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Drama in Four Acts

Act 1: The Big (Functional Analysis) Picture
Act 2: Broken Test Spaces and Primal DPG Method

Act 3: Robust Primal DPG Method: Controlling the Convergence (Trial)
Norm (new!)

Act 4: Ultraweak Variational Formulation
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The Big (Functional Analysis) Picture

Durham, Jul 7 - Jul 16, 2014 DPG Method 4 /98



Three Interpretations of DPG

Optimal Test Functions Mixed Method

Minimum Residual Method
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Abstract variational problem

U,V - Hilbert spaces,
b(u,v) - bilinear (sesquilinear) continuous form on U x V,

S

[b(u, 0)] < [Ib]l [[ullo f[ollv,

X

I(v) - linear (antilinear) continuous functional on V,

L) < Nl (o]l

The abstract variational problem:

uelU - Bu=1l B:U—=V
b(u,v) =1l(v) YveV < Bu,v >=b(u,v) veV
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Banach - Babugka - Ne¢as Theorem

If b satisfies the inf-sup condition (< B is bounded below),

sup |b(u,v)]=:y>0 <& sup

b
lullo=1 ||y =1 vev  |Jvllv

and [ satisfies the compatibility condition:
lv)=0 YwelW

where
Vo=NB)={veV : bluv)=0 YueU}

then the variational problem has a unique solution u that satisfies the stability
estimate:

1
l[ull < =ty
gl

Proof: Direct interpretation of Banach Closed Range Theorem®.

*see e.g. Oden, D, Functional Analysis, Chapman & Hall, 2nd ed., 2010, p.518
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Petrov-Galerkin Method and Babuska Theorem

U, UV, CV,dimU, = dimV), - finite-dimensional trial and test (sub)spaces

up, € Uy,
b(uh,vh) = l(’l]h)7 Yo, € Vi,

Theorem (Babugka').
The discrete inf-sup condition

b Up, Up
sup [blun )] > Yrllunllu
vp €V ”'Uh”V

implies existence, uniqueness and discrete stability

lunllo < v iy

f1. Babuska, “Error-bounds for Finite Element Method.”, Numer. Math, 16, 1970/1971.
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Petrov-Galerkin Method and Babuska Theorem

Uy, C U, V,, CV,dimUy, = dimV,, - finite-dimensional trial and test (sub)spaces

up, € Uy,
b(uh,vh) = l(vh), Yo, € Vi,

Theorem (Babugka').
The discrete inf-sup condition

b Up, Up
sup [blun )] > Yullunllu
vp €V ”'Uh”V

implies existence, uniqueness and discrete stability
lunllo < 5 Ml
and convergence
M
lu —unllo < — inf [l —wnllu
Y wr€Un

(Uniform) discrete stability and approximability imply convergence.

f1. Babuska, “Error-bounds for Finite Element Method.”, Numer. Math, 16, 1970/1971.
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Optimal test functions

The main trouble:

continuous inf-sup condtion =& discrete inf-sup condition
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Optimal test functions

The main trouble:
continuous inf-sup condtion =~ discrete inf-sup condition

unless

fL.D., J. Gopalakrishnan. “A Class of Discontinuous Petrov-Galerkin Methods. Part II:
Optimal Test Functions.” Numer. Meth. Part. D. E., 27, 70-105, 2011.
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Optimal test functions

The main trouble:

continuous inf-sup condtion =~ discrete inf-sup condition

unless ¥ we employ special test functions that realize the supremum in the inf-sup
condition:
|b(un, v)|

vl

VUp = arg max, cy

fL.D., J. Gopalakrishnan. “A Class of Discontinuous Petrov-Galerkin Methods. Part II:
Optimal Test Functions.” Numer. Meth. Part. D. E., 27, 70-105, 2011.
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Optimal test functions

The main trouble:

continuous inf-sup condtion =~ discrete inf-sup condition

unless ¥ we employ special test functions that realize the supremum in the inf-sup
condition:

|b(un, )|
[l

Recall that the Riesz operator Ry : V — V' is an isometry. Then:

Vp = arg maxvev

b(up,v -1 (RilBuw’U )
sup, Ll — || Bun|lvs = || Ry Bup [|v = Sy
=Vh
— (Bup,vp) _ b(up,vp)
[lollv [[vllv
.. . . v, €V
Variational definition of vy: { (0,60)v = blun, 5v) Vév € V.

The operator T := R‘_,lB . Up — V will be called the trial to test operator.

fL.D., J. Gopalakrishnan. “A Class of Discontinuous Petrov-Galerkin Methods. Part II:
Optimal Test Functions.” Numer. Meth. Part. D. E., 27, 70-105, 2011.
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DPG is a Minimum Residual Method

With the optimal test functions in place, v, > v, and the Galerkin method is
automatically stable. Trade now the original norm in U for an energy norm?®:
_ b(u,v
lulls = IRy Bullv = [ Bullys = sup P2l
veV HUHV
Two points:

» With respect to the new, energy norm, both continuity constant M and inf-sup
constant «y are unity.

> The use of optimal test functions (their construction is independent of the choice of
trial norm) implies that v, > v = 1.

Thus, by the Babuska Theorem,

M .

lu—unle < — inf [lu—wnle.
Yh wr€Up
~—

=1

In other words, FE solution wuy, is the best approximation of the exact solution w in the
energy norm. We have arrived through a back door at a Minimum Residual Method.

§Residual norm really...
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Moral of the story

The minimum residual method,
with the residual measured in the dual test norm,
Is the most stable Petrov-Galerkin method
you can have.
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DPG is a minimum residual method Y

uelU N Bu=1l B:U—=V
b(u,v) =1(v) veV (Bu,v) = b(u,v)

1

> JH Bramble, R.D. Lazarov, J.E. Pasciak, “A Least-squares Approach Based on a Discrete Minus One Inner Product for First Order
Systems” Math. Comp, 66, 935-955, 1997.
>

L.D., J. Gopalakrishnan. “A Class of Discontinuous Petrov-Galerkin Methods. Part Il: Optimal Test Functions.” Numer. Meth. Part. D. E., 27,
70-105, 2011.
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DPG is a minimum residual method Y

uelU N Bu=1l B:U—=V
b(u,v) =1(v) veV (Bu,v) = b(u,v)

» Minimum residual method: U, C U,

21 Bun =1l = min.

1

> JH Bramble, R.D. Lazarov, J.E. Pasciak, “A Least-squares Approach Based on a Discrete Minus One Inner Product for First Order
Systems” Math. Comp, 66, 935-955, 1997.
>

L.D., J. Gopalakrishnan. “A Class of Discontinuous Petrov-Galerkin Methods. Part Il: Optimal Test Functions.” Numer. Meth. Part. D. E., 27,
70-105, 2011.
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DPG is a minimum residual method Y

uelU N Bu=1l B:U—=V
b(u,v) =1(v) veV (Bu,v) = b(u,v)

» Minimum residual method: U, C U,

21 Bun =1l = min.

» Riesz operator:
Ry :V = V' (Ryv,dv) = (v,0v)y

is an isometry, || Ryv|v: = |jv|v.

> JH Bramble, R.D. Lazarov, J.E. Pasciak, “A Least-squares Approach Based on a Discrete Minus One Inner Product for First Order
Systems” Math. Comp, 66, 935-955, 1997.

> L.D., J. Gopalakrishnan. “A Class of Discontinuous Petrov-Galerkin Methods. Part Il: Optimal Test Functions.” Numer. Meth. Part. D. E., 27,
70-105, 2011.
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DPG is a minimum residual method Y

uelU N Bu=1l B:U—=V
b(u,v) =1(v) veV (Bu,v) = b(u,v)

» Minimum residual method: U, C U,

21 Bun =1l = min.

» Riesz operator:
Ry :V = V' (Ryv,dv) = (v,0v)y

is an isometry, ||Ryv|lv: = |[v|v.
» Minimum residual method reformulated:

31Bun =13 = 3Ry (Bun = DI}, — min
up €U

> JH Bramble, R.D. Lazarov, J.E. Pasciak, “A Least-squares Approach Based on a Discrete Minus One Inner Product for First Order
Systems” Math. Comp, 66, 935-955, 1997.

> L.D., J. Gopalakrishnan. “A Class of Discontinuous Petrov-Galerkin Methods. Part Il: Optimal Test Functions.” Numer. Meth. Part. D. E., 27,
70-105, 2011.
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DPG is a minimum residual method

Taking Gateaux derivative,

(Ry'(Bup, — 1), Ry,* Bouy)y =0 Sup, € Uy,
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DPG is a minimum residual method

Taking Gateaux derivative,
(Ry'(Bup, — 1), Ry* Béuy)y =0 Sup, € Uy,

or
(Buy, — 1, B! Bouy) =0 duy, € Uy,
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DPG is a minimum residual method

Taking Gateaux derivative,
(Ry'(Bup, — 1), Ry,* Béuy)y =0 Sup, € Uy,

or
(Buy, — 1, R,)' Bouy) =0 duy, € Uy,
———

Un
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DPG is a minimum residual method

Taking Gateaux derivative,
(Ry'(Bup, — 1), Ry* Béuy)y =0 Sup, € Uy,

or
(Bup, —liop)y =0 v = R‘_/IB(SU}L
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DPG is a minimum residual method

Taking Gateaux derivative,
(Ry'(Bup, — 1), Ry* Béuy)y =0 Sup, € Uy,

or
(Bup,vn) = (L,vp) vp = Ry Béuy,
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DPG is a minimum residual method

Taking Gateaux derivative,
(RN (Bup, — 1), Ry' Béuy)y =0 duy, € Uy,
or
b(uh, ’Uh) = Z(Uh)

where

vp €V
(vp, )y = b(dup,0v) dv eV
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DPG is a mixed method

An alternate route !,

( RN (Buy, —1) ,Ry'Béup)y =0 Sup, € Uy,
N————’

=:1)(error representation function)

W, Dahmen, Ch. Huang, Ch. Schwab, and G. Welper. “Adaptive Petrov Galerkin methods
for first order transport equations”, SIAM J. Num. Anal. 50(5): 242-2445, 2012
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DPG is a mixed method

An alternate route I,

( Ry'Burn—1)  Ry'Boun)y =0 duy €Uy
~—_——
=) (error representation function)

or
Y = Ry (Buy, 1)

(¢, Ry' Bouy)y =0 dup, € Uy,

W, Dahmen, Ch. Huang, Ch. Schwab, and G. Welper. “Adaptive Petrov Galerkin methods
for first order transport equations”, SIAM J. Num. Anal. 50(5): 242-2445, 2012
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DPG is a mixed method

An alternate route I,

( RN (Buy, —1) ,Ry'Béup)y =0 Sup, € Uy,
=) (error representation function)
or
(¢, 0v)y — bup, 0v) = —Il(ov) Vov eV
b(dup, 1) =0 Vouy, € Uy,

W, Dahmen, Ch. Huang, Ch. Schwab, and G. Welper. “Adaptive Petrov Galerkin methods
for first order transport equations”, SIAM J. Num. Anal. 50(5): 242-2445, 2012
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DPG method, a summary so far

> Stiffness matrix is always hermitian and positive-definite (it is a
generalization of the least squares method...).

**JAT.Oden, L.D., T.Strouboulis and Ph. Devloo, “Adaptive Methods for Problems in Solid and Fluid Mechanics”, in Accuracy Estimates and
Adaptive Refinements in Finite Element Computations, Wiley & Sons, London 1986
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DPG method, a summary so far

> Stiffness matrix is always hermitian and positive-definite (it is a
generalization of the least squares method...).

> The method delivers the best approximation error (BAE) in the “energy
norm":

b(u, v
[ull e := [|Bullv: = sup [olu )|
vev vllv

**JAT.Oden, L.D., T.Strouboulis and Ph. Devloo, “Adaptive Methods for Problems in Solid and Fluid Mechanics”, in Accuracy Estimates and
Adaptive Refinements in Finite Element Computations, Wiley & Sons, London 1986
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DPG method, a summary so far

> Stiffness matrix is always hermitian and positive-definite (it is a
generalization of the least squares method...).

> The method delivers the best approximation error (BAE) in the “energy
norm" :

b(u, v
[ull e := [|Bullv: = sup [olu )|
vev vllv

» The energy norm of the FE error u — uy, equals the residual and can be
computed,

lu = unlle = |Bu— Bun|lv: = (Il = Bun|lv: = |Ry (I = Bup)|lv = [[4]lv
where the error representation function i) comes from

Yev
(¢, 0v)y = (I — Buy, 6v) = l(6v) — b(up,0v), v eV

No need for a-posteriori error estimation, note the connection with implicit
a-posteriori error estimation techniques **

**JAT.Oden, L.D., T.Strouboulis and Ph. Devloo, “Adaptive Methods for Problems in Solid and Fluid Mechanics”, in Accuracy Estimates and
Adaptive Refinements in Finite Element Computations, Wiley & Sons, London 1986
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DPG method, a summary

> A lot depends upon the choice of the test norm || - ||y; for different test
norms, we get get different methods.
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DPG method, a summary

> A lot depends upon the choice of the test norm || - ||y; for different test
norms, we get get different methods.

> How to choose the test norm in a systematic way ?
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DPG method, a summary

> A lot depends upon the choice of the test norm || - ||y; for different test
norms, we get get different methods.

> How to choose the test norm in a systematic way ?

> Is the inversion of Riesz operator (computation of the optimal test functions,
energy error) feasible 7
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DPG method, a summary

v

A lot depends upon the choice of the test norm || - ||y; for different test
norms, we get get different methods.

> How to choose the test norm in a systematic way ?

> Is the inversion of Riesz operator (computation of the optimal test functions,
energy error) feasible 7

» Being a Ritz method, DPG does not experience any preasymptotic
limitations.
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You cannot compute the optimal test functions!
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Approximate optimal test functions

Take a finite-dimensional enriched test space: vV c V, dim V >> dim Uy, and
invert the Riesz operator approximately,

(mer
(Op, 6v)y = bup,dv) Vév e V.
This leads to an approximate trial to test operator:
T:U, -V Tu,:=o,
and approximate optimal test space:
Vh = TUh .

Some stability must be lost. How much ?
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Approximate mixed problem

(6, 00)y — bliin, 0¢) = —1(6¢9) o eV

{ 1;/3 S ‘N/, iy € Up
b(éuh,i) =0 oup € Uy,

The (discrete) inf sup condition must be satisfied:

[b(un, 09)]

sup ———=——=— > v ||lunl|
spev 109l

Back to square one 77
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Fortin operator

Coming up with a Fortin operator
n:v-v

such that _
[Mofly < Cllv]lv

and y
b(up,Mv—v) =0 Vup, € Uy,

solves the problem ff

1. Gopalakrishnan and W. Qiu. “An analysis of the practical DPG method.”, Math. Comp.,
2013 (posted May 31, 2013).
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Broken Test Spaces and

Primal DPG Method
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Primal DPG method

Standard assumptions: Q C R Lipschitz domain,

Elements: K

Edges:e

Skeleton:T, = (J; 0K

Internal skeleton:[9 =T}, — 9Q
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Primal DPG method

Given f € L?(f), consider the model problem,

u =0 onl:=090
—Au =f inQ

Multiply the PDE with a test function v, integrate over each element K, integrate
by parts and sum up over all elements,

/Vu V’U—I—Z/ —v_ /fv

The boundary term represents jumps,
ou ou
—v= —[v
3 =X Lt

[v]e{ vp—v- eCQ

where

eCl
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Primal DPG method

This leads to the variational problem:
{ u€ HYQ), f € HY/?(r},)
(Vu, Vi) — (Eo)r, = (f,v) v e HY Q)

where
H™Y2(I},) = trace of H(div,Q) on I},

equipped with the quotient norm.
Theorem *

The variational problem above is well posed with a mesh independent inf-sup
constant 7.

L. Demkowicz and J. Gopalakrishnan. “A primal DPG method without a first order
reformulation”, Comput. Math. Appl., 66(6):1058-1064, 2013
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The main point

The test norm is localizable, i.e.

||'U||§{1(Qh) = Z HU‘KH%P(K) .
—— K ———

global norm local norm

The (approximate) inversion of the Riesz operator is done locally
(elementwise)
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DPG element stiffness matrix and load vector

N M
up = g ui€;, Up N E v;9;, M >>N
i=1 j=1

Computation of (approximate) optimal test function v = Te;,

Z (95,91) v;: b(ei, qr) , I=1,....M
- ~— ——
Gram matrix G expanded stiffness matrix B
or
v=G 'Bu

The DPG stiffness matrix and load vector:
v"'Bu = (G 'Béu)" Bu = (6u)' BTG 'Bu

vTb = (G 'Béu)"b = (6u)"'B'G™'b
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Same result with the mixed method interpretation

G —-B Y\ [ -b
B” u ) 0
Condensing out error indication function ),

¥ =G '(Bu - b)

we get again,
BTG 'Bu=G 'Bb
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Primal DPG Formulation for the Poisson problem

Group unknown (watch for the overloaded symbol):

Up = ( up , th )
~—
field  flux

Mixed system:
G -—-B; —-B;

B o 0
Bl o 0

-2 <
Il

|
oo

where By, B, correspond to (Vuy, V1, 7) and —(f, ), resp.
Eliminate 1) to get the DPG system:

BTG™'B, BTG'B, uw\ ( B{G™'b
B;G'B;, BiIG'B; t )\ Bfg™p
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Primal DPG method

Neglecting the error steming from the approximation of optimal test function
(computation of residual), we have,

Ao 1/2
(lu = unlig  +1E= 2 e,

1 - 2 N 2 /2
<3 nf (= wnli) + 1= ralfyvae,))

best approximation error

Additionally,

PUNIN 1/2
(lo =gy +IE =l s, )
<1 qup (VR Viv) - {h, v)r, |

veHY(Q4) ||U||H1(Qh)

computable residual

1/2
= (S lenlBge)
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rgence rates

) Square domain: h and p convergence ) L-shaped domain: h convergence
10 10
10
E E
e g 19!
T10° T
k= £
8 5
& " &
g 2
& G 10’
[ ]
o o
107
s 1
10 10
10° 10° 10* 10° 10° 10° 10* 10°
# Degrees of Freedom # Degrees of Freedom
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Primal DPG method, 3D examples

Poisson problem
Reaction-dominated diffusion div-grad problems
Convection-dominated diffusion

» Maxwell equations - curl-curl problem
All examples have been implemented within hp3d, a general 3D FE code
supporting:
» coupled problems involving H', H(curl) and H(div)-conforming elements.
» hybrid meshes consisting of hexas, tets, prisms and pyramids,
» anisotropic hp-refinements.
Ask me about the code...
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FE discretization for div-grad problems

Hexahedral meshes
H' element for field up:
PP R PP PP,

Trace of H(div) element:
(PPRPP TP ) x (PP rePPo@PP !) x (PP PP @ PP)
for flux £, and the enriched element:

pp+Ap ® fpp+Ap ® 731)+Ap7

for test function vy,.
In reported experiments: p =1,2,3, Ap = 2.

Durham, Jul 7 - Jul 16, 2014 DPG Method



Poisson problem, smooth solution, uniform refinements

Rectangular domain Q = (0,1) x (0,2) x (0,1),
Smooth solution: u = sin7z sin 7wy sin 7z
Boundary condition: u = 0.

0.29F+&or

0.105+01 SCALES: log(nrdof), log(error)

0.34E+00 ~
0.12E:+00
0.405-01
0.145-01
0.475-02
0.165-02
0.558-03

0.19H-03 o
gl R
N

0.65H-04

T medof
72 1 8 1 292 1 1040 T 3709 [ 13217 | 47101 T 167847 1 398136

Residual versus H?! error.
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Poisson problem, manufactured shock solution

BC: u = ug.
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Shock solution, uniform and h-adaptive refinements, p = 1

0.648+0 SCALES: log(nrdof), log(crror)

0:4714+01 — umif_resid

0.35H+01 - unif_Hierr
--- adap_resid

0.268+01 — - adap Hlerr

0. lﬁJrOl

0.145+01

0.10+01

o o
N
g8 8

0.41K+00

S~ nrdof
13 l 36 1 93 [ 240 T 622 T 1606 T 4147 [ 10710 T 27633

Convergence history for the residual and H* error
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Shock solution, uniform and h-adaptive refinements, p = 2

0.41H +&tor

0285101 SCALES: log(ardof), log(error)

0.1814+01 — umif_resid
0.128+01 - unif_Hlerr
--- adap_resid
0-838+00 -~ — - adap_Hlerr
0.56B+00
0.385+00
0.258+00
0.178:+00 S
] AN N
0.11B+00 RN :
el
0.77§-01 ~ nrdof
30 T 132 T 36 T 91 T 2348 T oII7 T 153534 T 41508 T 108125

Convergence history for the residual and H* error
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Shock solution, uniform and h-adaptive refinements, p = 3

SCALES: log(nrdof), log(crror)

— unif_resid
- unif_Hlerr
--- adap_resid

- adap_Hlerr

Convergence history for the residual and H* error
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Shock solution, p = 3, Mixed BC

Mixed BC: trace: bottom, top, flux: sides.

0.46H +&itor
0.26H +0\1 Iy SCALES: log(nrdof), log(error)
0oL — unif_resid
0.80B+00 - unif_Hlerr
n --- adap_resid
0448400 - adap_Hlerr
0.258+00
0.148+00
0.774-0L
0.438-01
0.248-01 el
~tal
T
0.138-01 N nrdof
I 118 T 314 T €39 T 2238 [ 3971 T 15926 [ 42477 T 113294 T 302172

Convergence history for the residual and H' error
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Reaction-dominated diffusion, p = 2.

SCALES: log(nrdaf), log(ereor)

S ordof
@9 T 159 T 4I7% T 10936 627 T TAOS T 19614

e = 0.01, left: solution after 7 iterations, right: convergence history
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Convection-dominated diffusion,

—€2Au—u =sinmysinmtz atx=0
u =0 on the rest of I’
—2Au + g—z =0 in Q

I .

0.168+00™

SCALES: log(nrdof), log(crcor)

- e
oy

R N

0.9014-0

07314

onor
06
0138400 ™
00
o
o
o601

=
. N

o

O

052801 T

e

04301 AN

0351 01

029101 S mdof
0T 0T T T W T 3% T 0% T W% T 3Er T 601

N

€ = 0.01, left: solution after 5 iterations, right: convergence history
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Maxwell equations.

Assume _ _
J&P =nx H™
and look for the unknown surface current on the skeleton also in the same form.
EcH(curl,Q),nxE=nx E™onT;
h € trr, H(curl,Q), n x h =n x (—iwH™?) on T
(LV X E, Vi, x F) + ((—w’e + iwo)E, F) 4+ (n x h, F)r, = —iw(J™, F)

VF € H(curl, ).
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FE discretization for curl-curl problem

Hexahedral meshes
H(curl) element for electric field E:

(PP 1@PP@P?) x (PP@PP @ PP) x (PP@ PP @ PP 1)
and trace of the same element for flux (surface current) h.
Same element for the enriched space but with order p + Ap.
In reported experiments: p =2, Ap = 2.
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DPG Supports Adaptivity with No Preasymptotic Behavior
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A 3D Maxwell example

Take a cube (0,2)3
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Fichera corner

Divide it into eight smaller cubes and remove one:
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Fichera corner microwave

Attach a waveguide:

W,

(

e=p=10=0
w = 5(1.6 wavelengths in the cube)

Cut the waveguide and use the lowest propagating mode for BC along the cut.
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Fichera corner microwave, p = 2.

#
0

Initial mesh and real part of F;

@
K

A

-, - .
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Fichera corner microwave, p = 2.
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Mesh and real part of F after two refinements
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Mesh and real part of F; after six refinements
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Robust DPG Method: Controlling the Convergence (Trial)
Norm
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The simplest singular perturbation problem:

reaction-dominated diffusion

L.D. and I. Harari, “Primal DPG Method for Reaction dominated Diffusion”, in

preparation.
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The simplest singular perturbation problem:

Reaction-dominated diffusion

u =0 onl
—EAu+c(r)u =f inQ

where 0 < ¢g < ¢(z) < ¢1.
Standard variational formulation:

{ u € HY(Q)
2(Vu, Vo) + (cu,v) = (f,v) ve HY(Q)

Standard Galerkin method delivers the best approximation error in the energy
norm:

lul2 = [Vl + || 2ul?, k=2
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Convergence in “balanced” norm

Fact: Under favorable regularity conditions, the solution is uniformly bounded in
data f in a “balanced” norm

a2 = e Vull? + |/ 2ul?

Hu”e g ”f”appropriate

Question: Can we select the test norm in such a way that the DPG method will
be robust in the balanced norm ?

lu = unlle + [ = Tulle < inf llu — whle + inf | = 74l
Wh, Th

R. Lin and M. Stynes, “A balanced finite element method for singularly perturbed reaction-diffusion problems”, SIAM J. Numer. Anal., 50(5):
2729-2743, 2012.
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A bit of history: Optimal test functions of Barret and

Morton

For each w € Uy, determine the corresponding v,, that solves the auxiliary
variational problem:

v € HE(Q)

E(Vou, Vo) + (cdu,v,) = (Vou,w) + (cou,w) Vou € HE(RQ)

the bilinear form we have the bilinear form we want

With the optimal test functions, the Galerkin orthogonality for the original form
changes into Galerkin orthogonality in the desired, “balanced” norm:

E(V(u—un), Vo) +(c(u—un),ve) =0 = ¢(V(u—un), Vou)+(c(u—ur),w) =0

Consequently, the PG solution delivers the best approximation error in the desired
norm.

P J.W. Barret and K. W. Morton, “Approximate Symmetrization and Petrov-Galerkin Methods for Diffusion-Convection Problems”, Comp. Meth.
Appl. Mech and Engng., 46, 97 (1984).

> LDoandJ T. Oden, “An Adaptive Characteristic Petrov-Galerkin Finite Element Method for Convection-Dominated Linear and Nonlinear
Parabolic Problems in One Space Variable”, Journal of Computational Physics, 68(1): 188-273, 1986.
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Constructing optimal test norm

Theorem

Let v,, be the Barret-Morton optimal test function corresponding to u. Let ||vy||v be a
test norm such that

[oullv < flulle

Then
lu—unlle S Jlu—unllg = inf ||lu—wn|g < BAE estimate
wp €U,
Proof:
lull? = e(Vu, Vu) + (cu, u) = &(Vu, Vo) + (cu,vy)
= b((u,1),v4) < <t HUuHV Hvu”V
< sup, MD2) | = (u, D)l oally

S N Dlle llulle

L. D., M. Heuer, “Robust DPG Method for Convection-Dominated Diffusion Problems,” SIAM J. Num. Anal, 51: 2514-2537, 2013.
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Constructing optimal test norm

The point: Construction of the optimal test norm is reduced to the stability
(robustness) analysis for the Barret-Morton test functions.

Lemma
Let

Wl = E1Voll® + |¢/2o)?

Then
vl S llulle

In order to avoid boundary layers in the optimal test functions (that we cannot
resolve using simple enriched space) we scale the reaction term with a
mesh-dependent factor:

3
. €
101 moa = €[V 0[I° + min{1, -5}l v]|”
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Manufactured solution of Lin and Stynes, e = 107!

The functions exhibits strong boundary layers invisible in this scale.

N

Range: (-0.6,0.6)
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Manufactured solution of Lin and Stynes, e = 107!

K

Zoom on the north boundary layer.
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Optimal mesh for € =

K

Optimal h-adaptive mesh and numerical solution for e = 1071
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Lin/Stynes example, e =1

0.34B+&for
0.215+00™. SCALES: log(nrdof), log(error)
0-135+00 T -~ Reps=1.d0
0.775-01 . - Eeps=1d0
047501
0.295-01
0.185-01
0.115-01
0.661-02

0.405-02

0.25H-02

5 nrdof
48 I 89 T 164 [ 300 [ 550 [ 1006 [ 1843 [ 3373 [ 6174

Residual and “balanced” error of u for h-adaptive solution, p = 2

Durham, Jul 7 - Jul 16, 2014 DPG Method




Lin/Stynes example, €

0.238 +étor
g SCALES: log(nrdof), log(etror)

0580400 ~~~ Reps=L.d0

0.295:+00 --- Eeps=1d0
e —-- Reps=ld-1

O-15+00  Eeps=ld-1

0.758-01

0.385-01

0.19-01

0.978-02

0.498-02

0.258.02 “eo. mdof
® T 89 T 164 T 300 T 550 T 1006 T 1843 T 3373 T 6Li4
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Lin/Stynes example, €

SCALES: log(nrdof), log(error)

--- Reps=1.d0
Eeps=1.d0
Reps=1.d-1
Eeps=1d-1
Reps=1.d-2
Eeps=1d-2

e nrdof
1843 T 3373 [ 6l74

Residual and “balanced” error of u for h-adaptive solution, p = 2
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Lin/Stynes example, €

0.18H +or
o e SCALES: log(nrdof), log(error)
0.128+03 . -~ Reps=1.d0
0315+02_ --- Eeps=1.d0
e e -+ Reps=ld-l

Eeps=1d-1
Reps=1.d-2
Eeps=1d-2
d-3

0,218}

0. 4B+
0.37-

0.958

0.255-02 e nrdof
4 T 95 T 18 T 361 T 704 T 1370 T 2668 [ 519 T T01i6

Residual and “balanced” error of u for h-adaptive solution, p = 2
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0.57F

0.108
0.198
0.35E
0.648
0.128
0.224

0408

0.738
0,138

0.25H-

+€t¥or

105

+03 7"

+02

SCALES: log(nrdof), log(error)

--- Reps=1.d0
--- Eeps=1d0
--- Reps=1d-1
--- Eeps=1d-1
--- Reps=1.d-2

Residual and “balanced” error of u for h-adaptive solution, p = 2
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Other tricks we can play: zooming on the solution

Question: Can we select the test norm in such a way that the DPG method
would deliver high accuracy in a preselected subdomain, e.g. (0,3)? C (0,1)% ?

Answer: Yes!

[

Optimal mesh and the corresponding pointwise error (range (—0.001 — 0.001)

DPG Method
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Ultraweak Variational Formulation
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2D Convection-Dominated Diffusion (Confusion) Problem

—eAu+div(Bu) =f inQ
{ u =wug onl
or, equivalently,
%a —-Vu =0 in Q
—div(e —Bu) =f inQ

u =mwug on Jf2
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Ultraweak (DPG) Variational Formulation
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DPG Method

Take an element K. Multiply the equations with test functions 7, v:
%a’ T—Vu-m =0
—div(e — Bu)v = fu
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DPG Method

Integrate over the element K:

JiloT—Vu-T =0
{ — [ div(e — Bu)v = fv
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DPG Method

Integrate by parts (relax) both equations:
xio-T+ [Ludivr— [ uT, =0
{ Ji(o —=Bu) - Vv— [ qsgn(n)v = [ fv
where ¢ = (o0 — Bu) - n. and

1 ifn=mn,
sgn(n) =

-1 ifn=-n,
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DPG Method

Declare traces and fluxes to be independent unknowns, common for adjacent

elements:
{ IK%U-T—I—IKUdiVT—faKQTn =0

— Jilo = Bu)- Vo+ [, dsgn(n)o = [, fo
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DPG Method

Use BC to eliminate the known traces

{ fK %" T+ fK udivr — faK—aQ T, = fafman Up Tn

—fK(a—ﬁu)-Vv—i—faK(’jsgn(n)v :fov

Durham, Jul 7 - Jul 16, 2014 DPG Method



Abstract Notation

Integration by parts:
(Au7 U) = (u7 AZU) - <a7 U>rh
where (watch for overloaded symbols...)

u = (o,u)
v = (1,v)
Au = (Yo — Vu,—div(o — Bu))
Ayv = (2T + Vo, div,T — 8- Vo)

(@), = frh (ulrn] + on — Bnufv])

q
@ =(4, § )witha=0onT
trace flux

DPG variational formulation:
(’U,,AZ’U) - <ﬁ,v>rh = (f,’l}) + <%7U>F

b((u,ir),v) I(v)
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Functional Setting for the Confusion Problem

General Functional setting:
» u € L?(Q),
» broken graph space for v,
H 5~ (Qh) = {’U S Lz(Qh) : ZU S Lz(Qh}
» trace space for @4 with minimum energy extension norm:

= inf_(ull + | Au])
N }L—'U,

Confusion problem: Group variables:
Solution (u, o, 4, §):

field variables: u, 01,05 € L?(Q)
traces: 4 € HY/?(r9)
fluxes: § € H=/2(I'},)

Test function (7,v):
T € H(div, Q)
v E Hl(Qh)
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The Point

» With broken test spaces, the inversion of Riesz operator is done element-wise.
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» With broken test spaces, the inversion of Riesz operator is done element-wise.

» We still can do it only approximately, using an enriched space and standard
Bubnov-Galerkin method. If trial functions u, % € PP, we seek approximal
optimal test functions by inverting the Riesz operator in an enriched space

priav,
Vp € prtap
{ (v, 60)yv = (u, A*0v) — (@, 0v) Vv € PPHAr

The error in approximating the optimal test functions is assumed to be
negligible.
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» With broken test spaces, the inversion of Riesz operator is done element-wise.

» We still can do it only approximately, using an enriched space and standard
Bubnov-Galerkin method. If trial functions u, % € PP, we seek approximal

optimal test functions by inverting the Riesz operator in an enriched space
prtip

Vp € prtap
{ (v, 60)yv = (u, A*0v) — (@, 0v) Vv € PPHAr

The error in approximating the optimal test functions is assumed to be
negligible.
> As the determination of optimal test functions is done element-wise, the
method fits into the standard FE technology.
Standard FEM: Input: bilinear and linear form, trial and test shape functions,
Output: element stiffness matrix and load vector,
DPG: Input: bilinear and linear form, trial shape functions, test norm,
Output: element stiffness matrix and load vector
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Well Posedness

Theorem If the original operator A with homogenous BC is bounded below,
1Al > Al

and the data ug comes from the trace space for the graph norm space, then
the DPG formulation is well posed as well, with a mesh-independent inf-sup
constant of order .

Corollary: If v is independent of the singular perturbation parameter (e for the
confusion problem), then the DPG method is robust,

lu—unl + 118 = nl < inf {llu—whll+[|& - dnll}
Wh ,Wh

> L D., J. Gopalakrishnan, “Analysis of the DPG Method for the Poisson Equation,” SIAM J. Num. Anal., 49(5), 1788-1809, 2011.

P . Bramwell, L.D.,J. Gopalakrishnan, and W. Qiu. “A Locking-free hp DPG Method for Linear Elasticity with Symmetric Stresses,” Num. Math.,
122(8): 671-707, 2012.

> L.D., J. Gopalakrishnan, |. Muga, and J. Zitelli. “Wavenumber Explicit Analysis for a DPG Method for the Multidimensional Helmholtz
Equation,” CMAME, 213-216, 126-138, 2012.

> T Bui-Thanh, L.D., O. Ghattas, “A Unified Discontinuous Petrov-Galerkin Method and its Analysis for Friedrichs’ Systems,”, SIAM J. Num.
Anal., 51(4): 1933-1958, 2013. ICES Report 2011/34.

P> N. Roberts, Tan Bui-Thanh, L.D., “The DPG Method for the Stokes Problem,” ICES Report 2012/22, CAMWA, to appear.
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Construction of an optimal test norm
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Bad and good news

Bad news: the graph test norm may not be feasible
Good news: There is a systematic approach for determining alternate test norms

| D., M. Heuer, “Robust DPG Method for Convection-Dominated Diffusion Problems,” SIAM J. Num. Anal, 51: 2514-2537, 2013.

P> J. Chan, N. Heuer, T. Bui-Thanh, L.D., “Robust DPG Method for Convection-dominated Diffusion Problems II: Natural Inflow Condition,” ICES
Report 2012/21, CAMWA, in print.
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Step 1: Decide what you want

We want the L2 robustness in u:
ull < [(w, o, ,4)|E

(a < b means that there exists a constant C, independent of € such that
a < Cb). This implies

lu—un| < (u—uno—0opa—"1tnd—an)le

= inf  |(u—wun, 0 —0ontd—"10,,4—q4n)le
(uh,O hyTn,qn)

Best Approximation Error (BAE)

< C(e)h?
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Step 2: Select a special test function...

b((u,0,4,q), (v, 7)) = (0,11 4+ Vv)q, + (u,divt — B Vo),
—<fl,7 Tn>F% - <(I]\7 U)rh
Choose a test function (v, T) such that

v € H}(Q), T € H(div,Q)
%T—I—VU =0
divr—3-Vv =u

Then
lul2 = b((u, 0,0, ), (v, 7)) = 2eFBALTN (), 7))y,
< sup(, ) MTLBCTD |, 1|y = |[(u, 0,8, 9) | | (v, 7) v
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and request stability of the adjoint problem

Consequently, we need to select the test norm in such a way that
I, Pl S el
This gives,
[l S (w0, Q)| & lu]

Dividing by ||ul||, we get what we wanted.
The point: Construction of a robust DPG reduces to the classical stability
analysis for the adjoint equation!
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Step 3: Study the stability of the adjoint equation

Theorem (Generalization of Erickson-Johnson Theorem)

o]

_ 18 - Vollw, Ve[ VoIl o 5 lull
1dvT lute, B - 7 llws ZlI7]

where w = O(1) is a weight vanishing on the inflow boundary that satisfies some
“mild" assumptions.

The terms on the left-hand side are our “Lego” blocks with which we can build
different test norms.

L.D., N. Heuer, “Robust DPG Method for Convection-Dominated Diffusion Problems”, ICES Report 2011/35, submitted toSIAM J. Num. Anal.
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Step 4: Construct test norm(s)

Graph norm:

1 .
1w, TG rapn = ll0l* + =7+ Vol + [|divr — 8- Vol|?
Mesh dependent weighted norm:
(v, T == min{zz, Lol + (18- VI3, + €l Vo2
+ min{g, TR e + divr 3,

Remark: Both u-robust norms are also L2-robust in o, as well as in traces and
fluxes measured in minimum extension energy norms.
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Pros and cons for both test norms

» The quasi-optimal test norm produces strong boundary layers that need to be
resolved, also in 1D,

Left: 7 and v components of the optimal test function corresponding to trial
function u = 1 and element size h = 0.25, along with the optimal hp subelement
mesh. Right: 10 X zoom on the left end of the element.
Determining optimal test functions is expensive.

» The weighted test norms produce no boundary layers. Solving for the optimal
test functions is inexpensive (done with enriched space Ap = 2).

» Quasi-optimal test norm yields better estimates for the best approximation

error measured in the energy norm.
DPG Method
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2D: Model problem of Erickson and Johnson

B ) B _ | sinmy onx=0
Q=(0,1)%, B=(1,0),f=0, Uo = { 0 otherwise

The problem can be solved analytically using separation of variables.

Velocity u and "“stresses” o, 0, (using scale for o,) for e = 0.01.

. I W .
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2D: Weighted Norm

hp-adaptivity: h,,;n = 2€, Dmas = 5, w = x.

o100 o1

SCALES: lognrdot), log y SCALES; log(urdof), log y
¥ 06 el 8 ¥

— B2

L adof L et
™ & T T TS0 T TSI T 2TRT 66 7 7 0T TIE T 27U T 5510 T TO8GT T ZIUZ T 4336

€ =1072,1073,10"*. Left: convergence in energy error. Right: convergence in
relative L?-error for the field variables (in percent of their L?-norm).
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2D: Weighted Norm

hp-adaptivity: h,in = 2€, Prae = 5, w = T.

0.138+01
0.121
0.128
0.115
0.108
0.948
0.878
0.798

0728

0658406 7w

0.58E

nedof
T 52 1 700 1 1392 1 270 1 5510 T 10961 [ 21802 I 43366

€ =1072,10"3,10~*. Ratio of L? and energy norms.
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2D: Example |l, effect of value of Ap

hp-adaptivity: h,.in = 2€, Prae = 5, w = T.

. I T _—

2D model problem with a “discontinuous” inflow data, ¢ = 0.01. Velocity u and
“stresses” 0,0, (using scale for o).
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2D: Example I, Weighted Norm, e = 1074

SCALES: log(nrdaf), log y e N SCALES: log(udof), log y

0.11F+00

0.49E-01

|
0.226.01

|
010801

|
04502
.

0208 02

0908 03 o ol 1 N mdor
T T I09 T T T 67 T TG T 406 T 090 T 359346

T T w0 T I T 275 T 6775 T L6 T 41906 T 104130 T 259246

Ap = 2,3. Left: convergence in energy error. Right: convergence in relative
L2-error for the field variables (in percent of their L?-norm).
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2D: Example I, Weighted Norm, e = 1074

0.108+01
0.928+00 SCALES: log(nrdof), y+1.00
0.828+00
0.728+00
0.638+00
0.538+00
0.435+00
0.345+00

0.248+00

0.148+00

Y nrdof
177 T 440 T 1094 T 2723 [ 6773 1 16848 | 41906 | 104230 [ 259246

Ap = 2,3. Ratio of L? and energy norms.

DPG Method

Durham, Jul




Good Boundary Conditions are Essential

For inflow boundary condition o O

Bnu — o = o - o

and wall outflow boundary
condition,

T T T T T T T T

Mesh /pointwise error for € = le — 2.
DPG delivers
[ull + lloll < I(u, o, @, §)ll

using test norms without the weight, e.g.,

1o, D)7 = ellvl* + 18- Vol + € Vo||* + |7 + [[divr |

convection diffusion

J. Chan, N. Heuer, T. Bui-Thanh, L.D., “Robust DPG Method for Convection-dominated Diffusion Problems II: Natural Inflow Condition,” ICES
Report 2012/21, CAMWA, in print.
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Confusion Reuvisited

; L2 error and energy error L2 error/energy error ratio
0 2 o . o

Ratio

Dofs Dofs

(a) Convergence rates (b) L? and energy ratio

DPG Method
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Extrapolation to
Compressible Navier-Stokes Equations:
Carter’s flat plate problem

Moo = 3,Rey, = 1000, Pr = 0.72, v = 1.4, 0, = 390°[R]

L.D., J.T. Oden, W. Rachowicz, “A New Finite Element Method for Solving Compressible Navier-Stokes Equations Based on an Operator Splitting
Method and hp Adaptivity,”, Comput. Methods Appl. Mech. Engrg., 84, 275-326, 1990.
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Extrapolation to Compresible NS Equations

Initial Mesh (p = 2):

Horizontal velocity and temperature

P~
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Extrapolation to Compresible NS Equations

Mesh 1:

Horizontal velocity and temperature
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Extrapolation to Compresible NS Equations

Mesh 2:

Horizontal velocity and temperature
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Extrapolation to Compresible NS Equations

Mesh 3:

Horizontal velocity and temperature
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Extrapolation to Compresible NS Equations

Mesh 4:

Horizontal velocity and temperature
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Extrapolation to Compresible NS Equations

Mesh 5:

[ 158!
jj\m;‘z\;\\w,;\‘r‘iz

Horizontal velocity and temperature

Durham, Jul 7 - Jul 16, 2014 DPG Method



Extrapolation to Compresible NS Equations

Mesh 7:

Horizontal velocity and temperature
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Extrapolation to Compresible NS Equations

Mesh 8:

EEE
i

Horizontal velocity and temperature
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Extrapolation to Compresible NS Equations

Mesh 9:

EEE
i

Horizontal velocity and temperature
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Extrapolation to Compresible NS Equations

Mesh 10:

.

Horizontal velocity and temperature
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Extrapolation to Compresible NS Equations

Normal heat flux along the boundary y=0

Heat flux along the plate
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Other Applications

» Wave propagation problems (sonars, full wave form inversion in
geomechanics, cloaking)
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Other Applications

» Wave propagation problems (sonars, full wave form inversion in
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Other Applications

v

Wave propagation problems (sonars, full wave form inversion in
geomechanics, cloaking)

v

Stokes and incompressible NS equations

v

Elasticity, shells (volumetric, shear, membrane locking)

>
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Metamaterials
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