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IGA is based on spline theory
B-Splines are defined by the Cox-DeBoor formulae:
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NURBS: projection of splines in Rd+1 ... no need for this talk.
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Construction of approximation spaces

F−−−−−−−→

The geometry Ω and its NURBS parametrization F is “given” by CAD
general geometry: unstructured collection of “patches”.

The discrete space on Ω is the push-forward of Spline/NURBS

Refinement by knot insertion and degree elevation, geometry
unchanged.
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General geometries are multi-patch

G(i)
G(i,k) Ω(i,k)

Ω(i)

Q(i,k)

Q

Q

Figure 5: Embedding smaller subdomains Q(i,k) into the original
parameter domain Q(i).

5.3. Substructuring and primal DOF

When we refine by substructuring, we introduce situa-
tions where the vertex of one subdomain coincides with the
edge of another subdomain. Such cases are illustrated in
Fig. 3(c) and Fig. 6(a). We call such a subdomain vertex a
hanging subdomain vertex (or short hanging vertex ). Note
that not every T-shaped subdomain vertex is a hanging
vertex, as illustrated in the example in Fig. 6(b).

Ω(1)

Ω(2)

Ω(3)

(a) Hanging subdomain vertex
marked by dashed circle.

Ω(1)

Ω(2)

Ω(3)

(b) T-shaped, but not hanging
subdomain vertex.

Figure 6: Examples for hanging and not hanging subdomain vertices.

The choice of primal DOF in substructured subdo-
mains, where we have hanging vertices, is not as straight-
forward as in the fully matching case. In the example of
a hanging vertex in Fig. 6(a), there is exactly one DOF
on Ω(2) that is associated with the hanging vertex marked
by the dashed circle (cf. the discussion at the beginning of
Section 4.3). While the same applies to Ω(3), this is not
true on Ω(1), where we have several NURBS basis functions
which are nonzero at the marked hanging vertex. Instead
of incorporating a special treatment of hanging vertices,
we choose to omit primal DOF at hanging vertices and
discuss under which conditions this is possible.

For the scalar elliptic problem (I), the kernel of the
stiffness matrix of a floating subdomain is spanned by the
constant function, i.e. the kernel has dimension one. In
this case, it is sufficient to have at least one primal DOF on
each subdomain. This is easily guaranteed, if we start from
a fully matching setting, apply substructuring by cross-
insertion as described in Section 5.2, and select primal
DOF at all subdomain vertices which are not hanging.

The example in Fig. 7(a) shows the positions of primal
DOF after two cross insertions.

(a) Cross-insertion results
in at least one primal DOF
on each subdomain.

(b) 1-level refinement re-
sults in at least two primal
DOF on each subdomain.

Figure 7: Subdomains refined by substructuring. Positions of primal
DOF marked by ©.

For the two-dimensional linearized elasticity problem
(II), where the kernel is spanned by the three rigid body
modes, we need at least two primal DOF per subdomain.
As illustrated in Fig. 7(a), this is not guaranteed if we
apply substructuring by cross-insertion without additional
considerations.

For linearized elasticity problems, we introduce refine-
ment levels and we assign refinement level 0 to every sub-
domain in the initial setting. When a subdomain is split
into four smaller subdomains by cross insertion, the levels
of the new, smaller subdomains are increased by 1 (see
Fig. 8 for an illustration). We call the refinement a 1-
level substructuring, if the refinement levels of any two
subdomains with an edge as their interface differ by at
most 1. If we start from a fully matching setting, apply
1-level substructuring by cross-insertion, and choose all
non-hanging vertices as primal DOF, then it is guaranteed
that there are at least two primal DOF on each subdo-
main. The example in Fig. 7(b) illustrates the positions
of primal DOF after two such 1-level substructuring steps.
Note that, depending on the location of the refined area, 1-
level substructuring can effect neighbouring subdomains.
This disadvantage is accepted as a trade-off for avoiding
an involved treatment of hanging vertices.
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2

Figure 8: Refinement levels of subdomains (initial stetting as in
Fig. 3(a)).

Note that the discretization is only C0-continuous along
subdomain interfaces. By substructuring a subdomain,
new interfaces are introduced, and thereby the discretiza-
tion is changed.

5.4. Preconditioning in the presence of hanging knots

As mentioned in Section 5.1, when we have hanging
knots, the coupling matrix B(i) is not a signed Boolean
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B. Direct modeling of volumes in the IsogeometricModel 

The isogeometric representation is based on NURBS, and 
consequently elementary shapes (cylinder, sphere, cones, 
torus, …) can be represented exactly. Compositions of such 
exact elementary volumes, however, cannot in general have an 
exact representation. E.g., in the general case the intersection 
curve between two cylinders cannot be represented exactly by 
NURBS, see Figure 5. The process of producing a sufficiently 
accurate approximation of such compositions will typically 
include a number of steps to reach a description fulfilling the 
analysis requirements. Consequently the IsogeometricModel 
has to include information about model quality and tolerances, 
just as in the case of boundary structures for CAD. 

C. Creating the IsogeometricModel from a CAD-model 
As isogeometric analysis employs NURBS, it might seem 

that creating an IsogeometricModel from a CAD-model is 
simple. However, the patch structure of CAD-models reflects 
the design approach, and will most often be very different 
from the NURBS-block structure required for analysis, as 
shown in Figure 6. Consequently an isogeometric block 
structure has to be designed by only using the shape of the 
CAD-model and in most cases disregarding the CAD-model’s 
segmentation of the shape into surface elements. 

 

 

D. An example of an isogeometric data structure 
As we want to be able to build the IsogeometricModel 

starting from CAD-models, coherence with STEP-type CAD-
models is essential. Figure 7 depicts an attempt of creating 
such a structure.  

 
Remarks:  
x In the figure we have used the concept of rational 

splines to both include rational descriptions such as 
NURBS as well as the emerging Locally Refined 
Splines such as T- Splines [10],  and the LR-Splines 
currently being investigated by the authors of this 
paper. 

x The boundary structure has to be non-manifold 
following the ideas in [13], as more than two volumes 
can meet along a common edge. Consequently the data 
structure has to be much more flexible than the 
boundary structures of current CAD-systems. When 
only using the curve and surface part of the structure, 
however, one requirement should be that current CAD-

 

 
Fig. 6. The patch structure of a CAD-model from the automotive industry. It 
contains many small trimmed surfaces, and a patch structure not suited for 
the IsogeometricModel.
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Fig. 7. An example of an extension of the traditional surface oriented 
boundary structure to also support volumetric isogeometric analysis. 

Fig. 5. The intersection between two tubes cannot be represented by a 3D 
NURBS curve; consequently also the trivariate transition in the isogeometric 
NURBS representation will have to be approximated. To ensure that vertices 
match and fulfill the analysis requirement, the large tube has to be 
segmented into a number of subvolumes.  

Question: How to enhance flexibility?
Question: How to treat non conforming interfaces?
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The choice of primal DOF in substructured subdo-
mains, where we have hanging vertices, is not as straight-
forward as in the fully matching case. In the example of
a hanging vertex in Fig. 6(a), there is exactly one DOF
on Ω(2) that is associated with the hanging vertex marked
by the dashed circle (cf. the discussion at the beginning of
Section 4.3). While the same applies to Ω(3), this is not
true on Ω(1), where we have several NURBS basis functions
which are nonzero at the marked hanging vertex. Instead
of incorporating a special treatment of hanging vertices,
we choose to omit primal DOF at hanging vertices and
discuss under which conditions this is possible.

For the scalar elliptic problem (I), the kernel of the
stiffness matrix of a floating subdomain is spanned by the
constant function, i.e. the kernel has dimension one. In
this case, it is sufficient to have at least one primal DOF on
each subdomain. This is easily guaranteed, if we start from
a fully matching setting, apply substructuring by cross-
insertion as described in Section 5.2, and select primal
DOF at all subdomain vertices which are not hanging.

The example in Fig. 7(a) shows the positions of primal
DOF after two cross insertions.

(a) Cross-insertion results
in at least one primal DOF
on each subdomain.

(b) 1-level refinement re-
sults in at least two primal
DOF on each subdomain.

Figure 7: Subdomains refined by substructuring. Positions of primal
DOF marked by ©.

For the two-dimensional linearized elasticity problem
(II), where the kernel is spanned by the three rigid body
modes, we need at least two primal DOF per subdomain.
As illustrated in Fig. 7(a), this is not guaranteed if we
apply substructuring by cross-insertion without additional
considerations.

For linearized elasticity problems, we introduce refine-
ment levels and we assign refinement level 0 to every sub-
domain in the initial setting. When a subdomain is split
into four smaller subdomains by cross insertion, the levels
of the new, smaller subdomains are increased by 1 (see
Fig. 8 for an illustration). We call the refinement a 1-
level substructuring, if the refinement levels of any two
subdomains with an edge as their interface differ by at
most 1. If we start from a fully matching setting, apply
1-level substructuring by cross-insertion, and choose all
non-hanging vertices as primal DOF, then it is guaranteed
that there are at least two primal DOF on each subdo-
main. The example in Fig. 7(b) illustrates the positions
of primal DOF after two such 1-level substructuring steps.
Note that, depending on the location of the refined area, 1-
level substructuring can effect neighbouring subdomains.
This disadvantage is accepted as a trade-off for avoiding
an involved treatment of hanging vertices.

00
1 1

11

1

2

Figure 8: Refinement levels of subdomains (initial stetting as in
Fig. 3(a)).

Note that the discretization is only C0-continuous along
subdomain interfaces. By substructuring a subdomain,
new interfaces are introduced, and thereby the discretiza-
tion is changed.

5.4. Preconditioning in the presence of hanging knots

As mentioned in Section 5.1, when we have hanging
knots, the coupling matrix B(i) is not a signed Boolean
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B. Direct modeling of volumes in the IsogeometricModel 

The isogeometric representation is based on NURBS, and 
consequently elementary shapes (cylinder, sphere, cones, 
torus, …) can be represented exactly. Compositions of such 
exact elementary volumes, however, cannot in general have an 
exact representation. E.g., in the general case the intersection 
curve between two cylinders cannot be represented exactly by 
NURBS, see Figure 5. The process of producing a sufficiently 
accurate approximation of such compositions will typically 
include a number of steps to reach a description fulfilling the 
analysis requirements. Consequently the IsogeometricModel 
has to include information about model quality and tolerances, 
just as in the case of boundary structures for CAD. 

C. Creating the IsogeometricModel from a CAD-model 
As isogeometric analysis employs NURBS, it might seem 

that creating an IsogeometricModel from a CAD-model is 
simple. However, the patch structure of CAD-models reflects 
the design approach, and will most often be very different 
from the NURBS-block structure required for analysis, as 
shown in Figure 6. Consequently an isogeometric block 
structure has to be designed by only using the shape of the 
CAD-model and in most cases disregarding the CAD-model’s 
segmentation of the shape into surface elements. 

 

 

D. An example of an isogeometric data structure 
As we want to be able to build the IsogeometricModel 

starting from CAD-models, coherence with STEP-type CAD-
models is essential. Figure 7 depicts an attempt of creating 
such a structure.  

 
Remarks:  
x In the figure we have used the concept of rational 

splines to both include rational descriptions such as 
NURBS as well as the emerging Locally Refined 
Splines such as T- Splines [10],  and the LR-Splines 
currently being investigated by the authors of this 
paper. 

x The boundary structure has to be non-manifold 
following the ideas in [13], as more than two volumes 
can meet along a common edge. Consequently the data 
structure has to be much more flexible than the 
boundary structures of current CAD-systems. When 
only using the curve and surface part of the structure, 
however, one requirement should be that current CAD-

 

 
Fig. 6. The patch structure of a CAD-model from the automotive industry. It 
contains many small trimmed surfaces, and a patch structure not suited for 
the IsogeometricModel.
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Fig. 7. An example of an extension of the traditional surface oriented 
boundary structure to also support volumetric isogeometric analysis. 

Fig. 5. The intersection between two tubes cannot be represented by a 3D 
NURBS curve; consequently also the trivariate transition in the isogeometric 
NURBS representation will have to be approximated. To ensure that vertices 
match and fulfill the analysis requirement, the large tube has to be 
segmented into a number of subvolumes.  

Question: How to enhance flexibility?
Question: How to treat non conforming interfaces?
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Perfect setting for adaptivity
if splines can support local refinement

T-splines : Sederberg et al 2004, Hughes, Scott, Evans, Li, Zhang, ... Pavia team

Pure geometric modeling approach:

courtesy of M. Scott

LR-splines Dokken et al. 2013, Bressan 2013

Definition Rn, spline theory of LR-Splines

CIME-EMS Summer School June 18 - June 22, 2012 – Cetraro, Italy

The use of 

� A theorem for general dimensions and degrees states
��� ����� ఊܤ ஻ࣜאം�

൑ ��� �ॺ࢖ ௝ࣧାଵǡ ௝ାଵߤ െ ��� �ॺ࢖ ௝ࣧǡ ௝ߤ �

� Further it is stated that ௝ࣜାଵ spans �ॺ࢖ ௝ࣧାଵǡ ௝ାଵߤ if
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1
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௝ࣧାଵǡ ௝ାଵߤ

2

Checking the dimension of the 
space spanned by ࣜఊ is a 
constructive tool to check if ௝ࣜାଵ
spans the spline space required.

We can find �ॺ࢖ ௝ࣧǡ ௝ߤ and  
�ॺ࢖ ௝ࣧାଵǡ ௝ାଵߤ using the 
dimension formula provided the 
homology terms are zero.

Hierarchical splines Kraft 1998, ...

the closest to adaptive finite elements on quadrangular meshes
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Hierarchical splines
Kraft 1998, Giannelli, Jüttler, Simeon, Speelers, Voung 2010–2013, B.-Giannelli
2014

488 C. Giannelli et al. / Computer Aided Geometric Design 29 (2012) 485–498

(a) nested domains (b) hierarchical mesh

Fig. 2. A nested sequence of domains for the construction of the spline hierarchy according to relation (1), i.e., Ω" ⊇ Ω"+1 for " = 0, . . . ,2, for the two-
dimensional case.

(a) Only dyadic refinement is considered.
(b) Ω"+1 is restricted to be the union of supports of B-splines of level ".
(c) The boundaries of adjacent domains Ω" and Ω"+1 must be disjoint.
(d) The modified support definition (2) is not used and H0 is initialized as the set of B-splines in B0 whose support is

completely contained in Ω0.

Moreover, the definition in Kraft’s thesis (Kraft, 1998) additionally considers the auxiliary subdomain

ω" =
{

x ∈ Ω"
∣∣ ∀β ∈ B": x ∈ suppβ ⇒ suppβ ⊆ Ω"

}
,

for " = 0, . . . , N − 1, which represents the biggest subset of Ω" such that H"
B spans the restriction of V " to ω" . He requires

that these subdomains are nested as well,

(e) ω" ⊇ ω"+1,

which implies (c).
Definition 1 was firstly considered by Vuong et al. (2011). It allows for refinement close to subdomain boundaries ∂Ω" ,

which was not covered by the original construction presented in Kraft (1997). Throughout this paper, the notion of hierar-
chical B-splines (HB) refers to Definition 1 without Kraft’s restrictions (a–e).

Hierarchical B-splines do not satisfy the partition of unity property. In addition, the number of overlapping basis func-
tions associated to different hierarchical levels easily increases. This motivates the construction of another basis for the
hierarchical spline space. The key idea behind the proposed approach relies on the following definition.

Definition 2. Let τ ∈ V " and let

τ =
∑

β∈B"+1

c"+1
β (τ )β, c"+1

β ∈ R, (3)

be its representation with respect to the finer basis of V "+1. The truncation of τ with respect to B"+1 and Ω"+1 is defined
as

trunc"+1 τ =
∑

β∈B"+1,supp β '⊆Ω"+1

c"+1
β (τ )β. (4)

By applying the truncation mechanism to hierarchical B-splines of coarse levels, we can introduce the THB-spline basis.

Definition 3. The truncated hierarchical B-spline basis T is recursively constructed as follows:

(I) Initialization: T 0 = H0.
(II) Recursive case: T "+1 = T "+1

A ∪ T "+1
B , for " = 0, . . . , N − 2, where

T "+1
A =

{
trunc"+1 τ : τ ∈ T " ∧ suppτ '⊆ Ω"+1},
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V0 ⊂ V1 ⊂ V2... ⊂ VJ

Refinement has to contain at least one function : (p + 1)2 elements

Definition of truncated-basis ensuring good spline properties
Giannelli, Juettler, Speelers

A. Buffa (IMATI-CNR Italy) IGA mortaring 7 / 29
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Adaptivity with hierarchical splines
B. and Giannelli, 2014

Residual based estimator: ηQ = hQ‖Auh − f ‖L2(Q) (no jumps)

Dörfler marking E(uh,M) ≥ θE(uh,T), 0 < θ < 1;

Suitable local quasi-interpolant and their approximation properties

The theory of adaptive methods
Morin, Nochetto, Siebert –Binev, Dahmen, DeVore 2002–2005

⇒ Convergence and optimality !

. . . but this is another story . . .
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Non conforming interfaces and mortaring

Let Ω be a computational domain in Rn, we want to solve the Laplace
problem (or linear elasticity with minor changes)

−div (A∇u) = f

with boundary conditions ∂Ω = Γ̄D ∪ Γ̄N .

u = 0 on ΓD and (A∇u) · n = h on ΓN

We suppose that

Ω =
⋃N

i Ωi , Ωi = Fi (Ω̂), Γij = ∂Ωi ∩ Ωj ,

Fi are splines (or NURBS)

non compatible meshes at the interfaces Γij
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About the admissible partition of the domain

n1

n2

�1

�2
�3

“2

�m(2)

“1

�s(1)

�m(1)

�s(2)
n1

n2

�1

�2

�3“1

�s(1)

“2

�s(2)

�m(1)

�m(2)

Figure 1: Geometrical conforming case (left) and slave conforming case (right).

Under these assumptions, we are not necessarily in a geometrically conforming135

situation, but we call it a slave conforming situation, see the right setting in

Figure 1. If we also assume that the pull-back with respect to the master domain

is a whole face of the unit d-cube, we are in a fully geometrically conforming

situation, see the left picture of Figure 1.

3.2. The variational problem140

In the following, we recall main functional analysis properties to introduce

our abstract framework and then set the variational problem.

We use standard Lebesgue and Sobolev spaces on a bounded Lipschitz do-

main D µ Rd≠1 or D µ Rd. L2(D) denotes the Lebesgue space of square

integrable functions, endowed with the norm ÎfÎL2(D) = (
s
D

|f |2 dx)1/2. For145

l œ N, H l(D) denotes the Sobolev space of functions f œ L2(D) such that their

weak derivatives up to the order l are also in L2(D). For fractional indices

s > 0, Hs(D) denotes the fractional Sobolev spaces as defined in [34]. Let us

mention that H1/2(ˆD) is the trace space of H1(D).

The Sobolev space of order one with vanishing trace is H1
0 (D) = {v œ150

H1(D), tr(v) = 0}. Working on subsets of the boundary “ µ ˆD, special

care has to be taken about the values on the boundary of “. We define by

H
1/2
00 (“) µ H1/2(“) the space of all functions that can be trivially extended

on ˆD \ “ by zero to an element of H1/2(ˆD). The dual space of H
1/2
00 (“)

is denoted H≠1/2(“). Note that on closed surfaces, i.e., “ = ˆD, it holds155

8

Decomposition can be conforming or non-conforming

We can handle the case when Γij is a face of either Ωi or Ωj .

There is the need for cross-point treatment/reduction

Non compatible geometries interfaces at the interfaces Γij (?)

A. Buffa (IMATI-CNR Italy) IGA mortaring 10 / 29
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We can handle the case when Γij is a face of either Ωi or Ωj .

There is the need for cross-point treatment/reduction

Non compatible geometries interfaces at the interfaces Γij (?)

A. Buffa (IMATI-CNR Italy) IGA mortaring 10 / 29



Non conforming interfaces and mortaring
Let Sp(T̂j) be the space of tensor product splines/NURBS of degree p, on

the knot mesh T̂j .

in each subdomain Ωj ,

Vj = {vj ∈ H1(Ωj) : v ◦ Fj ∈ Sp(T̂j)}

V = {v ∈ L2(Ω) : v|Ωj
∈ Vj , v|ΓD

= 0} ‖v‖2
V =

N∑
i=1

‖v‖2
H1(Ωj )

.

Interface numbering and spaces

Σ0 =

nI⋃
`=1

Γ` , ∀` ∃(i`, j`) : Γ` = ∂Ωi` ∩ Ωj` .

Continuity across Σ0 imposed via Lagrange multipliers:

M = {λ ∈ L2(Σ0) : λ` = λ|Γ`
∈ M`}

M` to be chosen properly!
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Variational formulation of the problem
Find uh ∈ V , λh ∈ M such that

a(uh, vh)+b(λh, vh) = R(vh) ∀vh ∈ V

b(µh, uh) = 0 ∀µh ∈ M

where

a(u, v) =

∫
Ω

A∇u · ∇v b(λ, v) =
∑
`

∫
Γ`

λ`[u] [u] = ui` − uj`

R(v) is the RHS taking into account also Neumann BC...

Wellposedness and approximation depends only upon the choice of
Lagrange multipliers which should guarantee stability!

M = {λ ∈ L2(Σ0) : λ` = λ|Γ`
∈ M`} ‖λ‖2

M =

nI∑
`=1

‖λ`‖2

(H
1/2
00 )′
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Choice of the Langrange multiplier space

Topology for M` is H
1/2
00 (Γ`)...

... I want to have the largest possible set of multipliers such that
the form b(λ, v) =

∫
Γ`
λ`[u] remains uniformly stable

Favorite choice: if i` is the slave side, we want M` ∼ Vi` |Γ`
!

It contraints all slave functions.

But it is known that stability fails with this choice, and there is a need for
cross point degree reduction..

dim(M`) ≤ dim{v ∈ Vi` |Γ`
: v |∂Γ`

= 0}
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Choice of the Langrange multiplier space
Each Γ` is a face of a subdomain Ωi (the slave side)

Γ` inherits a spline mapping F` : (0, 1)d−1 → Γ`

and a parametric mesh on Γ̂ = (0, 1)d−1 denoted as T̂`.

Let us start with choices in the parametric space, and then we will map !
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Each Γ` is a face of a subdomain Ωi (the slave side)

Γ` inherits a spline mapping F` : (0, 1)d−1 → Γ`

and a parametric mesh on Γ̂ = (0, 1)d−1 denoted as T̂`.

Let us start with choices in the parametric space, and then we will map !

Choice 1: same degree, cross point reduction

M̂1
` = S̃p(T̂`)

0 h 2h 3h

−1

0

1

2

B̃
2 i

ζ
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Choice of the Langrange multiplier space
Each Γ` is a face of a subdomain Ωi (the slave side)

Γ` inherits a spline mapping F` : (0, 1)d−1 → Γ`

and a parametric mesh on Γ̂ = (0, 1)d−1 denoted as T̂`.

Let us start with choices in the parametric space, and then we will map !

Choice 2: degree reduction

M̂2
` = Sp−2(T̂`)

Indeed, it is true that

dim(M̂2
` ) = {v̂ ∈ Sp(T̂i`)|Γ`

: v̂ |∂Γ`
= 0}

No need for degree reduction or other manipulation

If stable, it will deliver a slightly suboptimal order : 1/2 suboptimal
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Stability: numerical checks
Chapelle-Bathe test

Estimate on the inf-sup constant:
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Stability: numerical checks
Chapelle-Bathe test

Estimate on the inf-sup constant:

Testing M̂` against Sp(T̂i`)|Γ`
without boundary conditions
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p/p − 2k couples are all stable! the pairings are also stable varying p !
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Stability: numerical checks
Chapelle-Bathe test

Estimate on the inf-sup constant:

Testing M̂` against Sp(T̂i`)|Γ`
with boundary conditions .... the right thing!
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p/p − 2k couples are all stable! exponential behavior in p !
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Stability: Proof of the inf-sup condition
the p/p − 2 case

We consider M̂2
` and can prove the following:

inf
µ̂∈Sp−2

sup
v̂∈Sp∩H1

0

∫
Γ̂
µ̂ v̂

‖v̂‖L2‖µ̂‖L2

≥ α0

+ quasi uniform meshes :

inf
µ̂∈Sp−2

sup
v̂∈Sp∩H1

0

∫
Γ̂
µ̂ v̂

‖v̂‖
H

1/2
00

‖µ̂‖
(H
−1/2
00 )′

≥ α0

Proof
In 2D:

Sp ∩ H1
0

∂x−→ Sp−1 ∩ L2
0

∂x−→ Sp−2 is exact
choose v̂ ∈ Sp ∩ H1

0 such that ∂2
xx v̂ = µ̂ and the work with Sobolev

norms.

In 3D, basically the same applies...

It is stable! ... we need now to go to physical space
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Stability in the physical space
the p/p − 2 case

inf
µ̂∈Sp−2

sup
v̂∈Sp∩H1

0

∫
Γ̂
µ̂ v̂

‖v̂‖L2‖µ̂‖L2

≥ α0

inf
µ∈M`

sup
v∈Vi`

:v∈H1
0 (Γ`)

∫
Γ`
µ v

‖v‖L2‖µ‖L2

≥ α0

∫
Γ`
µ v =

∫
Γ̂
ρ µ̂ v̂ ρ = weight, area change..

and by super-convergence results à la Wahlbin:

Π : L2(Γ̂)→ M̂2
` ⇒ ‖ρµ̂− Π(ρµ̂)‖

L2(Γ̂)
≤ Ch‖µ̂‖

L2(Γ̂)

For h small enough the stability holds in physical space!
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Back to our variational problem
Find uh ∈ V , λh ∈ M such that

a(uh, vh)+b(λh, v) = R(vh) ∀vh ∈ V

b(µh, uh) = 0 ∀µh ∈ M

It is well-posed and verifies the following error estimate: if u ∈ H r (Ω):

‖u − uh‖V ≤ C inf
vh∈V

‖u − vh‖V + inf
µh∈M

‖λ− µh‖M (1)

≤ Cht + Chs t = min{p, r − 1} (2)

s = min{p + 1/2, r − 1} for Choice 1: same degree,

s = min{p − 1/2, r − 1} for Choice 2: degree reduction

Or, indeed:

‖u − uh‖V ≤ C inf
vh∈V∩Ker(B)

‖u − vh‖V ≤ C ...
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Numerical validation: problem 1
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Numerical validation: problem 1

10
2

10
4

10
−2

10
−1

primal dof number

||u
−

u
h
|| V

 

 

Mortar P4−P4

Mortar P4−P2

Mortar P3−P3

Mortar P3−P1

O(h
2/3

)

10
2

10
4

10
−3

10
−2

primal dof number

||
∂

u
∂

n
−

λ
h
|| L

2
(
γ

2
)

 

 

Mortar P4−P4

Mortar P4−P2

Mortar P3−P3

Mortar P3−P1

O(h
1/6

)

1/6 + 1/2 = 2/3

A. Buffa (IMATI-CNR Italy) IGA mortaring 20 / 29



Numerical validation: problem 2
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Numerical validation: problem 2
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Multipliers’ degree does not affect the order for the primal unknown!
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Numerical validation: problem 2
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but it affects the convergence of the multiplier!
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Numerical validation: elasticity
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Numerical validation: elasticity
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Numerical validation: elasticity
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Final remarks

This approach can be used to treat contact in a variationally
consistent way

For patch gluing: the geometric non-matching patch cases should be
studied in details

The question of exact / inexact integration for interface integrals
remains open (robustness of splines thanks to regularity)
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Final remarks

Surveys and Codes

New Acta Numerica survey paper with several math results:

L. Beirão Da Veiga, A. Buffa, G. Sangalli, R. Vázquez,
Mathematical analysis of variational isogeometric methods

We have two codes available to public :
I GeoPDEs library is a GNU licensed software available here:

www.imati.cnr.it/geopdes
I IGATools is a C++ dimension independent library

http://code.google.com/p/igatools

igatools : A Novel
Dimension-Independent Isogeometric C++11

Library

P. Antoĺın 1, A. Bu↵a 2, N. Cavallini 1, M. Martinelli 2, M. S.
Pauleti 3, G. Sangalli 1 2

igatools

1Università degli Studi di Pavia, Italy

2IMATI, CNR, Italy

3IMAL, CONICET, Argentina

Austin, January 9th 2014

http://code.google.com/p/igatools igatools : Dim-Independent Isogeometric C++11 Library
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THANKS!

A. Buffa (IMATI-CNR Italy) IGA mortaring 29 / 29


	Introduction
	Splines
	Approximation spaces and properties

	Non conforming interfaces
	Mortar method
	Numerical validation

	Final remarks

