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A model problem: Damped wave equation

Consider, for some bounded domain Ω with boundary Γ,

1

c(x)2
∂2
t u + α∂tu −∆u = f , in Ω× R>0,

u(·, 0) = u0, ∂tu(·, 0) = v0, in Ω,

∂νu = −
√
∂2
t + α∂t u, on Γ× R>0,

with f , u0, v0, c(x)− 1, compactly supported in Ω and α > 0.

We can think of this as the damped wave equation with
corresponding zero-order absorbing boundary condition.

Note that u = 0 near Γ at time t = 0.
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Motivation behind the problem
Some properties of the

√
∂2
t + α∂t :

A non-local operator with infinite memory.

Taking the Laplace transform(
L
√
∂2
t + α∂t

)
(s) =

√
s2 + αs

we obtain an operator analytic and polynomially bounded in
C \ (−∞, 0] – an operator of parabolic type.

Motivation for considering:

Similarities with 2D and damped wave equation fundamental
solutions:

H(t − r)

4
√
t2 − r2

– 2D
e−
√
s2+αs r

4πr
– 3D damped in Laplace domain.

Gives a simple example of a coupled linear hyperbolic/parabolic
system, where the coupling of different time-discretizations is of
interest.
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Meaning of
√
∂2
t + α∂t .

For sufficiently smooth causal f and F (s) = (L f )(s)

(L (∂t f )) (s) = sF (s).

Note that ∂t f can be understood as the convolution

δ′ ∗ f .

Similarly √
∂2
t + α∂t f (t) =

∫
σ+iR

est
√
s2 + αs F (s)ds

and can also be understood as a convolution, which is continuous and
causal if

|L f (s)| ≤ C |s|−µ

for µ > 2 and Re s ≥ σ > 0.
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Variational formulation and spatial discretization

Let Sh ⊂ H1(Ω) be a piecewise linear finite element space. Find
uh(·, t) ∈ Sh such that

(∂2
t uh+α∂tuh, v)L2(Ω)+(∇uh,∇v)L2(Ω)+

〈√
∂2
t + α∂t uh, v

〉
L2(Γ)

= (f , v)L2(Ω)

and uh(0) = u0,h, ∂tuh(0) = v0,h.

We plan to discretize u̇ and ∂−1
t with different discretization schemes.

Testing with v = u̇h we obtain the energy identity (for f = 0)

E (t) = E (0)−
∫ t

0
α‖u̇h‖2

L2(Ω)dτ −
∫ t

0

〈√
1 + α∂−1

t u̇h, u̇h

〉
L2(Γ)

dτ .

where
E (t) = 1

2‖u̇h‖
2
L2(Ω) + 1

2‖∇uh‖
2
L2(Ω).
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Positivity of the boundary term [LB, Lubich, Sayas 2014]

Lemma

For a sufficiently smooth causal ϕ(·, t) ∈ H1/2(Γ)∫ t

0

〈√
1 + α∂−1

t ϕ,ϕ

〉
L2(Γ)

dτ ≥
∫ t

0
‖ϕ‖2dτ.

Proof: For σ > 0 consider∫
R
e−2στ

〈√
1 + α∂−1

t ϕ,ϕ

〉
L2(Γ)

dτ =

∫
R

√
1 + αs−1‖Φ(s)‖2dω,

where, s = σ + iω, Φ(s) = Lϕ(s). The proof is finished by noticing that

Re
√

1 + αs−1 ≥ 1 =⇒∫
R
e−2στ

〈√
1 + α∂−1

t ϕ,ϕ

〉
L2(Γ)

dτ ≥
∫
R
e−2στ‖ϕ‖2dτ.
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Discretizing
√
∂2
t + α∂t – Convolution quadrature [Lubich ’88]

∂tu(t) ≈ ∂∆tu(t) =
u(t)− u(t −∆t)

∆t
. Then

(L ∂∆tu) (s) =

(
1− e−s∆t

∆t

)
U(s) = s∆tU(s).

Note s∆t = s(1 + O(s∆t)).

Similarly

√
1 + α∂−1

t u(t) ≈
√

1 + α∂−1
∆t u(t) where(

L
√

1 + α∂−1
∆t u

)
(s) =

√
1 + αs−1

∆t U(s).

Expanding √
1 + αs−1

∆t =
∞∑
j=0

ωje
−sj∆t

we get that √
1 + α∂−1

∆t u(t) =
∞∑
j=0

ωju(t − tj).
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Computing the weights ωj and extensions

The weights are Taylor coefficients of the analytic function√
1 + α

∆t

1− z
=
∞∑
j=0

ωjz
j

and can hence be efficiently computed using contour integrals and
FFTs.

Similarly higher order A(θ)-stable linear multistep or Runge-Kutta
methods can be used as the basis for discretization.

Example for α = 1/2, ∆t = 1/100:

j 0 1 2 3

ωj 1.0024969 0.0024938 0.0024907 0.0024876
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Fully discrete system
Writing tj = j∆t and uj an approximation of uh(tj) the fully discrete
system reads

1
∆t2 (un+1 − 2un + un−1, v) + (αu̇n, v) + (∇un,∇v)

+

〈√
1 + α∂−1

∆t u̇(tn), v

〉
= (fn, v),

where u̇n = 1
2∆t (un+1 − un−1).

To obtain an energy identity test again with v = u̇n (for f = 0) and
sum over n to obtain

EN+1/2 = E1/2 −∆t
N∑

n=0

α‖u̇n‖2 −∆t
N∑

n=0

〈√
1 + α∂−1

∆t u̇(tn), u̇n

〉
,

where the discrete energy

En+1/2 =
1

2

∥∥∥∥un+1 − un
∆t

∥∥∥∥2

+
1

2
(∇un,∇un+1)

is positive under the usual CFL condition.
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Positivity of the discretized boundary term [LB, Lubich, Sayas 2014]

Lemma

We have
N∑

n=0

〈√
1 + α∂−1

∆t v(tn), vn

〉
≥ 0.

Proof is similar and requires that

Re
√

1 + α/s∆t > 0.

This is true as long as s∆t avoids the negative real axis.

For s = iω, s∆t traverses the boundary of the stability region, hence
the above holds for A(θ)-stable methods.
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Different time-steps: version 1
The time-step may be severely restricted by the CFL condition. So use

κ = ∆t/k , k ∈ N,

in the interior. Denote tn,` = n∆t + `κ = n∆t + (`/k)∆t and un,` the
corresponding approximation.

1
κ2 (un,`+1 − 2un,` + un,`−1, v) + (αu̇n,`, v) + (∇un,`,∇v)

+

〈√
1 + α∂−1

∆t u̇(tn,`), v

〉
= (fn,`, v),

where u̇n,` = 1
2κ(un,`+1 − un,`−1).

To obtain an energy identity test again with v = u̇n,` and sum over n
and ` to obtain

EN,1/2 = E0,1/2−κ
k−1∑
`=0

N∑
n=0

α‖u̇n‖2−κ
k−1∑
`=0

N∑
n=0

〈√
1 + α∂−1

∆t u̇(tn,`), u̇n,`

〉
.
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Comments on version 1

Note √
1 + α∂−1

∆t u̇(tn,`) =
∞∑
j=0

ωj u̇n−j ,`.

The boundary term is again positive since it is positive for each `:

N∑
n=0

〈√
1 + α∂−1

∆t u̇(tn,`), u̇n,`

〉
≥ 0.

Only need to compute N weights and each convolution requires N
multiplications, rather than kN.

But we still need to compute the whole convolution for each tn,`. Can
this be improved?

14 / 25



A bad version
Let us throw caution to the wind and try

1
κ2 (un,`+1 − 2un,` + un,`−1, v) + (αu̇n,`, v) + (∇un,`,∇v)

+

〈√
1 + α∂−1

∆t u̇(tn), v

〉
= (fn,`, v),

First compute with the stable version:
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-1

-0.5

0

0.5

1
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2
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Version 2: cheaper and stable
Idea: Apply the boundary operator to a different approximation of u̇:

1
κ2 (un,`+1 − 2un,` + un,`−1, v) + (αu̇n,`, v) + (∇un,`,∇v)

+

〈√
1 + α∂−1

∆t
˜̇u(tn), v

〉
= (fn,`, v).

Testing with v = u̇n,` we obtain

EN,1/2 = E0,1/2 − κ
k∑
`=1

N∑
n=0

α‖u̇n‖2 − κ
k∑
`=1

N∑
n=0

〈√
1 + α∂−1

∆t
˜̇u(tn), u̇n,`

〉

= E0,1/2 −∆t
N∑

n=0

α‖u̇n‖2 −∆t
N∑

n=0

〈√
1 + α∂−1

∆t
˜̇u(tn), 1

k

k∑
`=1

u̇n,`

〉
.

Energy balance is obtained by choosing

˜̇un = 1
k

k∑
`=1

u̇n,`.
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Comments on version 2

Now the convolution is only evaluated N times.

The convergence order has been reduced.

The boundary and domain values of u are strongly coupled.

In [Abboud et al. ,2011] the authors consider a predictor-corrector
strategy to solve a similar system.

With all the versions the memory connected to the boundary is
infinite.
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Weights and inverse Laplace transform

Another representation of ωjs is useful for n > 1

ωn =
∆t

2πi

∫
σ+iR

√
1 + α/s en(s∆t)ds

where for Backward Euler

en(z) =
1

(1− z)n+1
, Note:

1

1− z
= ez + O(z2).

Similar to inverse Laplace computations use

ωn =
∆t

2πi

∫
Γ

√
1 + α/s en(s∆t)ds,

with Γ a hyperbola or Talbot contour and discretize by a truncated
trapezoid rule.

To obtain uniform quadrature errors us different contours Γi for

tn ∈ [Bn−1∆t, 2Bn∆t).
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Oblivious quadrature [Schädle, López Fernández, Lubich 2005]

Split the discrete convolution as

vn+1 =
n∑

j=0

ωn−juj = v
(0)
n+1 + · · ·+ vLn+1,

with

v
(0)
n+1 = ω0un and v

(i)
n+1 =

bi−1−1∑
j=bi

ωn−juj ,

where b0 = N, bL = 0, and
for i ∈ [bi , bi−1 − 1] we have n − j ∈ [B i−1, 2B i − 2].

v
(i)
n+1 =

bi−1−1∑
j=bi

ωn−juj =
1

2πi

∫
Γi

en−(bi−1−1)(sh)
√

1 + α/sy (i)(hs)ds

with

y (i)(hs) = h

bi−1−1∑
j=bi

e(bi−1−1)−j(hs)uj .
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Oblivious quadrature [Schädle, López Fernández, Lubich 2005]

Some comments regarding the algorithm:

y (i)(hs) is the Backward-Euler approximation at t = bi−1h to

u′ = sy + g(t), y(bih) = 0.

This ODE needs to be solved for L contours Γi and the corresponding

2K + 1 quadrature points s
(i)
k = ϕi (xk).

There are only (2K + 1)L = O(logN log 1
ε ) evaluations of

√
1 + α/s

((K + 1)L when using symmetry).

To compute N steps after tn > r , required number of multiplications
is O(N logN) with O(logN) memory stored.
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Relation to time-domain boundary integral equations
Laplace domain fundamental solutions K (r , s) = (L k) (r , s)

2D: K (r , s) =
1

2π
K0(rs), damped 3D: K (r , s) =

e−
√
s2+αs r

4πr
.

Note K (s, r)esr bounded for Re s > 0 – causality. But more is true.

Late-time behaviour of fundamental solution [LB,Gruhne 2011]

Dissipative and 2D wave equations have infinite memory but the kernel
has a parabolic behaviour for t > r :

|K (r , s)ers | ≤ C |s|µ, s ∈ C \ (−∞, 0]

µ = −1/2 for K0(·) and µ = 0 for 3D dissipative wave equation.

For how to combine this observation with oblivious quadrature ideas see
work in progress with López-Fernández and Schädle.
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Conclusions

Coupling of explicit/implicit schemes based on energy balance.

Relevant also to the coupling of FEM/BEM in the time domain as the
time-domain boundary integral equations are discretizaed by implicit
mehods.

Oblivious quadrature reduces memory requirements and is also
applicable to wave propagation problems and time-domain boundary
integral equations.
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