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A model problem: Damped wave equation

Consider, for some bounded domain € with boundary T,
1
c(x)?
u(-,0) = up, Oru(-,0) = vy, inQ,

Oyu = —1/0? + ab; u, on [ x R<o,

with f, ug, vy, c(x) — 1, compactly supported in Q and a > 0.

8t2u+oz8tu— Au=1f, inQ xRy,

@ We can think of this as the damped wave equation with
corresponding zero-order absorbing boundary condition.

@ Note that v = 0 near [ at time t = 0.



Motivation behind the problem

Some properties of the /07 4+ a0;:
@ A non-local operator with infinite memory.
@ Taking the Laplace transform

(z 02 + a8t> (s) =2 +as

we obtain an operator analytic and polynomially bounded in
C\ (—00,0] — an operator of parabolic type.
Motivation for considering:
o Similarities with 2D and damped wave equation fundamental
solutions:

H(t—r) e~ Vsitasr

-2D —— — 3D damped in Laplace domain.

412 — 2 4rtr

@ Gives a simple example of a coupled linear hyperbolic/parabolic
system, where the coupling of different time-discretizations is of
interest.
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Meaning of \/9? + ad;.

e For sufficiently smooth causal f and F(s) = (.£f)(s)
(Z(0:1)) (s) = sF(s).
Note that 0;f can be understood as the convolution
§ xf.

@ Similarly
0? —i—a&t / s>+ asF(s)ds
U—HR

and can also be understood as a convolution, which is continuous and

causal if
| Zf(s)| < Cls|™*

for y >2and Res > o > 0.
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Variational formulation and spatial discretization

Let S, C HY(Q) be a piecewise linear finite element space. Find
up(-, t) € Sp such that

(02 up+adyrup, v) 2+ (Vus, Vv)Lz(Q)+<\/ 0? + ad; up, v> = (f, v)12(

L2(T)

and up(0) = o p, Orup(0) = vop.



Variational formulation and spatial discretization

Let S, C HY(Q) be a piecewise linear finite element space. Find
up(-, t) € Sp such that

(Up+aip, V)Lz(Q)—i-(VUh, VV)L2(Q)+<\/ 1+ aé)t‘l Up, V> = (f, V)L2(Q)

L2(T)

and uh(O) = Uo,h [lh(O) = V0,h-
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Variational formulation and spatial discretization

Let S, C HY(Q) be a piecewise linear finite element space. Find
up(-, t) € Sp such that

(Dh+ai1h, V)Lz(Q)—i-(VUh, VV)L2(Q)+<\/ 1+ a&)t_l Up, V> = (f, V)LQ(Q)
L2(r)
and uh(O) = Uo,h [lh(O) = V0,h-

@ We plan to discretize ir and d; ! with different discretization schemes.

@ Testing with v = i, we obtain the energy identity (for f = 0)

t t
E(t):E(O)—/ ozHuhHLg dT—/ <\/1+aat1uh,uh> dr.
0 0

L2(r)

E(t) = 3llunll o) + 31V unllae)



Positivity of the boundary term [LB, Lubich, Sayas 2014]
Lemma

For a sufficiently smooth causal ¢(-, t) € H1/2(|')
t t
/ <W¢,¢> dr > / lol|?dT.
0 L2(r) 0
Proof: For o > 0 consider

/ e 27T <\/ 14+ a0, g0> dr = / V14 as—1|o(s)||2dw,
R L2(r) R

where, s = 0 +iw, ®(s) = ZL¢(s). The proof is finished by noticing that

Revlit+as1>1 =

/e2UT<\/1+aat_1g0,go> dTZ/eZUT||g0H2dT.
R L2(I) R
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Discretizing \/0? + ad; — Convolution quadrature [Lubich 8]

o dru(t) ~ Onsu(t) = u(t) — u(t — At)

Ar . Then

o e—sAt
(LOneu) (s) = (1At> U(s) = sa:U(s).

Note sar = s(1 + O(sAt)).



Discretizing \/0? + ad; — Convolution quadrature [Lubich 8]

o duu(t) ~ dpcu(r) = “MEZAD

. Then

o e—sAt

(Zone0) () = (F= 57 ) V) = sacU(s).

Note sar = s(1 + O(sAt)).

o Similarly \/1+ ad; !t u(t) ~ \/1+ ady u(t) where
<,5f 1+ a@;% u> (s)=+/1+ as&i U(s).

oo
-1 _ A—S/At
V31t+asy, = E wje
J=0

o0

V1+adyru(t) = wju(t—t).

Jj=0

Expanding

we get that



Computing the weights w; and extensions

@ The weights are Taylor coefficients of the analytic function

/ At
1+oz1_zzz(:)wjzf
J:

and can hence be efficiently computed using contour integrals and
FFTs.

e Similarly higher order A(f)-stable linear multistep or Runge-Kutta
methods can be used as the basis for discretization.

Example for a = 1/2, At =1/100:

j 0 1 2 3
w; | 1.0024969 0.0024938 0.0024907 0.0024876
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Fully discrete system

Writing tj = jAt and uj an approximation of up(t;) the fully discrete
system reads

ﬁ(unﬂ —2Up + Up—1,V) + (ln, v) + (Vup, Vv)

+ <«/1 + adxt i(ty), v> = (fp, v),
where i, = ﬁt(unﬂ — Up—1).

e To obtain an energy identity test again with v = i, (for f = 0) and
sum over n to obtain

N N
Eniij2 = Eijp — At oflin|® — At <«/1 +adpt i(tn), un> :

n=0 n=0
where the discrete energy

1

2
Uny1 — Up
En+1/2 = 5

At

is positive under the usual CFL condition.

1
+ E(vuna v'Jr7+1)
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Positivity of the discretized boundary term [LB, Lubich, Sayas 2014]

Lemma
We have

n=0

EN: <\/ 1+ adp, v(tn), vn> > 0.

Proof is similar and requires that

Re /1 + a/sAt > 0.

@ This is true as long as st avoids the negative real axis.

@ For s = iw, s™t traverses the boundary of the stability region, hence
the above holds for A(#)-stable methods.
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Different time-steps: version 1
The time-step may be severely restricted by the CFL condition. So use
k= At/k, k € N,

in the interior. Denote t, = nAt + (x = nAt + (¢/k)At and up, the
corresponding approximation.

é(un,é—i-l - 2Un7£ + Upye—1, V) + (ailn7£7 V) + (Vun,€7 vV)

+ (V14 ettt ) = ()

- 1
where i, = 5-(Upet1 — Une—1).

@ To obtain an energy identity test again with v = i1, , and sum over n
and { to obtain

k—1 N k=1 N

EN,1/2 = E071/2—I€Z ZO&HL'I,,Hz—/{,Z Z <\/ 1+ a@;i l'l(tn‘[), L'ln’g>

/=0 n=0 (=0 n=0
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Comments on version 1

00
A/ 1+ aé)&% U(l’mg) = ij'l'Jn_j,g.
=0

o Note

@ The boundary term is again positive since it is positive for each ¢:

N

Z <mu(tmf)a un,é> > 0.

n=0

@ Only need to compute N weights and each convolution requires N
multiplications, rather than kN.

@ But we still need to compute the whole convolution for each t,,. Can
this be improved?

14 /25



A bad version
Let us throw caution to the wind and try

%(Un,é—l—l - 2Un,é + Upe—1, V) + (OéL'Img, V) + (Vun,fv VV)

n <m i(tn), v> = (faesv),

First compute with the stable version:
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A bad version
Let us throw caution to the wind and try

%(Un,@rl - 2un,€ + Upe—1, V) + (Oél'l,hg, V) + (Vun,€7 VV)

4 <m i(ty), v> = (faesv),

Instability occurs eventually with the ad-hoc version:
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Version 2: cheaper and stable
Idea: Apply the boundary operator to a different approximation of i:

%(Un,@rl - 2un,€ + Upe—1, V) + (O(L'J,Lg, V) + (Vun,€7 VV)

. <m W(t), > = (s V).

@ Testing with v = i, ; we obtain

k N
Eni/ = Eonjs— nzzanunnz S <\/1 a0 i(t), w)

=1 n=0 ¢=1 n=0
k
— Boypo —AtZaHunH —Atz <M i(t) ,izuw>,
(=1
@ Energy balance is obtained by choosing
B k
up, = % Une
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Comments on version 2

@ Now the convolution is only evaluated N times.
@ The convergence order has been reduced.
@ The boundary and domain values of u are strongly coupled.

@ In [Abboud et al. ,2011] the authors consider a predictor-corrector
strategy to solve a similar system.

@ With all the versions the memory connected to the boundary is
infinite.
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Weights and inverse Laplace transform

@ Another representation of wjs is useful for n > 1

= 5= /0+|R V14 a/sey(sAt)ds

where for Backward Euler

1
n(z) = ———, Note:
en(2) A=) oter -——

= &7 + 0(2%).
@ Similar to inverse Laplace computations use

Wn 2m/\/1+a/sen (sAt)d

with [ a hyperbola or Talbot contour and discretize by a truncated
trapezoid rule.

@ To obtain uniform quadrature errors us different contours I'; for

€ [B"1At,2B"At).
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Oblivious quadrature [Schadle, Lépez Ferndndez, Lubich 2005]
Split the discrete convolution as

n
(0) L
Vbl = ) Wnojllj = Vo oo Vi,

with
I 1— 1

( )1 = wou, and v +1 = g Wn—jUj,

where bg = N, by =0, and . '
for i € [bj, bi_1 — 1] we have n—j € [B'"1,2B" —2].
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Oblivious quadrature [Schadle, Lépez Ferndndez, Lubich 2005]
Split the discrete convolution as

Vgl = an—jUj = 5,(331 +o Vi
with
,(1+)1 = wou, and Vn+1 = Z Wn—jUj,
where bg = N, by =0, and
for i € [b;, bi_1 — 1] we have n— j € [B'~1,2B" — 2].

111

1 .
n+1_ Z Wn—jlj = /F n—(b;_1—1)(sh) 1—|—a/sy(’)(hs)ds

with bi_1—1

vy (hs) = h Z e(b;_,—1)_j(hs)uj

Jj=bi
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Oblivious quadrature [Schadle, Lépez Ferndndez, Lubich 2005]

Some comments regarding the algorithm:
o y()(hs) is the Backward-Euler approximation at t = b;_1h to
u =sy+g(t),  y(bih)=0.
@ This ODE needs to be solved for L contours I'; and the corresponding
2K + 1 quadrature points S,E') = @i(xk)-

o There are only (2K + 1)L = O(log N log 1) evaluations of \/1+ a/s
((K + 1)L when using symmetry).

@ To compute N steps after t, > r, required number of multiplications
is O(Nlog N) with O(log N) memory stored.



Relation to time-domain boundary integral equations
Laplace domain fundamental solutions K(r,s) = (£k) (r,s)

1 o—VFrasr
2D: K(r,s) = EKo(rs), damped 3D: K(r,s) = —

e Note K(s, r)e* bounded for Re s > 0 — causality. But more is true.
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Relation to time-domain boundary integral equations

Laplace domain fundamental solutions K(r,s) = (Zk)(r,s)

1 o—VFrasr
2D: K(r,s) = %Ko(rs), damped 3D: K(r,s) = —

e Note K(s, r)e* bounded for Re s > 0 — causality. But more is true.

Late-time behaviour of fundamental solution [LB,Gruhne 2011]

Dissipative and 2D wave equations have infinite memory but the kernel
has a parabolic behaviour for t > r:

[K(r,s)e®| < Cls|*, s €C\(-00,0]

pu = —1/2 for Ko(-) and p = 0 for 3D dissipative wave equation.

For how to combine this observation with oblivious quadrature ideas see
work in progress with Lépez-Fernandez and Schadle.
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Conclusions

@ Coupling of explicit/implicit schemes based on energy balance.

@ Relevant also to the coupling of FEM/BEM in the time domain as the
time-domain boundary integral equations are discretizaed by implicit
mehods.

@ Oblivious quadrature reduces memory requirements and is also
applicable to wave propagation problems and time-domain boundary
integral equations.
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