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Outline of talk:
e Seismic inversion, HF Helmholtz equation

e (conventional) FE discretization, preconditioned GMRES
solvers

e sharp analysis of preconditioners based on absorption

¢ analytic wavenumber- and absorption-explicit PDE bounds
e a class of (scalable) DD preconditioners, with coarse grids
e a new convergence theory for DD for Helmholtz

e some open theoretical questions
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Seismic inversion

Inverse problem: reconstruct material properties of rock under
sea bed (characterised by wave speed c¢(z)) from observed
echos.

Regularised iterative method: repeated solution of the (forward
problem): the wave equation

L+ 1 9%u
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Frequency domain:

A = f orits elastic variant

2
—Au — (w) u=f, w = frequency
c

solve for u with approximate c.



Seismic inversion

Inverse problem: reconstruct material properties of subsurface
(wave speed ¢(z)) from observed echos.

Regularised iterative method: repeated solution of the (forward
problem): the wave equation

0%u , . .
—Au + e = f orits elastic variant

Frequency domain:

wL\ 2
—Au — () u=f, w = frequency
c

solve for v with approximate c.
Large domain of characteristic length L.

effectively high frequency



Marmousi Model Problem

Nurmerical solution

Marmousi wave speed
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e [P. Childs, Schlumberger (2007)]: Solver of choice based on
principle of limited absorption (Erlangga, Osterlee, Vuik,
2004)...

e This work: Analysis of this approach and use it to build better
methods .....



Model interior impedance problem

—Au—Fkwu = f in boundeddomain
gZ—iku = g on I:=9Q

....Also truncated sound-soft scattering problems in '




Linear algebra problem

e weak form

a (u,v) = / (Vu.Vo — k* uv) —ik:/FUU

= va—l—/rgv

o (Fixed order) finite element discretization

Au:= (S— k2 M —ikMDu = f

Often: h ~k~! but pollution effect:
for quasioptimality need h~ k22?7, h~k3/2 22

Du and Wu 2013
Melenk and Sauter 2011 (hp)



Linear algebra problem

e weak form with absorption k> — k2 + ie,

a:-(u,v) = /Q (Vu.Vo — (k* +ic)uv) — ik’/ uv

r
= / fo+ / gv  “Shifted Laplacian”
Q T

[Equivalently k2 +ic «— (k +ip)?]

e Finite element discretization

Au = (S— (K +ie)M? —ikM u = f



Linear algebra problem

e weak form with absorption k> — k2 + ie,

a:-(u,v) = /Q (Vu.Vo — (k* +ic)uv) — ik’/ uv

r
= / fo+ / gv  “Shifted Laplacian”
Q T

e~kZ+—pn~k e~k+—pn~1

e Finite element discretization

Au = (S— (K +ie)M? —ikM u = f



Preconditioning with A_! and its approximations

AZ'Au=AC'f
“Elman theory” for GMRES requires:
JAZTA <1, and dist(0,fov(A-'A)) > 1 any norm

Sufficient condition: |[I - AZ'A|; <O < 1.



Preconditioning with A_! and its approximations

AZ'Au=AC'f
“Elman theory” for GMRES requires:
|AZTA|| <1, and dist(0,fov(AZ'A)) > 1 any norm

Sufficient condition: |[I - AZ'A|; <O < 1.
In practice use
B_'Au=B_!f, where B_' ~ A_%
Writing
I-B'A =T1-B'A. + BJ'A.(I-A'A),
a sufficient condition is:
IT-AZ'Af> and [T-B'Acf; small,

i.e. A-!to be a good preconditioner for A
and B! to be a good preconditioner for A. .



Preconditioning with A_! and its approximations

A-! to be a good preconditioner for A
Part 1



Preconditioning with A_! and its approximations

and B_! to be a good preconditioner for A. . Part 2



A very short history

Bayliss, Goldstein & Turkel 1983 , Laird & Giles 2002.....

Erlangga, Vuik & Oosterlee ‘04 and subsequent papers:

B-'= V-cyclefor A_!

¢ ~ k? (analysis via simplified Fourier eigenvalue analysis)

Kimn & Sarkis '13 used ¢ ~ k2 to enhance domain
decomposition methods

Engquist and Ying, 11 Used ¢ ~ k to stabilise their sweeping
preconditioner

...others...



Theorem 1 (with Martin Gander and Euan Spence)
For Lipschitz star-shaped domains
Quasiuniform meshes:

€

I-A'A| < —.
I Al ?

~

Shape regular meshes:

II-DY2AAD?|| 5

ol

D = diag(M%).

So ¢/k sufficiently small —- k—independent GMRES
convergence.



Shifted Laplacian preconditioner e = k

Solving A-'Ax = AZ'1 on unit square

k +# GMRES
10 6
h~ k=3/2 20

6
40 6
80 6



Shifted Laplacian preconditioner ¢ = k3/2

Solving A-'Ax = AZ'1 on unit square

k +# GMRES

10 8
h~k=3/2 20 11

40 14

80 16



Shifted Laplacian preconditioner € = k2

Solving A-'Ax = AZ'1 on unit square

k +# GMRES

10 13
h~ k=32 20 24

40 48

80 86



Proof of Theorem 1: via continuous problem

ae(u,v):/gfv—l-/rgv, ve HY(Q) (%)

Theorem (Stability) Assume Q is Lipschitz and star-shaped.
Then, if ¢/k sufficiently small,

IVullai) + KllulZa) S IflZ2@) + l9llZ2q) , k= o0

=:[lull?x

<” indept of k and e cf. Melenk 95, Cummings & Feng 06

More absorption: k < e < k? general Lipschitz domain OK.



Key technique in proof (star-shaped case)

Rellich/Morawetz Identity

Mu=xVu+au, o= (d-1)/2
Lu = Au+ k*u

IVulZaiqy + K2 ul2ei0) = —2Re/Q(/\/luL‘u)

— Ou 21,2 — 1Vul2) (x.1
+/F[2Re(Muan) + (#]u® ~ |Vul?)(x.n)



Key technique in proof (star-shaped case)

Rellich/Morawetz Identity

Mu=xVu+au, a=(d-1)/2
Lu = Au+ k?u

IVullta + Pt = —2Re [ (Mucw)

—__Ou 2012
—l—/r [2Re(./\/luan) + (k%u|

cf. “Green’s identity”

HVU’H%Q(Q)_kQHuH%Q(Q) = —/Q(’u,ﬁu) +

— |Vul?)(x.n

ou

“on

)



Bound for ||A 1]

Fix f € CV, and consider the solution of A.u = f.

Then uy, 1=}, u;¢; is FE solution of problem

ae(ua U) = (fh7 U)

with I frllLa@) ~ B™2|E]2.
Then
ER ulls ~  klluallz,@
< lunllie
< lu—wunllie + lullie
< 2||ullix quasioptimality
S fullo,)  stability

and so
A < p9kY, forall e <k



PDE Theory to bound the matrix A

Fix f € CV, and consider the solution of A.u = f.
Then uy, 1=}, u;¢; is FE solution of problem
ac(u, v) = (fn,v)
with I fnll o) ~ P22
Then
kb |[ul2

2

Ellunll £, )

< unlle (A)

< lu—wunllie + lullk

< 2|lullix  quasioptimality

S fallzy@) stability (B)
and so

HA;1H < h=%~,  for all egkz

By H.Wu (2013)  (A) < (B) when hk?/2 < 1.  (without ¢)



Corollary

IT—AZ'A| IAZ 1A — A

=kt ||lieM||

€

NN A



Corollary

IT-AZ'A| IAZ A — A
=1 ||lieM||

€

AR VAN VAN

Locally refined meshes:

II-D2AAD2|| <

NS



Exterior scattering problem with refinement

h~ k™1,

Solving AZ1Ax = AZ'1 on unit square

# GMRES

with diagonal scaling
k' e=k &=Fk3?2

20 5 8
40 5 11
80 5 13
160 5 16




74624 Nodes, k=7.854, f(x.y)=0, plane wave scattering total

k
107/8 18 29
207/8 19 41
407/8 21 60
80r/8 22 89

Stability result fails when ¢ grows slower than &

A trapping domain

74524 Nodes, k=15.708, f(x.y)=0, plane wave scattering total
RN RN
i:i‘:.\j\\\\ \\\\\\ N
- \ "
LLIEEEENNNN \\\ N
X Y

“quasimodes”

Betcke, Chandler-Wilde, IGG, Langdon, Lindner, 2010



Part 2: How to approximate A-1?

Erlangga, Osterlee, Vuik (2004):
Geometric multigrid: problem “elliptic”

Engquist & Ying (2012):
“Since the shifted Laplacian operator is elliptic, standard
algorithms such as multigrid can be used for its inversion”

Domain Decomposition:
Many non-overlapping methods (¢ = 0)

Benamou & Després 1997.....Gander, Magoules, Nataf,
Halpern, Dolean........

General issue: coarse grids, scalability?

Conjecture If ¢ large enough, classical overlapping DD
methods with coarse grids will work (giving scalable solvers).

However Classical analysis for e = 0 (Cai & Widlund, 1992)
leads to coarse grid size H ~ k2



Classical additive Schwarz

To solve a problem on a fine grid FE space Sy,

e Coarse space Sy (here linear FE) on a coarse grid
e Subdomain spaces S; on subdomains €2;, overlap ¢
Hg,, ~ H in this case

/1




Classical additive Schwarz p/c for matrix C

Approximation of C~!:

> RIC;'R; + RLC}'Ry

(2

R, = restriction to S;, Ry = restriction to Sy
C;, = RiCRg’ Cy= RHCRE
Dirichlet BCs

Apply to A to get B!



Non-standard DD theory - applied to A.

Coercivity Lemma There exisits |0| = 1, with

€
Im [Oac(v,v)] Z ?HUH%]C ()

Projections onto subpaces:

ac(Qivp, w;) = ac(vp, w;), vy €Sy, w; €S .



Non-standard DD theory - applied to A.

Coercivity Lemma There exisits |0 = 1, with

9
m(Oa(v,0) 2 5 ol ®
N—~—

[Vl +K2]|wl[§
Projections onto subpaces:
as(Quvn, wy) = ac(vp,wy), vy €Sp, wH € Sy .

Guaranteed well-defined by (x).

Analysis of BZ'A. equivalent to analysing

Q = ZQi + Qp operatorin FE space S, .

2



Convergence results

Assume ¢ ~ k? and overlap § ~ H.
Theorem IGG, Spence, Vainikko, 2014

For all coarse grid sizes H,

Qe S 1.

Theorem IGG, Spence, Vainikko, 2014

There exists C > 0 so that

dist(0,fov(Q)) = 1,
provided kH < C' (no pollution!).

Hence k—independent GMRES convergence.



Convergence results

Assume ¢ ~ k2. and overlap 6.
Theorem IGG, E. Spence, E. Vainikko, 2014

For all coarse grid sizes H,

Qe S 1.
Theorem IGG, E. Spence, E. Vainikko, 2014

There exists C' > 0 so that

-2
dist(0, fov(Q)) 2 (14—?) )

provided kH < C (no pollution!).



B_! as preconditioner for A.

Numerical experiments: unit square

e=k* h~k32 H~E'! §~H

Classical additive Schwarz

20
40
60
80

#GMRES
14
15
15
17



Some steps in proof

(Vn, Qua)ip = Z(vh,ijh)Lk + (vn, QEVR) 1,k

J



Some steps in proof

(Un, QUi = Z(Uh,ijh)l,k+(vh,QHUh)l,k

J

(vn, Qervn)rk = 11QuvnllT g + (I — Qr)vn, Qrvn)ii



Some steps in proof

(Vn, QUi ke = Z(Uh,ijh)l,k+(UmQth)Lk,

J

(v, Quvn)1e = 1Quvallix + (I — Qm)vn, Qo)1

(I = Qu)vn, Quop)i i = as((I — Qu)vn, Quop) + Lo terms
=0

Galerkin Orthogonality, duality, regularity = condition on kH
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Some steps in proof

(n, Qup)ik = Z('UhanUh)l,k + (vn, QEVR)1,k
J

(vn, Quvn)ie = 1Quvnll} x + (I — Qu)vn, Qrvn)ik

(I = Qr)vn, Quup)ik = as((I — Qu)vn, Quvy) + Lo terms
-0

Galerkin Orthogonality, duality, regularity = condition on kH

‘%k + HQH’UhH%,k

(o, Qua)ikl 2 D 1Qjvn
J

2 lonll? &



Some steps in proof

(Vn, QUi e = Z(Uh,QjUh)l,k+(Uh:QH’Uh)l,k

J
(v Quvn)1e = Quvallix + (I — Qr)vn, Quvn)ik

(I = Qu)vn, Quon)ir = ae((I — Qu)vn, Quun) + Lo terms

=0

Galerkin Orthogonality, duality, regularity = condition on kH

ﬁk + HQHUhH%,k

(on, Quaikl 2 D 1@y
j

()

vV

2
Lk



Useful Variants

e Hybrid: Multiplicative between coarse and local solves
Mandel and Brezina: 1994,96

e RAS: only add up once on regions of overlap
Cai & Sarkis, 1999, Kimn & Sarkis 2010

¢ local Dirichlet — local impedance (or PML) Toselli , 1999



B_! as preconditioner for A.

h~ k32 n~ kS,
Dirichlet subdomain problems

H~ k1

20
40
60
80

Hybrid RAS,

Scale = 0.07

Relative Coarse and
subdomain problem size

relative size of coarse and subdomain problems H = Kt

0.07

0.06

I coarse grid
I subdomain




B_! as preconditioner for A.

h~ k32 n~ kS,
Dirichlet subdomain problems

H ~ k.f().(‘)
k  #GMRES
20 9
40 10
60 10
80 10
100 10

Hybrid RAS,

Scale

0.03

0.025

0.015
0.01

0.005

= 0.03

relative size of coarse and subdomain problems H = K0

I coarse grid
I subdomain




B_! as preconditioner for A.

h~ k32 n~ kS,
Dirichlet subdomain problems

H ~ k70.8
k  #GMRES
20 10
40 10
60 11
80 11
100 11

Hybrid RAS,

Scale = 0.03

0.03

0.025

0.015

0.01

0.005

relative size of coarse and subdomain problems H = K08

I coarse grid
I subdomain




Solving the real problem: B, ' as preconditioner for A

ho~ k=32 n~ k3,

Dirichlet subdomain problems

H~ k!
k # GMRES
20 12
40 15
60 20
80 26

100 33

Hybrid RAS,

Scale = 0.07

0.07

e ~ k seems best choice

relative size of coarse and subdomain problems H = K*

0.06

I coarse grid
I subdomain




Solving the real problem: B, ' as preconditioner for A

h~ k=32,

n ~ k3,

Hybrid RAS,

Dirichlet subdomain problems
H~ k™1

Without coarse grid

k

20
40
60
80

4 GMRES
58

181

316

434

100 576

0.07

0.06

Scale = 0.07

relative size of coarse and subdomain problems H = K*

I coarse grid
I subdomain




Solving the real problem: B, ' as preconditioner for A

20 grid points per wavelength, b ~ k=1, n ~ k2,
Hybrid RAS
Impedance subdomain problems H ~ k=93

Scale = 0.035

relative size of coarse and subdomain problems, H= Kk

0.035

I coarse grid

Kk #GMRES =
1 20 51 0.025

140 56

160 59

180 57 0015

200 61 .

220 64

240 65 0.005

# GMRES ~ logk



Solving the real problem: B, ' as preconditioner for A

20 grid points per wavelength, h ~ k=%, n ~ k2,
Hybrid RAS
Dirichlet subdomain problems H ~ k=95

120
140
160
180
200
220
240

#GMRES
487

595

> 600

> 600

Scale = 0.035

0.035

0.03

0.025

0.02

0.015

0.01

0.005

relative size of coarse and subdomain problems, H= Kk

I coarse grid
I subdomain




e k and e explicit analysis allows rigorous explanation of some
empirical observations and formulation of new methods.

e When e € [0,k], A_!is optimal preconditioner for A

e When ¢ ~ k2, BZ!is “optimal” for A, (H ~ k~})

€

e Analysis is for classical DP method - introduce more wavelike
components

e When preconditioning A with BZ1, empirical best choice is

e~k
e New framework for DD analysis for larger k.

e Open questions in analysis when 5 < 1



