep(d))) for k € N,u € No} = {¢F(v'd) for k € N,v € NP}

when d € D (the right hand side is bounded in D by i)). We write an element of Ny as
t(v)u for win Ny and v € Né2). By Lemma

G o(0) ep(d) = $Hu (o7 d) = sFu 9 (o)

when u € sFNys~ and is 0 when u is not in s*Ny;s~%. When u € s*Nys~% we have
O (s7Fu=t sk (Lp(v™id))) = ¥ (v1d) as tp is Y-equivariant. O

Proposition 9.8. MY is dense in M

Proof. MY C M is an o[Ny]-submodule, which by Proposition [9.7| contains ¢p (D). The
o[Np]-submodule of M generated by ¢p(D) is dense by Lemma [3.6] O

We summarize: we proved that MY C M is a dense o[ Ny]-submodule, stable by L,
and the action of L, on M is étale.

Remark 9.9. It follows from Lemma and the subsequent proposition that MP?
is a A(Np)-submodule of M.

9.3 The special family €, when M is killed by a power of p
We suppose that M is killed by a power of p.
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Proposition 9.10. 1. For any lattice Dy in D, the o-submodule
MP(Dg) := {m € M | Lp (" (u" m)) € Dy for allu € Ny and k € N}.

of M is compact, and is a 1-stable A(Ny)-submodule.

2. The family €, of compact subsets of M contained in M?(Dy) for some lattice Dy of
D, is special (Def. , satisfies €(5) (Prop. and €(6) (Prop.|6.9), and M (&) = M?>?
is a A(Ng)-submodule of M.

Proof. 1. a) As ¢ and 1 are continuous (Proposition and Dy C D is closed, it follows
that MY (Dy) is an intersection of closed subsets in M, hence M?¥(Dy) is closed in M.
As M?%Y(Dy) is an o[No]-submodule of M and o[Np] is dense in A(Ny) we deduce that
MY (Dy) is a A(No)-submodule. It is -stable by (63)). The weak topology on M is the
projective limit of the weak topologies on M/ M (Ny)™" M, and we have ([2] 1.29 Corollary)

MJ*(Do) = Yim (M4 (Do) + Mq(No)" M)/ M¢(No)" M .

n>1
Therefore it suffices to show that
(M2%(Do) + M(No)™ M)/ My(No)" M

is compact for each large n. We will show the stronger property that it is a finitely
generated A(Np)-module.

b) We prove first that M>¥(Dy) is the intersection of the A(Ny)-modules generated by
the image by ¢* of the inverse image ijl(Do) of Dy in M, for k € N,

(64) M (Do) = () ANo)¢" (£3/ (Do) -
keN

The inclusion from left to right follows from the expansion , as m € MY (Dy) is
equivalent to m,, o = 1*(u"tm) € £} (Do) for all u € Ny and k € N. The inclusion from
right to left follows from

Capu (A (No )" (03 (Do) = Do -

c¢) We pick a lattice My of M such that £ (Do) = My + Jo(No)M, as Jy(No)M is the
kernel of £j;. By Lemma [8.17] we can choose for each n € N a large integer r such that
©"(Jo(No)M) C My(Ny)™ M. Therefore we have

M*(Do) S A(No)e" (Mo + Je(No)M) € A(No)e" (Mo) + Me(No)" M .
We deduce
(M2(Do) + Ma(No)" M)/ Me(No)™ M C (A(No)g" (Mo) + Me(No)" M)/ My(No)" M .

The right term is a finitely generated A(Ny)-module hence the left term is finitely gener-
ated as a A(Np)-module since A(Np) is noetherian.

2. The family is stable by finite union because a finite sum of lattices is a lattice. If
C € €, then NyC € €, because M?(Dy) is a A(Np)-module. We have

M(€,) = Up, M (Dg) = M,

when Dg runs over the lattices of D, the last follows from the fact that a bounded subset
of D is contained in a lattice (this is the only part in the proof where the assumption that
M is killed by a power of p is used). Apply Prop.[9.5

Property €(5) is immediate because M?¥(Dy) is 1-stable. Property €(6) follows from
o(M?b4(Dy)) € M*Y(D,) where D, is the lattice of D generated by (Dy) (this uses the
part a) of the proof of Prop. . O
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Consider the lattice M+ = A(Ng)ip(D*) of M. Since A(Np) and DT are ¢-stable
and since ¢ and tp commute, M T is p-stable and £y, (M++) = DT*. Hence for a subset
S C M we have

(65) S C X"MYt 4+ Jy(No)M < £,(S) C (X)) D

Proposition 9.11. Let r € N, Ct C Ly a compact subset and let Dy be a lattice in D.
There is a compact open subgroup Py C Py and kg > 0 such that for all k > kg

s8(1 = POy MY (Do) € X"MTF + My(No)"M .

Proof. Denote for simplicity S = M (Dy). By definition £,;(S) C Dy. Since Pf) acts
continuously on D, ¢(C4)Dy is compact and (X))"D*+ is open, there is a compact
open subgroup P1(2) C P_(f) such that (1 — P1(2))£(C+)DO C (X@)rD+*. We may choose
a compact open subgroup P; of Py such that ¢(P;) C P1(2), hence £ ((1 — P)C,.S) C
(X@)" D+, Relation yields

(1— P)C4S C Jo(No)M + X" M+ .

Choosing kg such that ¥ (J;(No)) C My(No)" for k > ko (as we may by Lemma/(8.17)), the
result follows from the ¢-stability of X" M+ ( which follows from the fact that ¢(X") €
X"A(Ng) and (M) Cc M+T). O

Corollary 9.12. Property T(1) in Prop. is satisfied.

Proof. Let C,Cy, M as in Prop. [6.8 and choose 7 such that M(No)™M +X"M*++ c M.
Choose a lattice Dy such that C C MY (Dg). As MY (Dy) is v-stable (Prop. [9.10)), we
can choose the subgroup P; and k(C, M, Cy) = kg given by Proposition O

Recall that we defined operators sgi) = ’H_ng) - ’H_((Jk) on MY = M(¢,). From
now on we fix a lattice Dy in D and g € NoPNy. We denote S = M4 (Dy).

Corollary 9.13. There is kg > 0 such that for allz € N and k > x + kg
P o Ny ostF)(S) c 63/ (D) .

Proof. Let » = 1, C4 = Agys and choose P; and kg as in Proposition so that
sF(1—P1)Cy.S C €3} (DFF) for k > k. Since S is A(Np)[¢)]-stable and £, (D¥7) is o[ Nol-
stable, relation and the inequality kf) (P) > kél) yield sék)(S) C Nop™3/ (DF) for
k> z+ko+kS (Pr). Applying "0 Ny yields the desired result, with k, = ko+k{? (Py). O

Lemma 9.14. There is a lattice Dy in D such that for all w € Uy, k > kg > ké(,l) and
r>k—k

(66) ¥ o Ny o (g, x,) o Res(1yn, ) (S) C 617/11 (Dq) .

Proof. Let C! = skat(g, Uy). This is a compact subset of L, since k; > kél). Since S is
A(Nop)[¢]-stable, we have Res(1,n,)(S) C u o ¢*(S), hence

a(g,xy) o Res(1yn, )(S) C Ny ot(g,u)o gok(S) C Nogokfk-" (C;S) .

Hence the left hand-side of is contained in *~**ks (A(Ny)C’_S), which is a subset
of A(No)C' 4y} (Do), because S C A(No)p® *+ka (0,1 (D)) and C, A(No) C A(No)C',..
Thus

Oar(¥® o Ny 0 (g, 2,) 0 Res(Luw, )(S)) € ANS)UC, ) (Do)

and the last subset of D is compact, hence contained in some lattice Dy. O
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Corollary 9.15. For all k > k, we have Hgk)(S) C MY (Dy+D*F). Moreover, H,(S) C
MY (D, + D).

Proof. The second assertion follows from the first by letting k — oo, since MY4(D;+D*+)
is closed in M. For the first assertion, we need to prove that zbm(No’Hék)(S)) C Uy (D +
D**) for all z > 0 and k > k,. Fix > 0. If k < k, + , simply add all relations for
u € J(Uy/Ny). It k > kg + z, the equation Hék) = H§m+k9) + E?;;Jrkg sgj) and corollary
9.13l show that

W (NoH (S)) € 4" (NoHG ) (S)) + €37 (DTF) .
But we have already seen that 1 (NoH\" ) (5)) ¢ ¢y (D1 + D). O
Proposition 9.16. All the assumptions of Prop. are satisfied.

Proof. Property T(1) was checked in corollary Property ¥(2) and the fact that #,
preserves M (for g € Ny PNy) follow from Corollary and the fact that any m € MY
is in S = M?"¥(Dy) for some lattice Dy in D. O

9.4 Functoriality and dependence on s

Let Z(L)34 C Z(L) be the subset of elements s such that L = L_s" and (s*Nos™*)yez
and (s‘kwoNowa sk) kez are decreasing sequences of trivial intersection and union N and
woNwy L respectively (see section @

Let M be a topologically etale L,-module over Ay(Ng) and let D := D(M). We have
D/p"D = D(M/p"M) for n > 1. By Lemma M satisfies the properties a,b,c,d of
subsection [6.5|and is complete (the same is true for M/p™M). The image Dy, in D/p™D
of any lattice Do,4+1 in D/p"*t1D is a lattice and the maps ¢ and ¢ commute with
the reduction modulo p", hence (M/p"*t1M)%(Dy 1) maps into (M/p"M)%(Dy ).
Therefore the special family € ,41 in M/p"™' M maps to the special family €, in
M/p™M. As in Lemmawe define the special family €, in M to consist of all compact
subsets C' C M such that p,(C) € €5, for all n > 1. By Prop. and Lemma we
have

M(¢,) = Mb .
Theorem 9.17. Let s € Z(L)s+ and M € Mi\te(No)(L”'

(i) The (s,res, &s)-integrals Hy, s of the functions g o|ppe for g € NoPNy exist, lie in
End, (M), and satisfy the relations H1, H2, H3 of Prop.|5.14}
(ii) The map M s (M?4, (Hg,s) genyBn,) i functorial.
Proof. (i) By Prop. the assumptions of Prop. are satisfied.
(ii) Let f : M — M’ be a morphism in Mf\tz(No)(L+)' For m € M we denote Es(m) =
{lrr(YFu=tm) for u € No,k € N}. We have

(67) D(f)(Es(m)) = Es(f(m)) when m € M,

because the maps £3; : M — D and £p; : M’ — D’ sending = to 1 ® x for x € M or
x € M’ satisfy £ppof =D(f)olps, and f is P~ -equivariant by Lemma Any morphism
between finitely generated modules on Of is continuous for the weak topology (cf. [12]
Lemma 8.22). The image of a bounded subset by a continuous map is bounded. We deduce
from that E,(m) bounded implies E,(f(m)) bounded, equivalently m € M>? implies
f(m) € M!*. For m € M we have f(Hgy..(m)) = Hys(f(m)) where

Hg,s(') = kll)m Z n(gau)@t(g,u)skwfuil(') ;

oo
u€J(No/skFNos—F)
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because f is Py and P_-equivariant by Lemma O

We investigate now the dependence on s € Z(L):4 of the dense subset M C M and
of the (s, res, €,)-integrals H, ;.

Lemma 9.18. Z(L); is stable by product.

(ss")™ because L_ is

P’/OO’. Let 8,8/ € Z(L)-H Clearly L_S/n = L_s nsnsln C
= ss’")Y. The sequence
( )

a monoid and s~! € Z(L)_ = Z(L) N L_. Therefore L
((58")*No(s8')~*)rez is decreasing because

L_
L_

S/k+13k+1N057k71817k71 C S/ksk+1N057k71$/7k C S/kSkNosfkslfk .

The intersection is trivial and the union is N because s'*s¥ Nys—*s'~F ¢ s¥Nys—* when
k€ Nand sFs*Nys™%s'~% 5 s¥ Nys~ when —k € N. One makes the same argument with
woNowg * 0

Lemma 9.19. (i) The action of ty € Eil(L(()z)) N Ly on D is invertible.
(ii) There exists a treillis Dy in D which is stable by E‘l(L((f)) NL;.

Proof. (i) is true because the action of tg on D is étale and N(§2) = é(to)Néz)Z(to)_l.
(ii) Let s € Z(L)++ and let 9, be the canonical inverse of the étale action ¢ of s
on D. We show that the minimal 1,-stable treillis D% of D (Prop. iii)) is stable by

P nL,.
For tg € é‘l(L(()Q)) N L, we claim that o, (D) is also a ¢s-stable treillis in D. We have

Ysthr, = Piohs as to € Z(L). Multiplying by ¢, on both sides, one gets i, s, 01, =
OtoWto Vs Pry- Since 1y, is the two-sided inverse of ¢y, by (i) we get that ¢, and s

commute. Hence ¢y, (D) is a compact o-module which is ,-stable. It is a A(N(§2))—
module because any A € A(NéQ)) is of the form A = @y, (1) for some p € A(Néz)) and
At (d) = @, (ud) for all d € D. As D? contains a lattice and ¢y, is étale, we deduce that
©1,(D%) contains a lattice and therefore is a treillis. By the minimality of D we must

have
Dh c cpto(Dh) .

Similarly one checks that v, (DY) is a treillis. It is 15-stable because 1, and Yy, commute.
Hence
D? C 1)y, (D7) .

Applying ¢;, which is the two-sided inverse of 1;, we obtain ¢, (D) C D hence D =
Pto (Dh) . U

We denote by Z(L); C Z(L) the monoid of z € Z(L)y = Z(L) N Ly such that
2z YwoNowg 'z C woNowy . We have Z(L)++Z(L)+ C Z(L)++.

Note that L(()2) contains the center of GL(2,Q,) and that Z(L®?); = Lf).
For m € M,t € Ly,u € U, and a system of representatives J(Ng/tNot~!) C Ny for
the cosets in Ny/tNot~! we have

(68) m= Z Wi P = eee(uTim)
weJ(No /tNot=1)

For g € NoPNy and s € Z(L)+t, we have the smallest positive integer kg(,?g as in . For
k> k%), we have Hy.s5.7(No/Nw) € End”™ (M) where (compare with (28))

(69) Hg,s,J(No/Nk)(m) = Z n(g7 u)t(g7 u):us’“,u .
u€J(Ug/Nyg)
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When m € MY, the integral H, s(m) is the limit of Hg.5,7(No/Ny,) (M) by Theorem
and (29).
Proposition 9.20. Let s € Z(L)++, to € E‘l(L((f)) NZ(L)+ and r a positive integer.

(i) We have MY C M = MP2.

(ii) For g € NoPNo we have H, s = Hg sty on MY

Sto

and Hgs = Hgsr on ML

Proof. a) Note that sty and s™ in proposition belong also to Z(L)+;.
For a treillis Dy in D which is stable by ¢~1(L?) N L (Lemmal9.19), (X®)~"Dy is
a treillis in D; it is also stable by ¢y € E‘l(L((f)) N L4 because

(o) (XD)TANE)) = (0) (X @) )iy (ANE)) = (XB)"ANS) .

When M is killed by a power of p, this implies with Prop. that M?? is the union

of M%¥(Dy) when Dg runs over the lattices of D which are stable by é’l(LE)Q)) NLy.

b) We suppose from now on, as we can by Lemma that M is killed by a power of
p to prove MY C M = MY, Let m € MY (Do) where Dy is a 5’1(L82)) N L4-stable

lattice of D. For u € Ny and k € N, using for t = t§ we obtain that

O (95 (u™tm)) = Lar( > vo gt o, ov Tt oy(uTtm)) =
vEJ(No/th Noty ™)

= Y ek (8, (e HuT m))

vEJ(No /th Noty ™)

lies in Dy, since Dy is both NéQ)— and ¢y, -invariant and £ (¢%, (u'm)) € Dy for v’ € No.

Therefore MY (Do) C M2 (D) and by a) we deduce M2 c MPe.
For any m € M we observe that

{0 (WF (u™tm)) for k € Nyu € Ny} € {a(¥F(u=tm)) for k € Nyu € Ny},

as ¥ = Y% We deduce that MP(Dy) C M (Dy) for any lattice Dy of D hence
Msbd - Mff»i. Conversely, for k1 € N we write ky = rk — ko with £ € Nand 0 < ky < r and
we observe that

O (PF (u™tm)) = Lar( Z vo gk oyl (ph (v u " m))
v€J(No/sk2 Nos—F2)

= > U0)pl (Car (Y3 (95 (v " m)))

vEJ(No/sk2 Ngs—F2)

The A(NéQ))—submodule D,. generated by Z:;ll 0% (Dy) is a lattice because the action ¢

of s on D is étale. We deduce that M2 (Dy) ¢ MY(D,) since £ (% (u'm)) € Dy for
u' € Nog,m € MY (Dy). Therefore M (Do) € MY (D,) hence M?¢ c M. 1t is obvious
that Hg s = Hg,sr 0D M
¢) Let g € NgPNo, k > k), tg € =LY N Z(L); and r > 1. We have
(0) 0 (0) 0
kg, <KD L kg < KO

g,sto — s” 9,8

because (stg)* No(stg)™ C Ny, and (s")*No(s") ™% = Ni, C Ny
Let d in D and v € Ny. By we have

d= Z U@Sto © 1/J§to (u_ld)
we (NP J0(sto)  NEP (sto)—F)
= > uph o ¥ (utd)

we J(NE? /0(s)k NP e(s)—*)
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with the second equality holding true summand per summand, because 1, is the left
and right inverse of ¢;, on D (Lemma (1)) and E(to)Né2)€(to)_1 = NéQ). Since tp
commutes with ¢; and ¢, for ¢t € L, this implies

vep(d) = > vL(w) iy, © Ya, (L(w) " ep(d))
u€J (NP J(sto)* NS t(sto) =)
= > vi(u)gy o g (u(w) " tep(d))
ueJ(NS? /e(s)k N§P 0(s)—F)
again with the second equality holding true summand per summand. We choose, as we

can, systems of representatives J(Ny/(sto)*No(stg)™%) and J(Ny/s*Nos~*) containing
L(J(NSQ)/f(s)kNég)é(s)*k)). For k > k_((]?s) > %9, we obtain

g,sto?
H g, sto,00(No/(sto)* No(sto)~F) (VD () = Hg s v1(No sk Nos—#) (VD (D)) -

Passing to the limit when %k goes to infinity, and using linearity we deduce that Hg s, =
Hg.s on the o[Ng]-submodule < Noup (D) >, generated by vp(D) in ME.

d) Let m € M%(Dy) with D; C D a 1,-stable lattice (Prop. (iv)). For a positive
integer k, and a set of representatives J(Ny/s* Nos~*), we write m in the form

m= Y uphlnldls,w) + m(su)

u€J(No/sk¥Nos—F)

with m(s,u) in Jo(No)M and d(s,u) = €37 (¢%(u=tm)) in D;. Then

m(s) = Z up®(tp(d(s,u))) lies in < Noup(D) >,
u€J(No/sk Nos—F)

because tp is Ly-equivariant. Moreover m — m(s) is contained in the o[Ny]-submodule
Now"(Jo(Ng)M) generated by ¥ (J,(Ng)M). We show that

(70) m(s) € MJ(Dy) .
For v € Ny and r < k we have
Yi (™ (m = m(s))) = ¥y (v > gl (m(s,u)))
u€J(No/skFNos—F)
— Y et (s, )
u€J(No/skNos—F)

which lies in Jy(No)M since m(s,u) is in Jy(No)M and Jo(No)M is Ny and pg-stable.
This shows that £3; (17 (v"'m(s))) = L (47 (v~"'m)) lies in D;. On the other hand, for
r > k we have

O (Y5 (0™ m(s))) = Cu (g (07! > ugs (ep(d(s, u)))))
u€J(No/sk¥Nos—F)
= > O (07 (@5 (™ ta)ep (d(s, v)))

uw€J(No/skFNgs—F)

which lies in D;. Indeed, since D; is t,-stable the formula in part ii) of the proof of Prop.
implies that tp(D1) € M2 (D;); hence the tp(d(s,u)) lie in the ¢,- and Np-invariant
subspace M?¥(Dy). We conclude that m(s) € M*¥(Dy).
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Therefore, for any 1;,-stable lattice D1 C D, any k > 1, and any set of representatives
J(No/(stg)*No(stg)~*), we have defined an o-linear homomorphism

m > m(sto) Msg)(Dl) — Msbgo(Dl) n < N()LD(D) >0
such that
(71) m —m(sto) € ML (D1) Nk, (Jo(No)M).

By c) we have Hg o, (m(sto)) = Hg,s(m(sto)) for m € ML (Dy).

e) To end the proof that Mg, s, = Hg,s on M2 (D1) we use the € -uniform convergence
of (Hg.s,7(No/skNs—))k- We fix systems of representatives J(No/(stg)¥ No(stp)~*) and
J(No/sk¥Ns~F), for any k > 1. We also choose a lattice Dy C D which is stable by
é‘l(Lgf)) N Ly and such that Dy C Dy. We recall that M’ (Dy) is compact (Prop.
1)) and that M2 (D1) € ME (Do) € MY (Do) by b). For any open A(Ng)-submodule in
the weak topology My C M, there exists a common constant kg > ké?s) > ké?gto (by ¢))
such that for k > kg,

(72) H g sto,(No/(sto)* N(sto)-*) € Hg,ste + E(MIE (Dy), Mo)
(73) Hg,s,.I(Ng/sst*k) € Hg,s + E(Mgg] (D1)7 MO) .

On the left hand side of 7 7 we have continuous endomorphisms of M. By Lemma
there exists an integer ki1 > ko such that they send Nogpktlo (Je(No)M) into M.

S
Therefore, for m € M (D), they send the element m — m(sto) associated to k; and

J(No/((sto)** No(stg)~*1) as in d) into My hence
Hy.sto (M — m(sto)) and Hy s(m — m(sto)) lie in M.

By d) we obtain that Hy s, (m) — Hy s, (m) lies in Mo for m € M’ (Dy). The statement

follows since we chose M, to be an arbitrary open neighborhood of zero in the weak
topology of M. O

Definition 9.21. We define the transitive relation sy < sy on Z(L)s+ generated by
81 = Sotg fortg € E_I(L(()Q)) NZ(L): or si' = s for positive integers r1,75.
Proposition [9.20] admits the following corollary.
Corollary 9.22. Let 51,52 € Z(L)t+.
i) When s1 < so we have MY C MY and Hg s, = Hg,s, on M2
it) When the relation < on Z(L)t; is right filtered, we have Hg s, = Hg.s, on MEINMEL
Proof. 1) If s1 < s then there exists, by definition, a sequence s; =s; < s <... < s/ =

53 in Z(L)4 such that each pair sj, s;, ; satisfies one of the two conditions in Def.
Hence we may assume, by induction, that the pair si, so satisfies one of these conditions,

and we apply Prop. [9.20]
ii) When there exists s3 € Z(L)+ such that s; < s3 and sy < s3, by i) M2* and M?
are contained in M2 and Hy o, = Hgs, = Hg,s, on M40 M. O

Proposition 9.23. We assume that the relation < on Z(L)+; is right filtered. Then, the
intersection and the union

My= () MM oc M= ) MM
s€Z(L)t+ S€EZ(L)t+
are dense étale L -submodules of M over A(Np).
For g € NgPNy the endomorphisms H, € End,(M?) equal to Hy s on M for each
s € Z(L)ty, are well defined, stabilize MY and satisfy the relations H1, H2, H3 of Prop.
14
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Proof. M} is an L, -submodule of M over A(Ny) by Prop. (9.5 and Remark [9.9 . It is
dense in M by Prop. [9.7] . 7] and Lemma[8.6} The action of L. on Mgd is étale because MPpd
is L_-stable. When < is right filtered, M is a Ay(Ny)-module by Cor. [9.22]i). For the
same reasons as for M2?, it is an étale L -submodule of M over A(Ny).

By Cor. the H,4 are well defined and stabilize MY, They satisfy the relations HI,
H2, H3 of Prop. because the H, ; satisfy them (Theorem . O

We summarize our results and give our main theorem.

Theorem 9.24. For any s € Z(L)++, we have a faithful functor
Y, MA[ noy(L4) = G-equivariant sheaves on G/ P,

which associates to M € M%[(NO)(LJF) the G-equivariant sheaf Qs on G/P such that
Ys(Co) = MS a.
When the relation < on Z(L)s+ is right filtered, we have faithful functors

YA, Yy : ./\/lf\tl(No)(LJr) —  G-equivariant sheaves on G/P |

which associate to M € Mg, (No y(L+) the G-equivariant sheaves Yn and Yy on G/ P with
sections on Co equal to Dn(Co) = M and P, (Co) = M2,

Proof. The existence of the functors results from Prop. [0.23] Theorem [0.17] Prop. [5.14]
and Remark 5111

We show the faithfulness of the functors. For a non zero morphism f : M — M’ in
Mitz(No)(L+), we have f(ME4) # 0 because f is continuous ([I2] Lemma 8.22) and M2?
containing A(No)ep (D) is dense (Prop. [9.23). We deduce Yn(f) # 0 since it is nonzero
on sections on Cy. A fortiori Ys(f) # 0, and Yy(f) # 0. O

10 Connected reductive split group

We explain how our results apply to connected reductive groups.

a) Let F be a locally compact non archimedean field of ring of integers op and uni-
formizer pr. Let G be a connected reductive F-group, let S be a maximal F-split subtorus
of G and let P be a parabolic F-subgroup of G with Levi component L containing S and
unipotent radical N. Let X*(S) be the group of characters of S, let &, resp. ®, be the
subset of roots of S in L, resp. G, and let &, n be the subset of roots of S in N (we
suppress the index N if P is a minimal parabolic F-subgroup of G).

Let s be any element of S(F') such that a(s) = 1 for « € &, and the p-valuation
of a(s) € F* is positive for all roots o« € ®4 n. For any compact open subgroup Ny
of N(F), the data (P(F),L(F),N(F), Ny, s) satisfy all the conditions introduced in the
section on étale P -modules @, , the assumptions introduced in the section |6, and
in the section[d

b) We suppose that P is a minimal parabolic F-subgroup. Let W C Ng(L) be a
system of representatives of the Weyl group Ng(L)/L and let wg be the longest element
of the Weyl group. The data (G(F), P(F),W) satisfy the assumptions of the section [5 on

G-equivariant sheaves on G/P.

¢) We suppose until the end of this article that

F =Q,p, G is Q,-split and P is a Borel Q,-subgroup.
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The Levi subgroup L =T of P is a split Q,-torus. The monoid of dominant elements and
the submonoid without unit of strictly dominant elements are

T(Qp)+ ={t€T(Qp), aft) € Z, for all « € A},
T(Qp)4++ ={t € T(Qp), a(t) € pZ, — {0} for all @ € A} .

With our former notation Z(L) = T(Qy), Z(L)+t = T(Qp)++. For each root o € @, let

(74) Ug : Qp = No(Qy) tue ()t = ug(a(t)z) for z € Qp, t€T(Qy) ,

be a continuous isomorphism from Q,, onto the root subgroup N,(Q,) of N(Q,) normal-
ized by T'(Qp). We can write an element v € N(Q,,) in the form

u = H U (To)

aced

for any ordering of ®;. The coordinates £, = z,(u) € Q, of u are determined by the
ordering of the roots, but for a simple root «, the coordinate

(75) Ta : N(QP) - Qp

is independent of the choice of the ordering, and satisfies u, o x, = 1. We suppose, as we
can, that the u, have be chosen such that the product

No = H Ua(Zyp)

acd

is a group for some ordering of ®. Then Ny is the product of the uo(Z,) = No(Z)) for
any ordering of ®, .
We choose a simple root . We consider the continuous homomorphisms

by P(Qp)%P(Z)(Qp) y lat N(Qp>(2)_>N(Qp) , ool =1,

defined by

(a (t) xa > (P (2)) = ug(z) for v (z) = <(1) 916) ,
for t € T(Qp),u € N(Qp),z € Qp. They satisfy the functional equation

tra ()t = ta(la(t)yla(t)™)

fory € N(Q,)® and t € T(Q,). The data (Ny, £y, o) satisfies the assumptions introduced
in the[§ and in the section [3
We consider the binary relation s; < sy on T(Q,)++ generated by

s1 = 5280 with s9 € T(Qp)4,a(so) € Zy, , or s = s3" with n,m > 1.
Lemma 10.1. The relation s1 < so on T(Qp)4+ is right filtered.

Proof. Let A = {& = a1,...,a,}. The image of T(Qp)++ by A = (valp(a;(.))a;en 1S
contained in (N — {0})"™ and s; < so depends only on the cosets s1T(Qp)o and s1T(Qp)o,
where

T(Qp)o ={t € T(Qy), aft) € Z; for all a € A} .

a) First we assume that, for any positive integer k, there exists s, € T(Q,) such
A(siky) = (k,1,...,1). Then we have s < Spy1], and s < sp(e)) for s € T(Qp) 14
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with k(s) = val,(a(s)). For any s1,s2 in T(Q,) 4+ we deduce that s1 < Sp(s,)+k(ss)) and
52 < S[i(sy)+k(ss)]- Hence the relation < on T'(Qp)4 4+ is right filtered.

b) When G is semi-simple and adjoint the dominant coweights wy,,,...,w,, for A =
{a = a1,...,a,} form a basis of ¥ = Hom(G,,,T), and A(T(Qp)++) = (N - {0})™.
Hence sy exists for any k > 1.

¢) When G is semi-simple we consider the isogeny 7 : G — G 44 from G onto the adjoint
group Gqq ([13] 16.3.5). The image T4 of T' is a maximal split Q,-torus in G4. The isogeny
gives an homomorphism T'(Q,) — T,4(Q)), inducing an injective map between the cosets

T(Qp)4+/T(Qp)o — Tad(Qp)4+/Taa(Qp)o

respecting <, and such that for any t,q € T,4(Qp) there exists an integer n > 1 such
that 7, € m(T(Qp)). Given s1,s52 € T(Qp)4++ there exists sqq € Tua(Qp)++ such that
7(s1),m(s2) < Sqq by b) and a). Let n > 1 such that s, = 7(s3) for s3 € T(Q,). We have
Sqa < sI; hence m(s1), (s2) < m(s3). This is equivalent to s1, 52 < s3.

d) When G is reductive let 7 : G — G’ = G/Z° be the natural Q,-homomorphism from
G to the quotient of G by its maximal split central torus Z°. The group G’ is semi-simple,
w(T) =T is a maximal split Q,-torus in G’, 7| gives an exact sequence

1= Zo(Qp) = T(Qyp) — T/(Qp) -1,

inducing a bijective map between the cosets

T(Qp)++/T(Qp)O - T/(Qp)++/TI(Qp)O

respecting <. By c¢), < is right filtered on T"(Q,)4+. We deduce that < is right filtered
on T(Qp) 4+ [

By Theorem [8.20 and Theorem we can associate functorially to an étale 717, -
module D over Og , different sheaves :

e For any s € Ty, a G(Q,)-equivariant sheaf 9, on G(Q,)/P(Q,) with sections on
Co equal to M(D)%¢

e The G(Qp)-equivariant sheaves 2~ and Yu on G(Q,)/P(Q,) with sections on Cy
equal to Nser, , M(D)% and User, , M(D)b.

In general M(D) is different from Uer, +M(D)gd7 by the following proposition.

Proposition 10.2. Let M be an étale T -module M over Ay (No). When the root system
of G is irreducible of positive rank rk(G), we have:

(i) If rk(G) = 1, the G(Q,)-equivariant sheaf on G(Q,)/P(Q,) with sections M2 over
Co does not depend on the choice of s € Ty, and M = M>?.

(it) If rk(G) > 1, a G(Q,)-equivariant sheaf of o-modules 9 on G(Q,)/P(Q,) such
that D(Co) C M and (un(1) — 1) is bijective on Y(Co), is zero.

Proof. We prove (i). If rk(G) = 1, then Og = Ay (Ny) and M = D is an étale T'y-module
over Og. With the same proof as in Prop. 7.5, we have M’® = M for any s € Ty, and
the integrals H, for g € NgP Ny do not depend on the choice of s.

(ii) is equivalent to the property: an étale o[Py]-submodule M’ of M which is also a
R = o[No|[(uq(1) — 1)71]-submodule of M, and is endowed with endomorphisms H, €
End, (M), for all g € NoP(F)Ny, satisfying the relations H1, H2, H3 (Prop. , is 0.

a) Preliminaries. As rk(G) > 2 and the root system is irreducible, there exists a
simple root 3 such that o + § is a root. The elements n, := uo(1) and ng := ug(l) do
not commute. By the commutation formulas, nong = ngnqh for some h # 1 in the group
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H =[], Ny(Z,) for all positive roots of the form v = ia + j8 € ®4 with 4, > 0. Note
that H 1s normalized by N,(Z,). Let s € T . We have the expansion

(76) (nah —1)7F = 3 ups (s (u™ (ngh — 1)7%))

UEJ(No(Zp)H/sNa(Zp)Hs™1)
in R. We choose, as we can, a lift wg of sg in the normalizer of T'(Q,) such that

- wgng € ngP(Qp)

- wg normalizes the group No, _3(Z,) =[], N(Z,) for all positive roots v # 3.

.
The subset Nj(Zp) C Ng(Zp) of ug(b) such that wsug(b) € u[;(Zp)P(i@p), contains ng
but does not contain 1. The subset U,, C No of u such that wgu € NoP(Q,) is equal to

Uwﬁ = Né(Zp)Nqafﬁ(Zp) = N‘1>+*5<ZP)Né(ZP) :

Hence Uy, = ulUyy,, i.e. wglco NCy = uwglco N Co, for any v € No, _3(Z),).

b) Let M’ be an R = o[Ny][(no — 1)~ 1]-module of M, which is also an étale o[ P, ]-
submodule, and is endowed with endomorphisms H, € End,(M), for all g € NoP(F )Ny,
satisfying the relations H1, H2, H3 (Prop. [5.14), and let m € M’ be an arbitrary element.
We want to prove that m = 0.

The idea of the proof is that, for s € T4, we have m = 0 if H,,,(ngps(m)) = 0 and
that Hu, (nsps(m)) = 0 because it is infinitely divisible by n, — 1, where v = s3(cr). An
element in M with this property is 0 because n, — 1 lies in the maximal ideal of Ay, (No).

Let a € Zy. The product formula in Prop. [6.9ji implies

Moy © Hna Ores(lwglcomco) = Huwgna © res(1w§1comco) =
Hpaw, © res(lwglcomco) = Hne 0 Hyy © res(lwglcomco)

since n;“wglco NCy = wglco NCy= wgln;“CO N Cy. For all k € N, the elements

(77) my, :=(na — 1) Fngps(m) = ng(nah — 1) "o, (m)

lie in the image of the idempotent res(lwglcomco) € End, (M), because

(78) my = Z ngups(Ps(u™ (ngh — 1)""m))
WEI(Na(Zp)H/sNa(Zy)Hs—1)

by , . Therefore the product relations between H,,, Hpa and Hng imply

k
o 050 m) = Py (1 = 1)) = 3210 (2, 080 o)

a=0

ok
(—1)* (a>7-[w5 0 Hag 0 res(Ly-16,0,)(78)

M=

a=0

= |l

ok
(=1)* (a)an: o Hu, Ores(lwglconco)(mk)
a=0

=Ny — 1)kHw5(mk) )

Hence H.y, (npps(m)) = 0 since it is infinitely divisible by n, —1 which lies in the maximal
ideal of Ay (No). We also have

nﬁ@S(m) =Hio res(lwglcomco)(nm%(m)) = Hwa © Hwﬁ (HBWS(m)) =0.

As ngo ¢, € End,(M’) is injective, we deduce m = 0. O
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Corollary 10.3. There exists a G(Q))-equivariant sheaf on G(Q,)/P(Q,) with sections
M on Cy if and only if rk(G) = 1.
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