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The HDG methods.

Motivation.

The DG methods are attracting the interest of many scientists because:

@ They enforce the equations in an element-by-element fashion through
a Galerkin formulation which can give rise to locally conservative
methods.

@ They can handle any type of mesh, element shape and basis
functions: They are ideally suited for hp-adaptivity.

@ They have a built-in stabilization mechanism which does not degrade
their (high-order) accuracy.

@ They can be applied to a wide variety of partial differential equations.
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The HDG methods.

Motivation.

However, the DG methods (for second-order elliptic equations) have been
criticized because:

@ For the same mesh and the same polynomial degree, the number of
globally coupled degrees of freedom of the DG methods is
much bigger than those of the CG method. Moreover, the orders of
convergence of both the vector and scalar variables are also the same.

@ For the same mesh and the same index, the number of globally
coupled degrees if freedom of the DG methods are much bigger than
those of the hybridized version of the RT and BDM methods.
Moreover, the orders of convergence of both the vector and the local
average of the scalar variables are smaller by one.
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The HDG methods.

The main features of the HDG methods.

@ The HDG methods are obtained by discretizing characterizations of
the exact solution written in terms of many local problems, one for
each element of the mesh Qj, with suitably chosen data, and in terms
of a single global problem that actually determines them.

@ This permits an efficiently implementation since they inherit the
above-mentioned structure of the exact solution. This is what renders
them efficiently implementable, especially within the framework of
hp—adaptive methods, as is typical of DG methods.
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The HDG methods.

The main features of the HDG methods.

@ The way in which they are defined allows them to be, in some
instances, more accurate than already existing DG methods. In fact,
in some cases when standard DG methods do not converge, HDG
methods do.

@ The HDG methods can be used for steady-state problems and for
time-dependent problems when implicit time-marching methods are
used. However, they might also be defined for explicit time-marching
schemes.
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The HDG methods.

Guidelines for devising the methods.

@ Use a characterization of the exact solution in terms of solutions of
local problems and transmission conditions.

@ Use discontinuous approximations for both the solution inside each
element and its trace on the element boundary.

@ Define the local solvers by using a Galerkin method to weakly enforce
the equations on each element.

@ Define a global problem by weakly imposing the transmission
conditions.
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The main idea .(B.C., IMA tutorial (video), October 2010.)

The model problem.

We provide two different characterizations of the solution of the following
second-order elliptic model problem:

cq+Vu=0 in Q,
V-q=f in €,

~

u=up on O%.

Here ¢ is a matrix-valued function which is symmetric and uniformly
positive definite on €2.
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The main idea.

The general approach: Local problems and transmission conditions.

We have that the exact solution satisfies the local problems

cq+Vu=0 inK,
V-q=f inK,

the transmission conditions
[t =0 if Feé&p,
[al=0 ifFe&yp,
and the Dirichlet boundary condition

U=up ifFeé&d.
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The main idea.

A first approach: Rewriting the equations.

We can obtain (q, v) in K in terms of U on K and f by solving
cq+Vu=0 in K,
V-q=f in K,
u=u  onJK.

The function U can now be determined as the solution, on each F € &, of
the equations

[l=0 ifFee&s

i=up if Feé&?,

where q is the trace of q = q(u, ) on OK.
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The main idea.

A first approach: Characterization of the solution.

We have that (q, v) = (Qg, U;) + (Qf, Ur), where

cQ;+VU;=0 inK, cQr+VUsr=0 inK,
V:-Q;=0 inK, V- Qr =f inK,
U;=1u on K, Ur =0 onOK.

The function U can now be determined as the solution, on each F € &, of
the equations

~[Q:1=1[Q7] ifFeey,
U=up if Fe &l
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The main idea.

A first approach: The one-dimensional case K = (xi—1,x;) for i =1,...,/, with ¢ = 1.

We have that (q, v) = (Qg, Us) + (Qf, Ur), where

d : d .

Q:; + d_ =0 in(xj—1,x), Qr + &Uf =0 in (xi—1,X),
d : d .

I —Qz; =0 in (xi—1,xi), &Qf =f in(xi—1,X),

Uﬁ = a on {Xi_]_,X,'}, Uf = 0 on {Xi—17xi}'

The function U is the solution of

(+)—QA(X,) —Qf( )+Qf( ) fori=1,...,1—1,
u(x;) = up(x;) for i =0, 1.
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The main idea.

A first approach: The one-dimensional case K = (xi—1,x;) for i =1,...,/, with ¢ = 1.

We have that (q, u) = (Q4, U;) + (Qr, Ur), where, for x € (xj_1, xi),

Qo) = ~3 (@ — i), U == [ Glx) (),

i

U{59) = =0 — s a4 %(x,- B N / Gl 5] o

i

s =

The function ¥ is the solution of

1, P ~ ~ .
—(—u,-,l + 2u; — u,-+1) = —Qf(XI-—i_) =4k Qf(XI- ) fori=1,...,1 —1,

h
u(x;) = up(x;) for i =0, /.
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The main idea.

A second approach: Rewriting the equations. We use ¢ := (¢, 1)k /|K| and
q-n:=(q-n,1)ok/|K|.

We can obtain (g, u) in K in terms of q-n on OK, T and f by solving

cqg+ Vu= in K,
V-q=f—f+qg-n inK,
g-n=q-n on OK.

The functions q - n and T can now be determined as the solution of the
equations

[t]=0 for F € &,
q-n="f for K € T,
U=up for Feé&f,

where U is the trace of u = u(q-n,d, ) on IK.
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The main idea.

A second approach: Characterization of the solution.

We have that (q, u) = (Qg,Ug) + (0,7) + (Qf, Ur), where

cQg +VUg=0 in K, cQr+VUr =0 in K,
V-Q;=0q-n inK, V- Qf =f—f inK,
Q;-n=q-n on0K, Qs n =0 on 0K,

U, =0, U, _o.

The functions q - n and T can now be determined as the solution of the
equations

—[Usl - [@] = [Us]  for F e &,
a f for K € Ty,
Ga U+ G = for F € 8‘2.
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The main idea.

A second approach: The one-dimensional case K = (xj—1,x;) for i =1,...,/, with ¢ = 1.

We have that (q, v) = (Qg, U;) + (0,7) + (Qf, Ur), where

d . d .

Q; + 2 Ui=0 in (xi—1,Xi), Qf"‘&uf =0 in (xi—1,Xi),
d = d T
Z®=a-n in (x-1,x), —Qr =f—Ff in(x-1,X),
Q; n= g-n on {x-1,x}, Qf-n =0 on {xi—1,xi},

U =0 on {xi—1,xi}, Us =0 on {xj—1,xi}.

The functions g and @ are the solution of
GE(XH - GE(XF) +Ujt12 —Ui—120 = —Gf(Xf) + Gf(xfi) fori=1,...,/1 -1,
G — i1 =hFi1p fori=1,...,1—1,

Us(6) + Tuy2 + Ur () = un(x0),

Ga(x,_) +Uj_12 + Uf(X,_) = UD(X/).
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The main idea.

A second approach: The one-dimensional case K = (xj—1,x;) for i =1,...,/, with ¢ = 1.

We have that (q, v) = (Qg,U;) + (0,7) + (Qf, Ur), where, for
x € (xj—1, %),

Qi) = F0x—x-0)i + 50 —x)a 1 Q== [ Gxs)F - D)o,
1

Us) = g (= 3(x = xi-1)2)d, Us(x) = / " Gl s)(F - F)(s) s
1

= 2 (17 = 3(x = X)),

The functions q and T are the solution of

g(ai—l +40; + Qit1) + Tiy1y2 — U172 = —Ur(x") + Ur(x7) fori=1,...,01—1,

G — i1 =hFi_1 fori=1,....,1—1,

o >

(200 +q1) + T2 + Ur(x) = un(x0),

6(6171 +2q,) +Tj_10 + Ur(x) = up(x).
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The main idea.

Summary.

@ The HDG methods are obtained by constructing discrete versions of
the above characterizations of the exact solution.

@ In this way, the globally coupled degrees of freedom will be those of
the corresponding global formulations.
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A fl rst a pproach .(B.C., J.Gopalakrishnan and R.Lazarov, SINUM, 2009.)
The local solvers: A weak formulation on each element.

On the element K € Qp, given U on OK and f, we have that (q, u)
satisfies the equations

(quv)K - (u,V : V)K + </J’V . n>8K — 07
_(qva)K + <a -n, W>8K — (fa W)K,

for all (v, w) € V(K) x W(K), where
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The first approach.

The local solvers: Definition.

On the element K € Q, we define (qy, up) terms of (up, ) as the element
of V(K) x W(K) such that

(cap,v)k — (un, V - V)k + (Up, v - n)ak = 0,
_(qhv VW)K + <ah -n, W>8K — (fa W)K)

for all (v, w) € V(K) x W(K), where

Qp-n=0q, -n+7(u, — Up) on OK.
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The first approach

The local solvers: The form of the numerical trace q,.

If we want that, at any given point x of 0K at which the normal n is well
defined,

@ The numerical trace q,(x) - n only depends on q,(x) - n, ux(x) and
the numerical trace up(x).

@ The dependence is linear.

@ The numerical trace q,(x) - n is consistent, that is,
q,(x) - n = q,(x) - n whenever up(x) = Up(x),

we must have that q, -n=qy, - n+ 7(uy — ).
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The first approach.

The local solvers are well defined.

The local solver on K is well defined if

e 7 >0 o0n0K,
o VW(K) Cc V(K).
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The first approach.

Proof.

The system is square. Set 1, =0 and ¥ = 0.
For (v, w) := (g, up), the equations read

(th7 qh)K — (Uhu V- qh)K — 07
—(ap,, Vun)k + (@, - n, up)ox = 0.
Hence
(cap,ap)k + (@, —ay) - N, up)ax =0,

and since g, -n=qy - n+ 7(up), we get

(can, ap)k + (1 (up), up)ok = 0.

This implies that q, = 0 on K, and that u, = 0 on OK.
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The first approach.
Proof.

Now, the first equation defining the local solvers reads
—(Uh, V- V)K = 0,

for all v.e V(K). Hence
(vuh,V)K = 0,

and so Vu, = 0. This proves the result.
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The first approach

The local solvers: Examples of the stabilization function 7.

@ The simple multiplication stabilization function 7(¢) := 7 - ¢.

@ The Bassi-Rebay stabilization function:

T(@)r = Tre(0) - m, v € V(K): (re(9),v)k = (d,v-n)F

@ The Lehrenfeld stabilization function:

7(¢) := 7 - L(OK)-projection of ¢ into M(OK)
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The first approach.

The global problem: The weak formulation for wj,.

For each face F € £, we take Uy|f in the space M(F). We determine 1,
by requiring that,

(0 [aD)F =0 VYu e M(F) ifFee,
u,=up IifFe 82
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The first approach.

The transmission condition.

Suppose that the transmission condition implies that [q,] = 0 on a face
F e EZ. Then, on that face, we have that

[ap]l + 7F(un™ = Gp) + 77 (un™ —Tp) =0,

which holds if
- T up™ + 7 up” [a.],
u =
n T4+ 77 T+ —i— T 9
a _ T_qh—‘r + 7_+qh II ]]
g T 7‘+ P

provided 7T + 77 > 0.
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The first approach.

The numerical trace Uy, is well defined.

The numerical trace Uy, is well defined if, for each K € 0,

e 7 >0 on 0K,
o VW(K) C V(K).
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The first approach.

Proof.

The system is square. Set up =0 and f = 0. For u := uy, the equation
reads

0= (U, [Gx)F = ) (Gn,ap - n)ok =: {Un, qp - N)ag,-

Feé&s KeSy,

Note that
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The first approach.
Proof.

For (v, w) := (qp, up), the equations of the local solvers read

(cap, dn)k — (Un, V - ap)k + (Un, 45 - Mok =0,
—(ap, Vup)k + (@ - n, up)ox = 0.
Then

—(ﬁh,ah : ">8Q,, Z(C Ap; Qh)Qh + <(Uh - ﬁh)ﬂ'(“h - ah)>8$2h'

As a consequence, (U, - N)oq, = 0 implies q, = 0 on Qp, and up = 1y,
on 0.
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The first approach.
Proof.

Now, the first equation definign the local solvers reads
—(Uh, V- V)K ain (Uh,V . “>8K — 07

for all v.e V(K). Hence
(VUh,V)K — 07

and so Vu, = 0.
This shows that uy, is a constant and, since u, = 1y, = 0 on 92, we can

conclude that up = 0 on 4. We now have that 7, = up = 0 on 99Q,.
This proves the result.
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The first approach.

First characterization of the approximate solution.

We have that (qy,, us) = (Qg,, Uz,) + (Qr, Ur) where

(Qﬁw Uﬁh) = (Q(afh 0)7 U(ah’ 0))7 (Qf7 Uf) = (0(07 f)7 U(Ov f))

where (Q(Up, ), U(tp, f)) is the linear mapping that associates (up, 1) to
(a4, up), and where the numerical trace Uy, is the element of the space

Mp(up) == {p € L2(8h) : plr € M(F) Y F €& unlaa :i= Paup},
satisfying the equations
an(Un, ) = Cn(p) ¥ p € Mn(0),

where an(11, A) == — {11, Q. - nYagq,, and €n(1) == (1, Qs - N)ag,.
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The first approach.

The associated minimization problem

We have that

an(ps A) = (cQpu, Qa)ag, + (T(Uy — 1), (Ux — A))og,-

Moreover, ap(-,-) is positive definite on Mp(0) x Mp(0).

The numerical trace 7, minimizes the quadratic functional

() = San(n,m) — ),

over the functions 1 in My(up).
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The first approach.

Proof.
an(t, ) — (1, Qx - Mg,
— {1, Qx - n+ 7(Ux — N))ag,
— (1, Qi - n>arzh (U, T(Ux = A))on,
+(Up — 1, 7(Ux = A))ag,
— (1, Q- nm (Uw Qx - m)ag, + (Uy, Qa - n)on,
+<Uu 1, T(Ux — A))oq,
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The first approach.

Proof.

For (v,w) :=(Q), U,), the equations of the local solvers read

(C Qu) Q)\)K - (Uu) V- Q)\)K + </~L7 Q)\ : n>8K — 07
—(Qx, VU)K + (Qx - n,Up)ak = 0.
Then

an(p, A) = (¢ Qu, Qa)k + (U — i1, 7(Ux = A))oq,-

This completes the proof.
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The first approach.

A second characterization of the method.

The approximate solution (qy,, up, Us) is the element of the space
Vy, x Wy x My(up) satisfying the equations

(cap,v)a, — (un, V - V), + (Ux,v - n)sq, =0,
_(qh7 VW)Qh I <ah -n, W>th — (f7 W)Qh7
<H7ah . n>th — 07

for all (v, w,pu) € Vi x Wy, x Mp(0), where

ah~n:qh-n+r(uh—ﬁh) on 0$2.
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The first approach.

A third characterization of the approximate solution

For any (w, ;1) € W x M}, define qy, € V}, as the solution of
(cQw,usV)a, — (W, V -V)q, + (11,v - n)aq, =0,

for all v € V.
The approximate solution is (q,, 7,, U, Ux) where (up, 1) is the element
of W)y, x My(up) satisfying the equations

(V-ay,, W, + (T(up — ), w)aq, = (f, w)a,,
(1, 9y, 3, -0+ 7(up — Up))oa, =0,

for all (w, u) € W)y, x Mp(0).
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The first approach.

A third characterization of the approximate solution

For any (w, ;1) € W x M}, define qy, € V}, as the solution of
(CqW,;nV)Q,, = (W7 v : V)Qh + <Huv . ">8§Zh — 07

for all v € V.
The approximate solution is (q,, 7,, U, Ux) where (up, 1) is the element
of W)y, x My(up) satisfying the equations

(Cquh,ﬁhu qW,u)Qh + (/l, qW,u . n>th + <T(Uh - /L}h)u W>8Qh — (f7 W)Qhu
{19y, 5, -0+ 7(up — Un))ag, =0,

for all (w, u) € W)y, x Mp(0).
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The first approach.

A third characterization of the approximate solution

For any (w, 1) € Wy x Mj, define qy, ;, € V}, as the solution of
(Chw,u, V), — (W, V -V)q, + (11, v -n)aq, =0,

for all v e V.
The approximate solution is (q,, 7,, tn, Us) where (up, 1) is the element
of W)y, x Mp(up) satisfying the equations

(Cquh,ﬁha qw,u)Qh + <7_(Uh — ah), w — ;u>8Qh — (fa W)Qh)

for all (w, n) € W)y, x Mp(0).
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The first approach.

The associated minimization property. (H. Kabbaria, A. Lew, and B.C.)

The function (up, Uy) minimizes the quadratic functional

1 1
In(w, p) == E(qudh Aw,u)Q, + §<T(W — 1), (w = 11))oq, — (f, w)a,,
over the functions (w, ;1) € Wy, x Mp(up).

This is the Weak Galerkin method.
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The first approach.

The jumps up — Uy stabilize the method.

The energy identity for the exact solution is
(ca,a)e = (f,u)a = (up,q - nag,
and for the approximate solution,
(cap ap)a + O (up — 1p) = (f, up)a — (up, A, - N)aq-
where ©,(up — up) := (T(up — Up), un — Un)aq,-

©,(up — Up) is a dissipative term of the same form of that of the original
DG method, when the stabilization function 7 is positive.
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The first approach.

The jumps up — U, control the four residuals.

The Galerkin formulation on the element K defining the local solver reads

(can,v)k — (up, V - V) + (Up, v - n)ax =0,
_(qh’ VW)K + <ah -n, W>8K — (f’ W)Ka

for all (v, w) € V(K) x W(K), or, equivalently,

(Ri,v)k = (Rjk,v - max V¥ v e V(K),
(R, w)k = (R&, whox ¥ w e W(K),

where

Ry :=cq, + Vup R5yk = up — Up
R}(](:th—f R(gK (qh—ah)n:—T(Uh—/Ijh)
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The first approach.

An illustration: An HDG method for nonlinear elasticity.

k=1 a) k=3 b)
. A N . N A
0 — / Nt— ° N~

a) deformed shape using P!, b) deformed shape using P3.

(S.-C. Soon, U.of M. Ph.D. Thesis, 2008.)
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The first approach.

An lllustration: An HDG method for nonlinear elasticity.

k=1 ©) k=3 d)
MUK SN
1 S QR
R K
XK XOOIA

c) closeup view of Figure a), d) closeup view of Figure b).

(S.-C. Soon, U.of M. Ph.D. Thesis, 2008.)
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The first approach.

An interpretation of the role of 7.

Since

q
RZ)K ~

where

Rk = cq, + Vup
R}q< :th—f

Ric

u O RpU°
oK RK

R(‘l)lK = uUp — ﬁh
q
R{)K

= (a,—ay) - n.

we see that 7 forces a ratio between the residuals.
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The first approach.

The effect of the local spaces and 7 on the accuracy of the method on simplexes.

Method V(K) W(K) M(F)

RT Pi(K) +xPu(K)  Pu(K)  Pu(F) =0
BDM Pr(K) Pi—1(K) Pu(F) =1
HDG Pr(K) Pu(K) Pu(F) >0
CG Pr-1(K) Pr(K)  Pu(F) >1
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The first approach.

The effect of the locals paces and 7 on the accuracy of the method on simplexes.

Method RgK RgK T = _R8K/R8K qd, up Up k

RT = 0 0 k+1 k+1 k+2 >0
BDM = 0 0 k+1 k k+2 >2
HDG — — O(h) k+1 k k+2 >1
HDG - 0(1) k+1 k+1 k+2 >1
HDG - - 0(1) 1 1 1 =0
HDG - O(1/h) kK k+1 k+1 >1
CG 0 = 00 k k+1 k+1 >1
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The second a pproach .(B.C., IMA tutorial (video), October 2010.)

The local solvers: A weak formulation on each element.

On the element K € Qp, given q-n on K, T and f, we have that (q, u)

satisfies

for all (v, w) € V(K) x W(K), where

Uu=u on OK.
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The second approach.

The local solvers: Definition.

On the element K € Q4, we define (qy, up) in terms of (qy,, Up, f) as the
element of V(K) x W(K) such that

0,
f—?—i—ah'n,W)K,

Up, 1)K7

(cap,v)k — (un, V- V) + (Up,v - n)ak
_(qh’ VW)K + <ah - n, W>8K
1)k

(uh’ )

for all (v, w) € V(K) x W(K), where

=
=
up=up+s(q,—q,)-n on 0K.
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The second approach.

The local solvers are well defined.

The local solver on K is well defined if
@ s>0ondK,
o VW(K) Cc V(K).

Bernardo Cockburn (U. of Minnesota, USA) HDG methods Durham, 2014 52 / 160



The second approach.

The global problem: The weak formulation for q,, and T.

For each face F € &, we take q,|f in the space N(F). Of course, if
F € £f we impose the condition that [q,] = 0.

We determine the numerical trace q;, and the local average T, by requiring
that, for each face F € &,

(n, [en])F =0 Vn e N(F) if Fecég,
(Up,m - n)p = (up,m-n)p ¥ € N(F) if Fe&f,

and by requiring that, for each element K € Q,

(@, Lok = (f, k.
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The second approach.

The transmission condition.

Suppose that the transmission condition implies that [u,] = 0 on a face
F e EZ. Then, on that face, we have that

[usl +s*(ay™ —@,) +s (a,~ —a,) =0,

which holds if
o sTupt 4 stuT [a,].
=
g st +s s+ + 5= L
a _ 5+Qh+ +5 4, |[ ]]
h st +s s+ s W

provided s* + s~ > 0.
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The second approach.

The numerical trace g, and the local average T are well defined.

The numerical trace q,, and the local average T are well defined if, for each
K € 0%y,

@ s>0ondK,
o VW(K) Cc V(K).
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The second approach.

A first characterization of the approximate solution.

We have that (q,, up) = (Qah, Uah) +(0,@p) + (Qf, Ur) where
(Qah7 Uah) = (Q(/lj/h 0)7 U(ah7 O)), (Qf7 Uf) = (Q(O’ f)’ U(07 f))
where (Q(q,, ), U(ay, f)) is the linear mapping that associates (g, ) to

(qh7 Uh)'
Here, we take (g, Ts) € N x WP, where

Ny ={necl?&,): nlreN(F) VFc&, [n]=0on &Y},
WP = {w € L*(Q) : w|k is a constant YK € Q}.
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The second approach.

A first characterization of the approximate solution.

The function (g, tp) satisfies the equations

an(ay,n) + ba(tp,n) = L1,n(n) Vn € Ny,
bp(W, Qp) = £op(W)
(m-n,Up)oo = (M-n,up)ag VN € Ny,

where
an(m,¢) = — (n-n,Uc)aq,,
bh(W’n) = (V_Vﬂ? : n>8Q’
lin(n) == (m-n,Ur)aq,,
Uy (W) := (f, W)q,.
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The second approach.

The matrix associated with the form ay.

We have that

an(n,¢) = (cQy, Q¢)og, + (s(Qn — 1) -0, (Q¢ — ¢) - n))oq,-
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The second approach.

A second form of the method.

The approximate solution (qy, up, q;) is the element of the space
V, x W) x Ny satisfying the equations

(cap,v)a, — (un, V -V)q, + (Us,v-n)sq, =0,

_(qhu VW)Q/, + <ah - n, W>8Qh — (f7 W)Qhu
(m - n,Un)aq, = (NN, up)sq,

for all (v,w,n) € Vj, x W} x Np, where

up=up+s(q,—q,)-n on 0Qp.

Note that this method is the same as the method obtained with the first

approach with 7 =1/s.
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Exam pleS.(B C., J.Gopalakrishnan and R.Lazarov, SINUM, 2009.)

Local spaces for simplexes K.

Method V(K) W(K)  M(F)
RT-H fpk(K) —I—Xfpk(K) ka(K) ﬂ)k(F)
BDM-H Pr(K) Pr-1(K)  P(F)
LDG-H Pr(K) Pi-1(K)  Pu(F)
LDG-H P (K) Po(K)  Pu(F)
LDG-H Pi-1(K) Pe(K)  Pu(F)
IP-H Pr(K) Pu(K)  Pu(F)
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Examples.

Numerical traces for simplexes K.

Method q,
RT-H an
BDM-H a,
LDG-H qh—i—T(uh—ﬁh)'n
IP-H —aVup+7(up — Up) -0
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Examples.

The bilinear form ay.

Method ap(n, 1)

RT-H (cQn, Qu)q,

BDM-H (cQn, Qu)q,

LDG-H (cQn, Qu)a, + (T(Up — p), Un — n)sq,
IP-HT (cVUpu, VUn)q, + (t(Up — 1), Un — n)aq,

((n —Un),cVUp)aq, + (1 — U, cVUn)agq, .

TWe assume that c is a constant on each element.
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Examples

Some remarks.

@ The RT-H method is the hybridized version of the original RT method.

@ The BDM-H method is the hybridized version of the original BDM method.
@ The LDG-H method is not the hybridized version of the LDG method.

@ The IP-H method is not the hybridized version of the IP method.

@ The bilinear forms aj of the RT-H, BDM-H and SF-H methods are the same
on simplexes. (For these three methods, 7* = 0.)

@ The LDG-H method is defined for any 7 > 0.
@ The IP-H method is defined only for 7 ~ h=1.
@ The LDG-H and IP-H can be applied on any polyhedral element K.
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General polyhedral elements.

Convergence properties

If we use the HDG method on general polyhedral elements with
V(K) :=Pr(K), W(K) := Px(K) and M(F) := P(F), we have that
o For 7 of order one, q,, converges with order k + 1/2 and uj, with order
k + 1, for any k > 0.
o For 7 of order 1/h, q; converges with order k and up, with order
k + 1, for any k > 0.

PrOVen in (P.Castillo, B.C., I.Perugia and D.Shotzau, SINUM, 2000.)
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Devising superconvergent methods.

Superconvergence and postprocessing.

We seek HDG methods for which the local averages of the error u — up,
converge faster than the errors u — up and q — qy,.

If this property holds, we introduce a new approximation uy. On each
element K it lies in the space W*(K) and defined by

(Vup*, Vw)k = — (cap, Vw)x  for all w € W*(K),
(un*, 1)k =(un, )k,

Then u — up; will converge faster than u — u,. This does happen for mixed
methods!
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[llustration of the postprocessing.
An HDG method for linear elasticity.(s-C. Soon, B.C. and H. Stolarski, 2008.)
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Superconvergent DG methods.

Are there superconvergent DG methods?

The numerical traces of the LDG method are:

= {un} + Co1 - [un] + G2 [ay],
d, = {an} + Ciz [ap] + Gia [un],

where C21 + C12 =0 and C22 =0.

The numerical traces of the LDG-H method are:

- T up™ + 77 up” [a.],
=
Gt T+ —|— = h
a . T_qh—‘r +'7'+Qh II h]]
g T 7‘+ + 7
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Superconvergent DG methods s c. s cumin and Hwang, wath comp., 2000)

Are there superconvergent DG methods?

Consider DG methods on conforming meshes 00, of simplexes K. Assume
they use the local spaces V(K) := Px(K) and W(K) := Px(K).

For very smooth solutions, we have, for k > 1,

la —aulle < C(H*** + |[a, — aplloa,,h),
lu— ujlla < Ch(A + |G, — apllo,.n),

where ||q,, — %”%Q,,,h =2 keq, Mk (@, —ap)- n||3 - Moreover,

la, — aplle,n < C ’rgg;({czz, 1/Co, C11,1/Ci } <L
h
Hence, for C;; and Cxp of order one, the DG method superconverges.
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Superconvergent DG methods

The effect of 7 on the accuracy.

o If 7%, Cyi1 are of order h~1 and Gy = 0, the LDG and HDG methods
have the same convergence properties. The scalar variable converges
with order k + 1 but the vector variable only with order k. They do
not converge for k = 0.

o If 7%, Ci1 and Gy are of order one, the DG and HDG methods have
the same convergence properties. Both variables converge with order
k+ 1 for k > 0. For k > 1, the local average of the scalar variable
superconverges with order k + 2.
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Superconvergent DG methods

The effect of the size of the jumps on the accuracy.

The energy identity is

(cdn,ap)a + Or(un — Un) = (f, un)a — (up,ap, - Mogq.
where, for the HDG,

O, (up — up) = (1(up — Up), up — Un)aa,
(7(
(t(un — Pmup), un — Pmup)aa

T Ll nbbes + e [ B

up — Pmup), up — Pmup)aq + (T(un — Un), up — Un)og,\ 00

+(
For the LDG,
©.(up — tp) = (T(un — Pmup), un — Pmup)aq

+ (G [un], [unl)eg + (C2 [anl, [anl)es-
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Devising superconvergent HDG methods. sc. wai sno kshi, vacn
Comp.,2012 + SINUM, 2012. B.C.)

The conditions on the local spaces

We decompose the local spaces V(K) and W(K) as follows:

V(K) =V(K) &V (K),
W(K) = W(K) @& W(K),

and assume that the following inclusions hold:

Moreover, we assume that we have that:

Vione Wt = M(6K),

where M(OK) = {u € L?(0K) : u|lr € M(F) VF € F(K)}.
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Construction of superconvergent HDG methods

The auxiliary projection

Then, the function My(q, v) := (Myq, My u) is the element of
V(K) x W(K) satisfying the equations

(Mva,v)x = (a,v)x Vv e V(K),
(Mwu, W)k = (u, w)k Ve W(K),
(Mva-n+7(Nwu), e =(q - n+7(Pyu),m)r ¥ pe M(F),

for all faces F of the element K, is well defined provided 7 > 0 on OK.

(This condition on 7 can be relaxed!)
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Devising superconvergent HDG methods

Estimate of the projection of the errors.

We have

[Mva — a,llc.e < [la — Nvallco,
[Mwu — uplla < C hljq — Nyale,

lu = uhlle < IMw (v = un)la + Ch(lla, —alla+ inf [[V(u—w)la).
h
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Construction of a superconvergent HDG method
Methods for which M(F) = P*(F),k > 1, and K is a simplex.

method V(K) W(K) V(K) W(K)
BDFM,;: {q € P*"(K): PX(K)  VPY(K)® ®ia(K)  PX(K)
q-nlok € R*(0K)}
RT, PX(K) & xP*(K) P*(K) PK~1(K) P*(K)
HDG, PX(K) PX(K) P*1(K) P*1(K)
BDM, PX(K) P*Y(K) VP Y(K)® &u(K) PYK)

k>2
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Examples of superconvergent methods. s.c. w.ai and kshi, wath. com.

2012 + SINUM, 2012.)

Methods for which M(F) = P*(F),k > 1, and K is a simplex.

method T la—aplle INwu — uslle |u— uille
BDFM,_ 1 0 k+1 k+2 k42
RT, 0 k+1 k42 k+2
HDG/ 0(1),>0 k+1 k+2 k+2
BDM, 0 k+1 k42 k+2
k>2
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Examples of superconvergent methods
Methods for which M(F) = P*(F),k > 1, and K is a square.

method V(K) W(K)
BDFMy 1 P KNy PH(K)
x(PFHHKON X 1Y)
HDG/,, PX(K) Pk(K)
BV x (xyP¥(K))
BDMy, PX(K) PH(K)

k>2 OV x (xy xK)
BV x (xyy¥)

Bernardo Cockburn (U. of Minnesota, USA)
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Examples of superconvergent methods
Methods for which M(F) = P*(F),k > 1, and K is a cube.

method V(K) W(K)

BDFM[k+1] Pk+1(K)\I3k+1(y,z) Pk(K)
><Pk+1(K)\Pk+1(X,Z)
x PKHL(K)\P**t1(x, y)

HDG, PX(K) PX(K)
PV x (szkiK),0,0)
oV x (0,zxPk(K),0)

BDM PK(K). PEY(K)

k> 2 @VX(070>XyPk(y>Z))

BV x (0,xzP*(x, y),0)
oV x (yzP*(x, 2),0,0)
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Examples of superconvergent methods
Methods for which M(F) = P*(F),k > 1, and K is a square or a cube.

method T lla —aplle IMwu — ualla |u— uille
BDFMj, , g 0 k+1 k+2 k+2
HDG[;, 0(1),>0 k+1 k+2 k+2
BDM 0 k+1 k+2 k+2
k>2
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Examples of superconvergent methods
Methods for which M(F) = Q“(F), k > 1, and K is a square.

method V(K) W(K)
RT 4 PLK(K)  QK(K)
% Pk,k-i-l(K)

TNT; Q(K) @ H5(K) Q%(K)

HDGS,  QK(K) @ HA(K)  QK(K)
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Examples of superconvergent methods

The space H5(K).

— —————— —

—_—

—_—————— ——

— ——— 0 —  —
— ————— — —
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Examples of superconvergent methods
Methods for which M(F) = Q“(F),k > 1, and K is a cube.

method V(K) W(K)
RT[k] Pk+1.k, k(K) Qk(K)
% Pk k+1, k(K)

Pk k, k+1(K)
TNTy  Q“(K) @ HE(K)  Q(K)
HDG  Q“(K) @ Hg(K)  QX(K)
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Examples of superconvergent methods
The space H(K).
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Examples of superconvergent methods
The space H(K).

A
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Bernardo Cockburn (U. of Minnesota, USA) HDG methods Durham, 2014 85 / 160



Examples of superconvergent methods
The space H(K).
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Examples of superconvergent methods
Methods for which M(F) = Q“(F), k > 1, and K is a square or a cube.

method T la—aplle Mwu — uslle [Ju— uille
RT (s 0 k41 k+2 k42
TNT 0 k41 k+2 k42
HDGJ, O(1)>0 k+1 k+2 k+2
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Variable-degree HDG methods on nonconforming meshes.

(Y.Chen and B.C., IMA,2012 + Math. Comp.,2014.)

Definition.
V, = {I’ S Lz((.Th) : I’|K € Pk(K)(K) VK e Th},
Wi, = {w € L*(Th): wlk € Pyiy(K) VK €ETh},
My = {u S Lz(gh) ; N|F S Pk(F)(F) VFe gh}
and

k(F) = k(K) if F=0KnNoQ,
k(F) = max{k(KT),k(K™)} if F=0K"NoK".
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Variable-degree HDG methods on nonconforming meshes

Overview of convergence properties

method | conformity of the meshes T}, | order (flux) order (scalar)
DG conforming k k+1
pure diffusion
LDG conforming k+1/2 k+1
pure diffusion Cartesian meshes
LR{G nonconforming k k+1
pure ditfusion
HDG conforming k+1 k + 1+ min{k,1}
pure diffusion projection of the scalar variable
HDG nonconforming k+1/2 k+1
HDG nonconforming semimatching k+1 k+1+ min{k,1}
projection of the scalar variable
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Variable-degree HDG methods on nonconforming meshes

General meshes

Theorem

For any mesh of shape-regular simplexes, we have

lealle < IMva —allc + Cl[(Pm — Px)(a - n+ 7 u)llag,,

Moreover,

leull < € B2 (IMva —all + [(Pm — Pro)(@ - n + 7 u)l|ag,)-

I(Pv — P))(a - n+ 7 u)llog, < C|Spal*/? gt D(a, u),

D(a,u) :=[a-n+ 7 ulprioos, ),
Spyh = {F o PM 75 PM on F}.
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Variable-degree HDG methods on nonconforming meshes

General meshes

Figure: Examples of sets Sp  of size of order one.
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Variable-degree HDG methods on nonconforming meshes

General meshes

Figure: Examples of sets Sp j, of size of order h 1.
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Variable-degree HDG methods on nonconforming meshes

The semimatching nonconforming meshes.
For every level index ¢ > 1,

@ Shape regularity:

: : h
Tf, is made of simplexes K such that LS <o.
PK

@ Mandatory refinement:
Tffl is a refinement of T% : no element of T4 is unrefined.
@ Local Uniformity:

VKe Ti : max hg < kK min hk:.
K/eTHHK/CK K/eTHHK/CK

@ Uniform refinement:

VKETf, : max  hx < cn” hk.
K/eT K/ CK
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Variable-degree HDG methods on nonconforming meshes

The semimatching nonconforming meshes

NN

VAN AAV

NS
KA

Y%
aﬁgg

W

L

/N
\/

T

Figure: An example of a family of triangulations {T%}¢>1 for which n = 1/2.
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Variable-degree HDG methods on nonconforming meshes

The semimatching nonconforming meshes

Th = {K} is a semimatching nonconforming mesh if, for each element
K € T}, there is a set {Kﬁ}gil such that:

° Kf(ETﬁ, ford=1, --- | lk.
° Kf(DK, fort=1, ---, lk.
o Kik =K.
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Variable-degree HDG methods on nonconforming meshes

The semimatching meshes.

K=K} eT3 =3 K2 € T2 KL € T}

Figure: A nonconforming mesh T, (left) and of the set {K{}4<, (in gray).
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Variable-degree HDG methods on nonconforming meshes

The condition on the degree.

We further require that

k(K1) > k(K™) whenever £+ > £y .

Figure: lllustration of the last condition: Yes (left), no (right).
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Variable-degree HDG methods on nonconforming meshes

The estimates.

Theorem

For any semimatching mesh, we have

leqll < C(lla — Mvall + [[(Pm — Px)(a - n+ 7 u)l|og,,n),
Moreover, if the standard elliptic regularity holds,

leull < € pmincenn LK} (g — Ayl + [[(Py — Pa))(a - n + 7 ) oq, h)-

k(K)+1
la-n+7ulloxn < Chid"™ Dic(a, 1)
Dk (a, u) = [l per(i) + 17l oo ok (U] e (c)-
Bernardo Cockburn (U. of Minnesota, USA)
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Variable-degree HDG methods on nonconforming meshes

Conclusions.

For uniform-degree methods on simplexes,

@ HDG as well as DG methods always converge with order k + 1 in the
scalar variable.

@ HDG methods can converge in the flux with order k + 1 on some
general nonconforming meshes. In this case, they superconverge with
order k + 3/2 for k > 1 in the scalar variable.

o For general meshes, they might lose 1/2 an order of convergence in
the flux and might not exhibit superconvergence of the scalar variable.

@ HDG methods superconverge with order k + 2 on semimatching
meshes for k > 1.
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Bernardo Cockburn (U. of Minnesota, USA)

A posteriori error estimation s.c. rocheto and W. Zhang, Math. Comp., in revision.)

Setting.

We take meshes T, made of simplexes, and set

V(K) = Pa(K), W(K) =Po(K), M(F):=Pn(K).

We assume that, for K € Ty,

A1l The parameter Tk is a positive constant on K.
A2 IfKDTe ‘Tk+1, then 71 = 7.

A3 7xhk < C; for some constant C;.
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A pOStel’iOI’i erI'OI' eStimatIOH(Bc, R.Nochetto and W. Zhang, Math. Comp., in revision.)
Contraction of the quasi-error.

We consider the quasi-error

Es (A - Tk)? = | a — ag |3 + Bndi (F, Qs Ti) + v02n (@ Tk)s

where
ngurl(qk? ) — h H Vv x Ak HK + hKH Iqu]] H@K?
g (F1ai, K) = T hi ‘|kaquK'+l7‘|P fHK
Theorem

If C is small enough, there exist positive constants (3,~, and a < 1 such
that

Eﬁﬁ(qk—l—la f, ‘Tk—i-l) < aEg,«,(qk, f, ‘Ik)
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A posteriori error estimation(s.c. rnochetto and W. zhang, Math. Comp. in revision)

lllustration.

n =1, T3, 74 elements, error= 0.052 n = 2, T, 28 elements, error= 0.047

Figure: Adapted meshes for n =1 (left) and for n = 2 (right).
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A posteriori error estimation(s.c. rnochetto and W. zhang, Math. Comp. in revision)

lllustration.

n =1, T5, 146 elements, error= 0.033 n = 2, T, 438 elements, error= 0.030

Figure: Adapted meshes for n =1 (left) and for n = 2 (right).
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HDG methods for the heat equation. s.crbsu s s.c. math. comp, 2012)

The model problem.

Consider the model problem:
cq+Vu=0 in Qx (0, T),
ur+V-q="~ in Qx (0, T),
u=up ond2x(0,T),
u=uy onQ x{0}.

Here c is a matrix-valued function which is symmetric and uniformly
positive definite on €.
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HDG methods for the heat equation.
The approach.

We can obtain (q, u) in K x (0, T) in terms of U on 0K x (0, T), f and ug
by solving

cq+Vu=0 in Kx (0, T),
ur+V-q=r in Kx (0, T),

u=u ondK x(0,T),
u=uy on K x {0}.

The function u can now be determined as the solution on each F x (0, T),
F € &, of the equations

[al=0 if Fe &y,

i=up ifFeé&?,

where q is the trace of q = q(u, f, up) on 9K.
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HDG methods for the heat equation.

The semidiscrete method.

At any time, the approximate solution (qy, up, Us) is an element of the
space Vp X W), x M. It satisfies the equations

(can,v)a, — (un, V - V)q, + (Un, v - n)sq, =0,
((un)e, Vw)a, — (an, Vw)q, + (@, - n, w)aq, = (f,w)g,,
{1, dp - M)ag,\00 = 0,
{1, Up)oa = (1, Up)aa,

for all (v, w, ) € Vi x Wy, x My, where
qy-n=4q, -n+7(uy, — Up) on 0y,

The HDG method retains all the convergence and superconvergence,
uniformly in time, of the HDG method for the steady-state case provided
the initial condition is properly defined.
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HDG methods for the heat equation.

A fully discrete method.

To approximate the time derivative at time t” := nAt, we could use the
BDF approximation

(un)i ~ Z'YJUh )/At,
and set

y4
— (3 ")/,

j=1
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HDG methods for the heat equation.

A fully discrete method.

Then, at any time t” = n At, the approximate solution (qy, up, Up) is an
element of the space Vi, x W), x M. It satisfies the equations

(cap,v)a, — (un, V -V)q, + (Ux,v - n)sq, =0,
Zt(ufh VW)Qh (qh7 VW)Qh + (ah -n, W>th - ('?7 W)Qh7
(1,9 - Maq,\00 = 0,

(1, Un)aq = (K, Up)aa,

for all (v, w,p) € Vi x Wy, x Mp, where

qy-n=4q,-n+7(uy, — Up) on 0y,
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HDG methods for the wave equation.w.cgen, 1. peraire and 5.c.. Math

Comp., JCP, 2011.)

The model problem.

Consider the model problem:

f in Q x (0, T),
(up) on 92 x(0,T),
= up on Q x {0},

Ur = tn on Q x {0}.

Ust + V- (CVU)

S ©
Il

Here c is a matrix-valued function which is symmetric and uniformly
positive definite on €.
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HDG methods for the wave equation.

The model problem.

We rewrite it in terms of (q,v) := (—cVu, u;) as follows:

cq: +Vv=0 in Q2x(0,7),
vi+V-q="1 in Q2x(0,7),
v=(up)r ondQx(0,T),
cq=—Vu on Q x {0},
v=u on Q x {0}.

Here ¢ is a matrix-valued function which is symmetric and uniformly
positive definite on 2.
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HDG methods for the wave equation.
The approach.

We can obtain (q,v) in K x (0, T) in terms of v on 0K x (0, T), f, up
and u; by solving

cqr+Vu=0 in Kx (0, T),

vi+V.-q="1 in Kx (0, T),
cq=—Vuy on Q x {0},
v=u on Q x {0}.

The function v can now be determined as the solution on each F x (0, T),
F € &, of the equations

[al =0 if Feé&f,
V=(up): IifFeé&d,

where q is the trace of q = q(u, f, up, u1) on IK.
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HDG methods for the wave equation.

The semidiscrete method.

At any time, the approximate solution (qy, vp, vj) is an element of the
space Vp X W), x M. It satisfies the equations

(c(ap)e:r)a, — (va, V - 1r)q, + (Vh, r - n)aq, =0,
((vh)e, VW), — (ap, VW), + (@), - n,w)aq, = (f, w)q,,
(1,9 - Maq,\00 = 0,
{1, Vin)aq = (i, (up)t)aa,

for all (r,w, n) € Vi x W)y x My, where

Qp-n=4qy -n+7(vy — Vp) on 02y,
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HDG methods for the wave equation. (.. v.ueneie s, Math. comp.

2nd. revision.)

The semidiscrete method.

For simplexes, V(K) := Py (K) and W(K) := Py (K):
@ The HDG method converges in q; and v, with the optimal order of
k+1, for k >0, in the L>=(0, T; L?(R2))-norm.
@ The variable fot v, superconverges with order k + 2, for k > 1, in the
L>°(0, T; L?(R2))-norm provided the initial conditions are suitably
defined.

@ In this case, the postprocessed solution u} superconverges with order
k +2, for k > 1, in the L>(0, T; L?(R2))-norm.

Recall that, on each element K, u} lies in the space Py 1(K) and is
defined by

(Vup*, Vw)k = — (cq,, Vw)k for all w € Pri1(K),
t
(un*, L) =(um L)k = ( / vh + up(0), k.
0
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HDG methods for convection-diffusion equations. u.cguyen ;

Peraire and B.C., JCP, 2009

The model problem.

Consider the model problem:

cq+Vu=0 in Q2 x (0, 7),
V-(q+vu)=1 in Q2 x(0,7),
u=up ond2x(0,T).

Here ¢ is a matrix-valued function which is symmetric and uniformly
positive definite on €2.
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HDG methods for convection-diffusion equations.
The approach.

We can obtain (q, u) in K x (0, T) in terms of u on 9K x (0, T),  and g
by solving
cq+Vu=0 in Kx (0, T),

V-(q+vu)="1 in Kx (0, T),
u=u ondK x(0,T).

The function u can now be determined as the solution on each F x (0, T),
F € &, of the equations

[a+vi]=0 if Feé&s,
U=up ifFeé&

where q is the trace of q = q(u, f, up) on 9K.
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HDG methods for convection-diffusion
Definition of the method.

The HDG method defines the approximation (qy, up, tp) in Vi x Wj x My,
by requiring that

(cap,)a, — (un, V - 1), + (Un, T - n)og, =0,
_(qh + upVv, VW)Qh + <(ah + Up V) -n, W>th = (fv W)Qh,
(1, Unoa = (1, &)oq

(1, (@5 + Upv) - nag,\00 =0,

hold for all (r,w,u) € Vp x W)y x My, where

Ay + Upv=qp+ Upv + 7(up — Up)n on OQp,.
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HDG methods for convection-diffusion
Definition of the method.

Theorem

The method is well defined if

Al There is a constant yg > 0: min(T — %v ‘N)|ok >V K € Th.
A2 On any face F € &y, T is a constant.

The following practical choices of stabilization functions 7 do satisfy these
two conditions:

7'+:7'_:|V‘n|+%a

(rt,77) = (lv-n|+%,0) whenv-n~ <0,
7 (0,[v-n|+ %) whenv-n~— > 0.

Here  is a scalar proportional to some norm of the diffusivity matrix ¢!

and ¢ denotes a representative length scale.
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HDG methods for convection-diffusion

The numerical traces.

For the first choice of 7, we have
_ 1
up = fun} + Y [as - n],
. _ 1 7T
v+ = fundv+ fagk+ 5= [a, - lv + 2 [unnl,
whereas for the second choice for T,

— + = -ny, . _
ﬁh A ui 7-+_[[qh 1]] W =
Upv+a, =upv+a,” + = [aq,-n]v

and

{ah ZUh_—I—T%IIqh'n]]’ ifv-n- >0

pv+a, =uyv+a,m+ L [a, n]v,
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HDG methods for convection-diffusion. v cue s .c. mazom + watn

Comp.,2014.)

The auxiliary projection.

On any simplex K, the projection (Myq, My u) is the element of
Pi(K) x Pr(K) which solves the equations

((I'qu — q) +V(|_|Wu = u),r)K =0Vre fpk_l(K),
(eru —u, W)K =0Vwe ka_l(K),
(((Mva—a)+v(Pyu—u)) -n+7(Mwu—u),p)rp =0V pe Pr(F),

for all faces F of the simplex K.
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HDG methods for convection-diffusion. w.cesen, 5 peraire and 5., icp,

2009.)

Numerical examples.

1 1
0.8r 1 0.8f
0.67 1 0.6f
> >
0.41 1 04r
0.2 1 0.2r
0 . . . . 0 . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
€T €T

Unstructured and anisotropic meshes.
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HDG methods for convection-diffusion. w.cesen, 5 peraire and 5., icp,

2009.)

Numerical examples.

1 1
06 06
08 0.
05 05
06 r 1‘0.4 06 04
N S
0.4 0.3 0.4 0.3
0.2 0.2
0.2 : 02
0.1 0.1
% 0.2 04 _ 06 0.8 10 % 02 04 06 0.8 10

HDG approximation with quadratic polynomials on the unstructured
triangulation.
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HDG methods for convection-diffusion. w.cesen, 5 peraire and 5., icp,

2009.)

Numerical examples.

1 1 07
06 06
05 05
L 104 0.4
NN SN

03 03
02 02
0.1 0.1

O0 0.2 0.4 0.6 0.8 1 L 0.2 04 0.6 0.8 1 L

HDG approximation with quadratic polynomials on the unstructured
triangulation.
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Linear elasticity.<s.c Soon, B.C. and H.Stolarski, JNME, 2009.)

The model problem.

Consider the following problem:

oijj+ b =0 in Q,

1 .
EU_E(UI'J—’_UJ'J) =0 inQQ,
0‘,'J'—D,'jk/ Ek/ZO in Q,
ai = Uj on aQD,
(/T\,'j nj = tj on 0.
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Linear elasticity.

A characterization of the solution.

We can obtain (o, u) in K in terms of U by solving

gjjj+ bi=0 in K,
1 .

€jj — 5 (u,-yj + UJ',;) =0 inK,

(T,'J'—D,'jk/Ek/:O in K,

U = U on OK.

The function U can now be determined as the solution of the transmission
condition

[ciin]=0 oné&f,
ﬁ,’ = uj on 8QD,

8,'j nj = t; on 0.
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Linear elasticity.
An HDG method

The approximation (u”, o, " ") is taken in the finite dimensional space
Vh x wh X Zh x M" where
Vi={vel?(Q) : vi|, € P(K) VKeQ, =123},
W' ={w e L*(Q) : wyl|, € Pu(K) YK€ Qp i,j=1,2,3},
Zh={zelX(Q) : zi|, € P(K) YK eQpn i,j=1,23},
MM = (e L2(&) : pilF€ Pu(F) VFe&, i=1,23}
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Linear elasticity .
An HDG method.

On the element K, (u”,a", €") is obtained in terms of 4" by solving

(V'»J’ ) <VHU >aK _(Vi’bi)K =0,
1 1 1
(wij, Z) —§<W,J,(u nj + 07'07)) i +§(W,'j’j,U,h)K‘f'E(W,‘j’,',UJh)K =0,

(20 ) — (2, ukIEk/)K:(),

for all (v,w,z, 1) € Pr(K) x Pr(K) x Pr(K) x Pi(K), where

~h h h __ —~h
0 = 0j — Tij ( ug — uk) ny on 0.

The function " is now determined as the element of My, satisfying
<:ul7 /J J>89h\BQD - <,LL,', ti>6ﬂ/v )
(s T7) o = i U}

for all p € My,
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Linear elasticity.
An HDG method

In compact form, the methods an be written as follows:

(V"J’O—l/'})nh = <Vi’UUnJ>aQ (Vi’bl)n =0,
1 . 1
Wij, € ) §<W,J,(U, nj—|-uj-’n,)>aQ +§(W,J7J,u,) h—|—2 (W,J,,UJ)

(

(2595), = (2 Dijweia), =0,
(piro
(

Wi, U > o2p <:ula f> ’

= (ui, ti>BQN 5

Tij ">an \89p

for all (v,w,z, ) € V" x W" x Z" x M" where

~h h h —h
()'I.J. = O'U — Tijkl (Uk — Uk) ny on th
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Linear elasticity.
An HDG method

In compact form:

(V"J’O—l/'})nh = <Vi’aunj>an (Vi’bl)n =0,
1 . 1
W,j,EZ-) — §<WU,(U, nj—|-uj-’n,)>0Q 4 5 (W,'J‘J,U,)

(

(25, 95),, — (@, Diwekr), =0,
(uis 3jn; = (Wir i) oo
(

>anh\anD

s 07 o = (His U)

for all (v,w,z, ) € V" x W" x Z" x M" where
~h

h h__ ~h
o = 0j = Tij (uk — uk) ny on 0.
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Linear elasticity.

Existence and Uniqueness.

The approximate solution
(u" " e") = (U(ﬁh), S(ﬁh)’ E(ﬁ”)) + (U s g,
is well defined if we take T nj n; positive definite on 02,. Moreover, the
function A" := 0" — u, is the only element of M" satisfying
a (mA") =b"(n)  Vue M),

where

#(¢m) = (O )+ (0~ ) gy (00 - ),

h

bh(C):<Cf,t,->6N <s(<)nj, >BQD+(U§<),b,-) ,

Qp

for all ¢,m € L*(&").
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Linear elasticity.

Numerical experiments.

@ For k > 0 all unknowns converge with order k + 1.

@ For k > 2 the local average of the displacement superconverges with
order k + 2. A local postprocessing can be devised that provides
another approximate displacement converging with order k + 2.

@ Analysis for general polyhedral elements: Convergence of order
k + 1/2 for the stress and k + 1 for the displacement. The estimates

are sharp.

(G. Fu, B.C. and H.Stolarski, submitted.)
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HDG methods for the Stokes flow. (.c ngwen, 1. peraire and B.C., 1P cmame,

2010.)

The model problem.

Consider the model problem:

—vAu+Vp=1f
V-u=0
U= up

where (up -n,1)9q =0 and (p,1)q = 0.
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HDG methods for the Stokes flow.

Using the vorticity.

We begin by rewriting it as follows:

w—Vxu=0
vWXw+Vp="f
V-u=0

u=up

where (up -n,1)pq =0 and (p,1)q = 0.
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HDG methods for the Stokes flow

Using the vorticity.

We can express (w,u, p) in K in terms of u on 9K and p := (p,1)k/|K]|

by solving

w—V xu=0, vVxw+Vp=f inK,

|~

V-u= |(ﬁ~n,1>aK in K,

=) ey

u—=

on OK.

The functions u and p are the solution of

[-v&o xn+pn] =0 for all F € E7,
(u-n,L)sx =0 for all K € Qp,
u=up on o0,
(p; ) =0.
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HDG methods for the Stokes flow.

Using the velocity gradient.

We begin by rewriting it as follows:

L—Vu=0 in €,
—vV-L+Vp=1 in Q,
V-u=0 on €,
u=up on 0N,

where (up -n,1)pq =0 and (p,1)q = 0.
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HDG methods for the Stokes flow

Using the velocity gradient.

We can express (L, u, p) in K in terms of u on 9K and p := (p,1)x/|K]|

by solving
L — Vu =0, —vV-L+Vp=f inK,
V~u:ﬁ(ﬁ~n,1>aK in K,
u=u on OK.

The functions u and p are the solution of

[-vLn+p5n] =0 for all F € &,
(u-n,1)sx =0 for all K € Qp,
u=up on o,
(P, 1)a =0.
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The HDG methods for the Stokes flow

Which approach should we use?

@ Both approaches give rise to saddle-point problems of the same
sparsiy structure.

@ In both approaches, the only globally coupled degrees of freedom are
those of the velocity trace U and the average of the pressure on each
element p.

@ The local solvers for the vorticity formulation have less degrees of
freedom. However, there is no superconvergence of the velocity.

@ The local solvers for the velocity gradient formulation have more
degrees of freedom. However, there is superconvergence of the
velocity.
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The HDG methods for the Stokes flow

The Galerkin method on each element. Expressing (L, us, ps) in terms of (us, py, f).

On the element K € Qp, we define (L, up, pp) in terms of (up, py, f) as
the element of G(K) x V(K) x Q(K) solving

(Lh7 G)K I (Uh, V. G)K — <Gh7 Gn>8K — 07
(vLn, VV)k — (phs V - W)k — (vLin — ppn, v)ok = (F, V),
—(Uh, Vq)ﬂh + <ah -n, g — a>8K — 0)

for all (G,v,q) € G(K) x V(K) x Q(K), where

—vl,n+ ppn = —vLpn+ ppn + v 7 (up —up)  on 9K,

and (P, 1)/|K| = By

Bernardo Cockburn (U. of Minnesota, USA) HDG methods Durham, 2014 140 / 160



The HDG methods for the Stokes flow

The weak formulation for (up, By, f).

We take uy|g in M(F) and pp|k in Po(K) and determine them by
requiring

([=vLan + ppn], w)r =0 Ve M(F) V F € &%,
<Gh~n,1>aK:0 VK e Qp,
(U, ) = (up, w)r Y e M(F) V F € &9,
(5h71)ﬂ = 0.
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The HDG methods for the Stokes flow

Existence and Uniqueness.

Theorem

The HDG methods are well defined if
o 7> 0 on 09y,
o VV(K) € G(K) VK € Q,
@ VQ(K) € V(K) VK € Q.
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The HDG methods for the Stokes flow

Implementation. The local solvers.

We denote by (L, U, P) the linear mapping that associates (uy, By, f) to
(Lp,up, pp), and set

(L%, U, P™) = (L, U, P)(u5,0,0),
(LP», UP», PPr) := (L, U,P)(0,p},0),
(L7, U7, P") == (L, U,P)(0,0,f).

Then we have that

(L, up, pp) = (L9, U PUr) 4 (LPr, UPh PP 4 (L, UF PF).
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The HDG methods for the Stokes flow

Implementation. Characterization of u, and B,

The function (U, p,,) is the only element in My, x P}, such that

ap(Up, p) + bp(Pp, 1) = Lh(p), YV p € Mp: plog = 0),

bn(g, 1) = 0, Vg e Py,
/ljh = up,
(ﬁha 1)Q =0.

where M, := {p € L?(€):  plp € M(F) V F € €9}

@ The bilinear form ap(-,-) is symmetric and positive definite on
Mh,O X Mh,O-
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The HDG methods for the Stokes flow.

Compact form of the HDG methods.

(Lp, up, pp, up) is the element of Gy x Vi X Qp x My, solving

(Lp, G)a, + (up, V- G)a, — (us, Gn)sq, =0,
(vLn, VV)o, — (pn, V - V)q, — (vLyn — Py, v)on, = (f,v)a,,
—(up, V@), + (Un - n, g@)aq, =0,
(—vLpn + Gp, Gy - 0+ P, wog,00 = 0
(Up, w)oa = (up, 1)
(Pn,1)a =0,

for all (G,v,q, ) € Gp X Vi X Qp X My, where

—ufhn + ppn = —vLpn + ppn + v 7 (up — Up)  on Oy,
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The HDG methods for the Stokes flow

The stabilization mechanism. The energy identity: The jumps stabilize the method.

The energy identity for the exact solution is
(L,L)q = (f,u)q + (—vLn+ p n,up)aq,
and for the approximate solution we have,
(Lp, Lp)a + ©-(up — 1) = (F,up)a + (—vLy + pp Dn, up)aa,
where ©,(u, — uy) = ZKGQh<T(Uh —Up),up — up)gk. We see that the

jumps uy, — uy, stabilize the method if we require the function 7 to be
positive on 0$p.

Bernardo Cockburn (U. of Minnesota, USA) HDG methods Durham, 2014 146 / 160



The HDG methods for the Stokes flow

The stabilization mechanism. The jumps of the velocity control the residuals.

The Galerkin formulation on the element K reads

(Rk, Gk = (Rok G)ax

(RK?, V)i = (Rgié Vo

(RXY, @)k = (trR8x, q)ok,
for all (G,v, q) € G(K) x V(K) x P(K) where

Rl;'( = Lh — Vuh,

RiP =V - (—vLp+py 1) - f,
RZ'U =V -up,

R??K = (Gh = uh) ® n,

Rg}? = (—VLhn + ph n) = (—yihn -+ P n) - —uT (uh _ ah)
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The HDG methods for the Stokes flow. c. s copstakrishnan, n.C Nguyen, 5

Peraire and F.-J. Sayas, Math. Comp., 2011.) (B.C. and K. Shi, Math. Comp.,2012 + SINUM, 2012.)

Construction of superconvergent HDG methods.

o Let VP(K), WP(K) and MP(F) be the local spaces of a
superconvergent HDG method for diffusion.

o Set Gj(K) := VP(K), Vi(K) := WP(K) and M;(F) := MP(F).

o Take a local space Q(K) such that

V- V(K) € Q(K), Q(K)IcC G(K).
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The HDG methods for the Stokes flow

Convergence properties.

Theorem
We have

IE*[lo < C||IIL - Ll
lflle < €V G [T L —Lilg,

where C. = maxkeq,{1, 7k hk}. Moreover,
leulle < C G A™RL | TIL — L g,

provided a standard elliptic regularity result holds.

Note that, by an energy argument, we get
(EL, EL)Q SN eT(Eu = Ea) = (HL — L, EL)Q.
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The HDG methods for the Stokes flow

Convergence properties. Postprocessing.

A new approximate velocity u} can be obtained which has the following
properties:

@ It is computed in an element-by-element fashion.

o uj € H(div,Q).

o V-u; =0on .

o |luj —ullg < C G A TIL — Lijg + C A4 u | yyee -
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The incompressible Navier-Stokes equations. i c newyen, 1 persire ana

B.C., Math. Comp., JCP, 2011.)

The model problem.

Consider the model problem:

—vAu+V- - (u®u)+Vp="f in Q,
V-u=0 on £,

Uu=up on 0%,

where (up - n,1)sq =0 and (p,1)q = 0.
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The incompressible Navier-Stokes equations.
Compact form of the HDG methods.

(L, up, ps, us) is the element of G, x V), X Qn X My, solving
(Ln, G)a, + (un, V- G)a, — (Un, Gn)ag, =0,
(vLn, VV)a, — (upr ® up, Vv)g,
—(Phy V - V)a, — (wLan + Uy Gy - 0 — Bon, V)og, = (F,V)a,,
—(un, Vq)a, + (Us - n, q)og, =0,
(—vLan 4 Ty Uy - 0 4 By 0, whog,\00 = 0
(Uh, wyoq = (up, w)oq

(pn, 1)a = 0,

for all (G,v, g, ) € Gp X Vi X Qp X My, where

—l/ﬁhn + ﬁ;,n = —vLm+pmn+vr (uh — Gh) on 0Q.
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The compressible Navier-Stokes equations.

A numerical example.

Viscous flow over a Karman-Trefftz airfoil: M., = 0.1, Re = 4000 and
a = 0. Mach number distribution (left) and detail of the mesh and Mach
number solution near the leading edge region (right) using fourth order
polynomial approximations.

(N.-C. Nguyen, J. Peraire and B.C., 2011.)
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The Euler equations of gas dynamics.

A numerical example.

011
01
0.09
0.08
007
“ 0.06
005
0.04
0.03
002
001

Inviscid flow over a Karman-Trefftz airfoil: My, = 0.1, a« = 0. Detail of
the mesh employed (left) and Mach number contours of the solution using
fourth order polynomial approximations (right).

(N.-C. Nguyen, J. Peraire and B.C., 2011.)
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Ongoing work and open problems

Other stabilization functions? Other choices of local spaces?
Superconvergence for pyramidal, hexahedral elements?

A posteriori error estimates: Only in terms of uy, — Uy, and 77
Efficient solvers: Domain decomposition methods?

Stokes flow: Superconvergence with other formulations?
Solid mechanics: Optimal convergence for all variables?
Linear transport: Which unknowns superconverge?

HDG methods for KdV equations: Superconvergence?

¢ © ¢ ¢ © ¢ ¢ ¢ ¢

Nonlinear hyperbolic conservation laws: How to deal with shocks?
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The HDG methods.

References: Until 2005.

@ Pian, Tong, Kikuchi, 1965: Hybrid methods. (There is a vast
literature on these methods. See the book by Roberts and Thomas.)

@ De Veubeque, 1965: Introduction of "hybridization™ as a technique to
implementing FEM for plates.

@ Arnold and Brezzi, 1985: Analysis of the "hybridization” technique
for mixed methods.

@ C. and Gopalakrishnan, 2004: A new characterization of " hybridized"
mixed methods.

@ C. and Gopalakrishnan, 2005: Error analysis of variable-degree
"hybridized” mixed methods for diffusion.

o C. and Gopalakrishnan, 2005. Hybridization of a (vorticity) mixed
method for the Stokes problem.
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The HDG methods.

References after 2005 (I am aware of!).

*] |ntr0d Uced in (B.C., J.Gopalakrishnan and R.Lazarov, SINUM, 2009.)
@ Steady-state diffusion:
9 (B.C., J.Gopalakrishnan and H.Wang, Math. Comp., 2007.) Local conservativity of the CG method.
B.C., B. Dong and J.Guzmdn, Math. Comp., 2008.) The first superconvergent HDG method.
B.C., J.Guzman and H.Wang, Math. Comp., 2009.) Superconvergence of DG methods.
B.C., J.Guzman, S.-C.Soon and H.Stolarski, SINUM, 2009 .) Analysis of EDG methods.
B.C., J.Gopalakrishnan and F.-J.Sayas, Math. Comp., 2010 .) Analysis of a superconvergent HDG method.
F. Kikuchi and I.Oikawa, JSIAM Lett., 2010.) DG methods of hybrid type.
F. Kikuchi, Japan Journal I.A.M., 2012.) DG methods of hybrid type.
B.C., O.Dubois, J.Gopalakrishnan and S.Tan, Math. Comp., to appear.) Multigrid for HDG methods.
M.Kirby, S.Sherwin and B.C., J. Sci. Comput., 2012.) Implementation of HDG methods.
B.C., J.Guzman and H.Wang, Math. Comp., 2009.) Superconvergence of DG methods.
B.C., W.Qiu and K.Shi, Math. Comp., 2012 + SINUM, 2012.) Construction of superconvergent HDG methods
Y.Chen and B.C., IMA,2012 + Math. Comp. 2014.) Variable-degree on nonconforming meshes.
B.C. and M.Solano, SISC, 2012.) HDG methods with extensions from subdomains.
B.C., F.-J.Sayas and M.Solano, SISC, 2012.) Coupling at a distance BEM with HDG methods .

€ € ¢ ¢ ¢ ¢ € ¢ ¢ ¢ ¢ ¢ ¢ ¢©

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(B.C. and W.Zhang, JSC, 2012 + SINUM, 2013.) A posteriori error estimates.
(

9 (B.C., R.Nochetto and W.Zhang, submitted.) Convergence of the adaptive method.
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The HDG methods.

References after 2005 (I am aware of!).

@ Time-dependent diffusion:
9 (B.Chabaud and B.C., Math. Comp., 2012.) Analysis of the semidiscrete case.

@ The wave equation:

9 (N.C.Nguyen, J. Peraire and B.C., Math. Comp., JCP, 2011.) Devising HDG methods.

9 (N.C.Nguyen, J.Peraire and B.C., JCP, 2011.) Maxwell equations.

9@ (Y. Griesmaier and P. Monk, J. Sci. Comput., 2012.) Helmholtz equation for low frequencies.
@ (B.C. and V.Queneville-Bélair, Math. Comp., 2nd. revision.) Analysis of the semidiscrete case.
@ (X. Feng and Y.Xing, Math. Comp., 2013.) Helmholtz equation for arbitrary frequencies.

@ Convection -diffusion:

9 (B.C., B.Dong, J.Guzman, R.Sacco and M.Restelli, SISC, 2009.) Devising an HDG method for the linear,
steady-state case.

@ (N.C.Nguyen, J. Peraire and B.C., JCP, 2009. Devising another HDG method for linear and nonlinear
convection and for the steady-state and time-dependent cases.

9 (H.Egger and J.Schéberl, IMA, 2010.) Using a mixed method for diffusion and DG for convection.
(S. Rheberghen and B.C., "80 years of the CFL Condition”, 2013.) Devising space-time HDG methods.

@ (l.Oikawa, JSIAM, to appear.) DG methods of hybrid type.
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The HDG methods.

References after 2005 (I am aware of!).

o Linear and nonlinear elasticity:

S.-C.Soon, U. of M. PhD Thesis, 2008.) HDG methods for linear/nonlinear elasticity.

F. Kikuchi, K.Ishii and I.Oikawa, Theo. & Appli. Mech. Japan, 2009.) DG methods of hybrid type.

¢ ¢ ¢ ¢

(
(S.-C.Soon, B.C. and H.Stolarski, JNME, 2009.) Devising HDG methods for linear elasticity.
(
(

B.C. and K.Shi, IMA, 2013.) Devising and analysis of superconvergent methods for linear elasticity.
@ (N.C.Nguyen and J.Peraire, JCP, 2012.) HDG methods for solid mechanics.
o Stokes flow:
@ (J. Carrero, B.C. and D. Schétzau, Math. Comp., 2006.) Hybridization of a DG method.
@ (B.C. and J. Gopalakrishnan, SINUM, 2009.) Devising HDG methods with vorticity formulation.
9 (N.C Nguyen, J. Peraire and B.C., JCP+CMAME, 2010.) Devising HDG methods with velocity gradient
formulation+ comparison with other formulations.
9 (B.C., J. Gopalakrishnan, N.C.Nguyen, J. Peraire and F.-J. Sayas, Math. Comp., 2011.) Analysis of HDG
methods.
@ (B.C. and K. Shi, Math. Comp., 2013.) Construction of superconvergent HDG methods.
(B.C. and J. Cui, Math. Comp., 2012+ J. Sci. Comput., 2012.) Analysis of HDG methods with a vorticity
formulation.

9 (A, Cesmelioglu and B.C., J. Sci. Comput., 2013.) Analysis of HDG methods for Oseen.
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The HDG methods.

References after 2005 (I am aware of!).

@ Incompressible Navier-Stokes:
@ (N.C. Nguyen, J.Peraire and B.C., Math. Comp., JCP, 2011.) Devising HDG methods.
@ (S. Rheberghen and B.C., JCP, 2013.) Devising space-time HDG methods.
@ Timoshenko beams, biharmonic:
9 (F.Celiker, B.C. and K.Shi, J. Sci. Comput. + Math. Comp., 2012.) Devising and analysis of HDG methods for
the Timoshenko beam.

@ (B.C., B.Dong and J.Guzman, J. Sci. Comput., 2009.) Devising and analysis of an HDG method for the

biharmonic.

@ Nonlinear conservation laws:

@ (N.C.Nguyen, J.Peraire and B.C., AIAA, 2011.) Devising HDG methods for the CNS equations.

@ (N.C.Nguyen, J.Peraire and B.C., AIAA, 2011.) Devising HDG methods for the Euler equations.

9 (N.C.Nguyen and J.Peraire, AIAA, 2012.) Devising HDG methods for the Euler equations with shocks.

9 (D. Moro, N.C.Nguyen and J.Peraire, IJINME, 2012.) Devising HDG methods for scalar conservation laws.
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