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Outline

@ The coercive framework for FEM
@ Stabilization for positive operators
@ FEM, problems without coercivity

@ Stabilized FEM, problems without
coercivity

o Elliptic problems, analysis - examples
@ Hyperbolic pbs, analysis - examples
o lll-posed pbs, analysis - examples
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The classical framework for numerical analysis |

@ Variational formulation: find u € V such
that

a(u,v)=1I(v) VYveV

@ Wellposedness given by the
Lax-Milgram's lemma
> a(-,-) bilinear; |a(u, v)| < M|lullv[lv]lv
forall u,v e V
» allul|} < a(u,u), forall ue V
> I(:) linear, I(v) < L||lv||v, L =||/||v/
@ — there exists a unique solution

o Continuous dependence on data

lully < Mo |[1]|v-
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The classical framework for numerical analysis ||

@ Galerkin projection: find up € V}, C V such that

a(uh, Vh) = /(Vh) Yvp € Vj

@ Best approximation using coercivity, Galerkin orthogonality, continuity,
e=u—u,€eV

allelly < a(e,e) = a(e, u — vy) < Mlle||vlu — vallv
as a consequence
< Ma™" inf |lu-—
lellv < Ma™* inf flu = vl
@ Compare with the continuous dependence on data.

lully < Ma™ 1]y
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Stabilization to enhance coercivity |

o Consider the discrete error: e := ipu — up

@ For problems where Lax-Milgram fails the analysis above may lead to
it — unl|i® < Mo~ Ju = ipullu]|ine — un]v,

I - ||« with optimal approximation and || - ||\, a stronger norm than || - ||,

Example: the transport equation
o find up € V), such that

(oun+ B - Vun,vp) = (f,v), vy € V4
Coercivity in the L?-norm but continuity on L?/H?:
allinu = upl|Z2(q) < llu = inull @) (lo(iny = un)llz@) + 118 - V(inu — un)ll2(@))

@ inverse inequality — error estimate for smooth solutions, optimality is lost
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Stabilization to enhance coercivity |l
@ A stabilized formulation may read: find uy € V} such that

(ouh+ﬂ~Vuh, Vh)—‘rS(Uh.,Vh) = (f_7 Vh), Yvy € Vy
@ s(up, vy): weakly consistent operator, making coercivity and continuity match

2
lunll® := llunlE2(q) + s(un, un)

@ The analysis now becomes with e, := ihu — up,
allesl|® = a(en, en) + s(en, en) = a(u — ipu, &) + s(inu, n) < Ml|u— ipul|.[len]

and hence
lenll < Mo ||u — ipu..

@ 5(-,-) chosen to give the best compromise between stability and accuracy.
@ a(-,-) must be coercive, at least on some weak norm
@ For a complete picture we need an inf-sup condition based analysis
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Finite element methods for problems without coercivity |

o Elliptic problems (Schatz, 1974)

» Well posedness under suitable assumptions on data using Fredholm’s alternative
» The standard Galerkin finite element method produces an invertible linear
system and optimally convergent approximations for sufficiently small meshsizes

* duality (Nitsche):
lu = unll 20y < CahlIV (v — up)ll2(q)
* Garding's inequality
Ci|lu— uthl(Q) — Gllu-— Uh||i2(g) < a(u— up,u— up)
* therefore, for small enough h the left hand side below is positive
(1= CGCTH)|lu— upllmq) < MCHlu — ibull (o)
@ The transport equation (hyperbolic)

> Well posedness for smooth, non vanishing velocity fields using the method of
characteristics

» No known analysis for the standard Galerkin method

» Stabilized FEM for non-negative form, exponential weight functions:
Johnson-Navert-Pitkdranta, 1983 ; Sangalli, 2000 ; Guzman 2008;
Ayuso-Marini, 2009;
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Finite element methods for problems without coercivity Il

o To fix the ideas: Lu:= —puAu+ 3 -Vu+ou
@ The Peclet number is low

@ Consider the well-posed, but indefinite problem:
Lu=finQ + BCson 9N
with associated weak form: find u € V such that
a(u,v)=(f,v), YveV.
@ a(-,-) not coercive — the discrete problem, find uy € V4 such that
a(up,vn) = (f,vh), Yva€ Vi (1)

may be ill-posed for fixed h.
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Failure of coercivity — matrix possibly singular

If A:=a(gj,¢i), F:=1(¢i), with ¢; nodal basis function,
AU=F

A may have zero eigenvalues, or be ill-conditioned, even if the continuous problem
is well-posed.

© Non-uniqueness: 30 € RN\ {0}, N := dim(V}) s.t.

AU=0
@ Non-existence: F ¢ Image(A) — compatibility conditions

Analogy: Stokes' problem,

@ ~ spurious pressure modes
Q@ ~ locking
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A framework for stabilization of noncoercive problems |

Standard stabilization fails
a(up, vh) + s(up, vi) is still typically indefinite.

Inf-sup stability typically either requires some positivity or a mesh condition

Idea

o Consider a(up, vi) = (f, vs) as the constraint for a minimization problem

@ Minimize some weakly consistent stabilization possibly together with penalty
for the boundary conditions

@ Stabilize the Lagrange multiplier
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A framework for stabilization of noncoercive problems Il

o Lagrangian:

Sa(zh, zn) + an(un, zn) — (f, zn)

1
L(up, zp) == Esp(uh —u,up—u) — 5

@ “choose” the up that minimizes s(up — u, up — u)
@ Lack of inf-sup stability handled by stabilizing the Lagrange-multiplier

@ Stationary points

oL

(9u (Vh) = ah(v,”zh) — sp(uh —u, Vh) =0

oL

B ( h) = ah(Uh, Wh) - Sa(Zh7 W/‘l) - (f7 Wh) =0
2,
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A framework for stabilization of noncoercive problems Ill

@ The resulting Euler-Lagrange equations: find (up, z5) € Vi X V,,

an(up, wp) — sa(zn, w = (f,w
{ ;’(7(‘/;;72:)) +52((;h’, v:g - gpiu,hv)h) for all (wp, v) € Vi x V| (2)
@ The exact solution is: u, = uv and z, =0
@ The resulting system has twice as many degrees of freedom as FEM
@ sy(u, vy) must be a known quantity
@ imposition of boundary conditions possible in s,(-,-) and sp(-, )
@ Skew-symmetry gives partial stability: take wy, = —zp, vy = uy,

|unl2 + |2n]2, = —(F, z) + sp(u, up)

with |up|s, := sp(up, uh)% and |zp|s, 1= sa(zh,zh)%

‘ Typically, piecewise affine elements — invertibility of the matrix.
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Possible stabilization operators: the usual suspects

o Galerkin-Least squares:

sp(up — u, wp) =7y Z (Lup— ), Lwp)k + Z (h[Onun], [0nwn])

KeTy FeF,
sa(zn, vn) = Z (hzﬁ*zh,[l*vh)K + Z (h[0nzp], [Onval)
KeTh FeF;

e discontinuous Galerkin (dG): s,(-,-) = sp(, )

sp(uns wh) =7 Y ((h™ [un], [wal) ¢ + (h[Onunl, [Onwal) )
FeF
e Continuous interior penalty (CIP): s5(-,-) = sp(-, )
sp(tn wh) =7 > ((P[Aus], [Awa]) + (A[Onun], [Onwil) £)

FeF;

@ Opup :=n-Vup, [us] is the jump of up on internal faces and equal up on
boundary faces
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The elliptic case: analysis by duality (GLS) |
@ Approximability:
lu—ipulls = ||h~ (u—/hu)||}-+|\h (u—ihu)||9+|u—ihu\sp < Chk|U|Hk+1(Q)

oo a(u—ipu,vy) < Cllu—ipull|vals, and
@ Continuity : { a(u—up,w —ipw) < Ch|U—Uh|sp||W||H2(Q)

Theorem

Assume that u € H**1(Q) is the unique solution of a(u,v) = (f,v), Vv € V and
that the adjoint problem L*p = 1) is wellposed with ||¢||t2@) < Crl|¢|l2(q)- Then

lu = unlliz@) + A1V (0 = un)lliz) < Ch(lu = upls, + |2n]s,) < CHHull e

a posteriori quantity

GLS: no conditions on the mesh-parameter
dG and CIP: Crh®|B| w2, < 1 small if oscillation in data
(c.f. Schatz C3h* <1)
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The elliptic case: analysis by duality (GLS) Il

Sketch of proof.

@ Step 1: Optimal convergence, stabilization semi-norm by energy arguments,
§h = up — Ipu

(€13, + 12812, = a(En, 28) + Sp(En, €n) — a(En, 2n) + Sa(2h, 28)
. . ; 1
= a(u — in, zn) — p(u — in, ) < |lu — inullL (€3 + [28]3)7
@ Step 2: Prove optimal convergence in the L2-norm using a duality argument
lu = unllz@) + |zalliz@) < Ch(|€nls, + 121ls,) < CH*Hulpon(e

@ Step 3: Prove optimal convergence in the H'-norm using Garding's inequality,
or an inverse inequality.

O

vy

Important observation: no stability of the continuous problem is used in Step 1
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Example within the assumptions: noncoercive
convection—diffusion with pure Neumann conditions

/ /// e — ]
e e _— ==
§O////if11\ —7 -
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o - — . ~=~=

o V- (Bu—vVu)=f, Pe= 200, u smooth, V-3 = —200
e Neumann condition on 92 (Bu—vVu)-n=g

o Full lines, |u — up|s, + |zn]s,, dashed L2-norm error, dotted O(h*), k =1,2,3

@ Squares P; approximation, circles P, approximation
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Example beyond the assumptions: the Cauchy problem
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B-Vu—vAu=f, Pe= 200, u smooth
Dirichlet and Neumann bcs on {x € (0,1), y =0} and {x =1, y € (0,1)}
No boundary data onon {x =0,y € (0,1)} and {x € (0,1), y =1}
Vel < ||u— up|| can not hold, would give a posteriori upper bound
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Example beyond the assumptions: the Cauchy problem

///// S e T T -5 Stabilization semi norm O(h)
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o 3-Vu—vAu=f, Pe=200, usmooth

@ Dirichlet and Neumann becs on {x =0, y € (0,1)} and {x € (0,1), y =1}
@ No boundary data on {x € (0,1), y =0} and {x =1,y € (0,1)}

o ||Vl < |lu— upl|| can not hold, would give a posteriori upper bound
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The hyperbolic case: analysis using inf-sup stability |

@ Transport equation:
Lu:=V -(Bu)+ou="Ff, [eW>®(Q),cecW->(Q)

o For every x € Q 3 streamline leading to boundary data in finite time

For GLS and dG stabilization the gradient jumps may be dropped.
For CIP stabilization the jumps in the Laplacian may be dropped.

o Stabilization parameters will scale differently in h

Error estimate for stabilized FEM, hyperbolic case

lu = nll 2y + 12 B - V(u = un)lliz@) < CH**2 |u] i)

Mesh conditions:
o standard stabilized FEM: h? small

@ GLS optimization based: no condition on h under exact quadrature.

o dG and cG optimization based: h? small (for nonconstant smooth 3 and o).

v
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The hyperbolic case: analysis using inf-sup stability |l

Main ideas and tools for proof.
@ The stability of the dual problem is replaced by

Vvi € Vip3vp(vs) such that ||vh||%2(m < a(vh, vp(va))

and similarly for the adjoint problem

o for the transport equation: v,(vj) = (€”vy) where 8- Vn > ¢, with ¢
sufficiently big

@ Superapproximation to estimate ||v,,(vs) — mavp(vh)]|

@ Steps 1 and 2 of the elliptic case, must be handled together in this case,
weighting together the energy stability of | - |, and | - [, with the inf-sup
stability in the L?-norm
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Example within the assumptions: data assimilation

o1k 3 .
o L
oA -
e = o
L o7 L - e
001 P 001 o~
Pt -
,B’//‘:/ . g
0001 . e L 0001 = o
. o . - -
e e o7 O
;"// O/ e
0.0001 = 7 0.0001 o
e
-
g
0.00001 Ve 0.00001 [
7
7
o
110° e 10°® -
// ———{0-——- L2 error P1 ——{+—— stab FEM gamma>0
4 ———0-——- L2 error P2 ———10-——- stab FEM gamma=0
o y=10*xA2 —-—-40--—-- stab FEM gamma<0
o” b y=0.1"xA3 o | y=10"xA2
—--—-0--— L2 error P1 interior data y=0.1*xA3
L L L L
0.01 o1 001 01

Problem: V - (Bu) = f, data set on the outflow boundary, smooth solution
B=(-(x+1)*+y, -8y —x))"
Left plot: optimization method, L2-error vs. h, squares P, circles P,
Right plot: standard stabilized method. Dash-dot: v < 0, dashed v = 0, full

~v > 0. Observe that for standard stabilization v must change sign!
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Example beyond the assumptions: strong oscillation

100 |

0.01 0.1 0.001 0.01 0.1

Problem: V- (Bu) = f

data set on the inflow, smooth solution u, 64 x 64 unstructured mesh.

B =(10 arctan(%) - XE—Z.,sin(x/s) +sin(y/e)2)T

circles: optimization method; squares: standard stabilized method

Left plot: SD-error vs & with «y¢p = 0.01, dotted line O(e_%)

@ Right plot: SD-error vs v¢p for e = {0.05 (full),0.025 (dash), 0.0125 (dot)}
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lll-posed problems. Example: the Cauchy problem

Let Q be a convex polygonal (polyhedral) domain in RY, d = 2,3

—Au = f,inQ 3)
u=0andVu-n = Yonl

I c 0Q, T simply connected, ' := 9Q\ T

fel2(Q), ¥ e H(I)

V:={veHY(Q):v|[r=0}and W:={ve H(Q): v|r =0}
a(u,w) = [oVu-Vw dx, and I(w) := [, fw dx + [- ¢w ds
abstract weak formulation,

| find u € V such that a(u,w) = [(w) Yw e W| (4)
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The ill-posed case: analysis by continuous dependence |

Consider the abstract problem: find u € V such that

a(u,w) =1I(w) VYwe W. (5)

@ Assumption: /(w) is such that the problem (5) admits a unique solution u € V.

@ Observe that we do not assume that (5) admits a unique solution for all I(w)
such that ||l||w < oo

Assumption: continuous dependence on data

Consider the functional j : V — R. Let = : RT s RT be a continuous, monotone
increasing function with limy_,o+ =(x) = 0.

| If [[/lws < €in (5) then |j(u)| < =(e). if € > 0 sufficiently small | (6)
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Finite element formulation of the abstract problem |

@ Assume that V, C V and W), c W

o Finite element formulation: find (up, z4) € Vi, X W such that,

a(up, wp) — sw(zn, wn) = I(wp)
(v 20) + sultmvs) = sy(tsvh) for all (vi, wy) € Vi x Wh,.
(7)

@ Stabilization operators may be chosen as before
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Finite element formulation of the abstract problem Il

Main assumptions on a(-,-), sw(-,-) and sy(-,-)

Assume that the form a(u, v) satisfies the continuities
a(v—ivv,wp) < ||v —ivv|«v|Whlsy, Vv € V, wp € W (8)
and for u solution of (5),
a(u— up, w — iww) < §(M||wllw + |w — iww|l«wl|u— upls,, Yw e W. (9)

Assume approximation estimates for v — iyv and w — iy w

v = iyvley + lIv = ivvlley < Cu(v)h! (10)
lw — iwwllew + liwwls, < Cwlwllw, Ywe W. (11)
25 / 38
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Finite element formulation of the abstract problem Ill

Lemma (Convergence of stabilizing terms)

Let u be the solution of (5) and (up, zp) the solution of the formulation (14) for
which (8) and (10) hold. Then

|u— unls, + [28]sy < (1+V2)Cu(u)ht.

Theorem (Convergence using continuous dependence)

Let u be the solution of (5) (which has the stability property (6)) and (up, z) the
solution of the formulation (14) (for which (8)-(10) hold). Then

Ui(u = un)l < =(n(un, z»)) (12)

With the a posteriori quantity n(up, zp) := 0;(h) + Cw(|u — unls, + |Zhlsw )-
For sufficiently smooth u there holds

1(uns z4) < 81(h) + (L + v2) Cw Cu (u)h*. (13)

The approximation will be optimal with respect to continuous dependence!
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Continuous dependence. Example: the Cauchy problem

@ The Cauchy problem is not wellposed in the sense of Hadamard

@ However if (3) admits a solution u € H*(f2), a (conditional) continuous
dependence of the form (6), with 0 < € < 1, holds for: (interior estimate)

J(u) = Jull 2y, w € Q: dist(w, 0Q) =: d,, 90 > 0 with =(x) = C,cx*,

Cuc >0, ¢ :=¢(d00) € (0,1)

and for: (global estimate)

J(u) == [Jull2(q) with =(x) = C,(]log(x)| + C)~* with C,, C >0, ¢ € (0,1)

The constant C,; grows monotonically in ||u||;2(q) and C, grows monotonically
in [lull ()
@ For details see:
G. Alessandrini, L. Rondi, E. Rosset, and S. Vessella.
The stability for the Cauchy problem for elliptic equations.
Inverse Problems, 25(12):123004, 47, 2009.
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Stabilized FEM for the Cauchy problem

Stabilized FEM for the Cauchy problem
o Let V,, € V, W), € W, with piecewise affine functions
o CIP-stabilization for uj, and z, (4+ boundary penalty for Neumann condition)
o Find (up, zp) € Vi x W such that

{ a(uh, Wh) = Sa(Z/-,7 Wh) = (f, Wh) + <¢, Wh>r

(v 20) + soltms i) = S,(t1 vi) for all (vh, wp) € Vi x W

where a possible choice of stabilization operators is

sv(un, vh) Z / he[Onup][Onva] ds,  with hg := diam(F)

FeFUFr

sw(zn, wp) := a(zp, wp) or  sw(zn, wp) = Z he[Onzn][Onws] ds
FeF UF

This formulation satisfies the assumptions of the convergence theorem
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Numerical results for the Cauchy problem

So06 [
0.01 = &"’
3
0.4 [
0.001 |~
---0---- L2 error P1 02 |
—0— stab error P1 O(h)
---0--- L2 error P2
—0— stab error P2 O(h"
0.0001 = - - ; g\ % L
LT J=00 '°9<X) (-2) ° L . . X X X . .
0.01 0.1 1107 1106 0.00001  0.0001 0.001 0.01 0.1 1

penalty parameter

Q:=10,1] x [0, 1], smooth exact solution u
Dirichlet and Neumann becs on {x =0, y € (0,1)} and {x € (0,1), y =1}

Left: convergence plots global errors

Right: L2-error against stabilization parameter (squares P, circles Ps)

Erik Burman (University College London) Stabilized FEM for ill-posed problems 29 /38



Numerical results for the Cauchy problem

0.1

0.001

0.0001

0.00001

110

107

Erik Burman (University College London)

.o’

——CO—— stab. error P1 O(h)
——O—— stab. error P2 O(h"2)
---0--- local L2 error P1
----O--- local L2 error P2

1

0.8

0.2

0.01

0.1

1x107  1x10®  0.00001  0.0001 0.001 0.01
penalty parameter

Q:=10,1] x [0, 1], smooth exact solution u
Dirichlet and Neumann bcs on {x =0, y € (0,1)} and {x € (0,1), y =1}
Left: convergence plots local errors, {x > 0.5, y < 0.5}

Stabilized FEM for ill-posed problems

Right: L2-error against stabilization parameter (squares P, circles Ps)
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Variations on the theme: discrete inf-sup condition
Instead of using positivity in the derivation of the first estimate

k
|U — Llh‘sp + |Zh|sa S Ch |U|Hk+1(Q)
we can in some cases stabilize less and derive a discrete inf-sup condition:

Jes > 0 such that Vx, € Vi, yn € W), there holds

Anl(x Vi, W,
Cszh,yhm < sup h[( /‘Iayh)v( h> h)]
Vi, WhE Vi X W), ||| Vh, Whm

where
Anl(xhs ¥n)s (Va, wh)] = an(xh, Wh) — Sa(yh, Wh) + an(vh, yn) + Sp(xh, Vi)
and ideally (so far only for piecewise affine elements)
1
llxts yull == 1AV xull 2@) + [[Vynll @) + 12 [O0nxu]ll FuFe + [xbls, + |yals,

Then we may prove:

= un, 20l < Chlulieqey |
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Example: the Cauchy problem, Crouzeix-Raviart element |

o the Crouzeix-Raviart space
X = {vy € 12(Q) - /[v,,] ds = 0, VF € F;UFr and v, € Py(), Vi € Kn}
F

o Vj:=X[ and W, = X]'

@ broken norms

IxI = > lIxIZ and [IxI3 5 := IIx[15 + 1V I3
KETh

o Finite element formulation: find (up, z4) € Vi, X W, such that,

ah(uh, Wh) — SW(Zh, Wh) = /(Wh)

0

an(Vh, zn) + sy (un, vi)

for all (vh, wp) € Vi x W)
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Example: the Cauchy problem, Crouzeix-Raviart element [l

@ Here the bilinear forms are defined by

or

an(up, wp) = /Vuh Vwy, dx,

KEThH

sw(zn, wp) = Z YwVzp - Vwy, dx

KETH

Sw(zh, Wh) = Z /’ywhl_— [Zh][Wh] ds

and finally

Erik Burman (University College London)

FEeF,UFr

svl(umve) = Y /Whp [un][va] ds

FeF,UFr

Stabilized FEM for ill-posed problems
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Example: the Cauchy problem, Crouzeix-Raviart element |lI
o Compact form: find (up, zp) € Vp := Vj x W), such that,

Ah[(UmZh), (Vh, Wh)] = /(Wh) for all (Vh, Wh) eV
@ The bilinear form is then given by

Anl(un, zn), (vh, wp)] := an(un, wi) — sw(zn, i) + an(vh, zn) + sy (un, va)

Theorem (Inf-sup stability for the Crouzeix-Raviart based method)

Assume that (yvyw) < (Cicr)~2. Then there exists a positive constant c;
independent of vy, yw such that there holds

A
ol ysll < sup w[(Xh, Yn), (Vi wh)]
(Vh,Wh)EVH ||| Vh, Wh |||

1 1
where ||xn, ynll := Y9l1hVXn|[n + 15 | A[Onxb] | FuF . + [xblsy + [yhlsw
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Numerical results for the Cauchy problem (CR-element) |

@ Original problem by Hadamard

Q:=1[0,7] x [0, 1]

u(x,y) = (1/n)sin(nx) sinh(ny), n parameter

Dirichlet and Neumann bcs on {x € (0,7), y =0}
Dirichlet on {x =0, y € (0,1)} and {x =7, y € (0,1)}

increasing n increases the rate of exponential growth and size of Sobolev
norms
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Numerical results for the Cauchy problem (CR-element) I

0.1

001 F D//
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o Left: global L2-error for n=1, n=3, n=5, vy = yw = 0.01
@ Right: stabilization parameter v\, = against L-error on a 10 x 10 mesh

@ Higher values of n does not yield converging solution on these meshes.
|| u]| 2()-norm too large
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Conclusions and outlook

@ Stabilized finite element methods in
an optimization framework

@ Error estimates for non-coercive
problems

© A posteriori and a priori error
estimates are obtained similarly,
constants unknown

Q lll-posed problems: error analysis
using continuous dependence

© New ideas on data assimilation and

inverse problems using stabilized
FEM

© New ideas on the design and analysis
of Tikhonov regularization methods
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Figure : Left: naive application of the stiffness matrix, Right: stabilized reconstruction,
top unpertubed data, bottom perturbed data
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Numerical example: source identification |l
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Figure : Convergence plots in the L?-norm, Left: unperturbed data; Right: perturbed data
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