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Motivation



Seismic inversion

Inverse problem: reconstruct material properties of rock under
sea bed (characterised by wave speed c(x)) from observed
echos.

Regularised iterative method: repeated solution of the (forward
problem): the wave equation

−∆u+
1

c2

∂2u

∂t2
= f or its elastic variant

Frequency domain:

−∆u−
(
ωL

c

)2

u = f, ω = frequency

solve for u with approximate c.

Large domain of characteristic length L.

effectively high frequency
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Marmousi Model Problem

• [P. Childs, Schlumberger (2007)]: Solver of choice based on
principle of limited absorption (Erlangga, Osterlee, Vuik,
2004)...

• This work: Analysis of this approach and use it to build better
methods .....



Model interior impedance problem

−∆u− k2u = f in bounded domain Ω

∂u

∂n
− iku = g on Γ := ∂Ω

....Also truncated sound-soft scattering problems in Ω′

Γ

Ω
Ω′

BR



Linear algebra problem

• weak form with absorption k2 → k2 + iε, η = η(k, ε)

aε(u, v) :=

∫
Ω

(
∇u.∇v − (k2+k2)uv

)
− ik

∫
Γ
uv

=

∫
Ω
fv +

∫
Γ
gv “ShiftedLaplacian′′

[Equivalently k2 + iε←→ (k + iρ)2]

• (Fixed order) finite element discretization

Aεu := (S− (k2+k2)MΩ − ikMΓ)u = f

Often: h ∼ k−1 but pollution effect:
for quasioptimality need h ∼ k−2 ?? , h ∼ k−3/2 ??

Du and Wu 2013
Melenk and Sauter 2011 (hp)
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Linear algebra problem

• weak form with absorption k2 → k2 + iε,

aε(u, v) :=

∫
Ω

(
∇u.∇v − (k2 + iε)uv

)
− ik

∫
Γ
uv

=

∫
Ω
fv +

∫
Γ
gv “Shifted Laplacian′′

ε ∼ k2 ←→ ρ ∼ k ε ∼ k←→ ρ ∼ 1

• Finite element discretization

Aεu := (S− (k2 + iε)MΩ − ikMΓ)u = f



Preconditioning with A−1
ε and its approximations

A−1
ε Au = A−1

ε f .

“Elman theory” for GMRES requires:

‖A−1
ε A‖ . 1, and dist(0, fov(A−1

ε A)) & 1 any norm

Sufficient condition: ‖I−A−1
ε A‖2 . C < 1 .

In practice use

B−1
ε Au = B−1

ε f , where B−1
ε ≈ A−1

ε .

Writing

I−B−1
ε A = I−B−1

ε Aε + B−1
ε Aε(I−A−1

ε A),

a sufficient condition is:

‖I−A−1
ε A‖2 and ‖I−B−1

ε Aε‖2 small ,

i.e. A−1
ε to be a good preconditioner for A

and B−1
ε to be a good preconditioner for Aε .
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A very short history

Bayliss, Goldstein & Turkel 1983 , Laird & Giles 2002.....

Erlangga, Vuik & Oosterlee ’04 and subsequent papers:

B−1
ε = V-cycle for A−1

ε

ε ∼ k2 (analysis via simplified Fourier eigenvalue analysis)

Kimn & Sarkis ’13 used ε ∼ k2 to enhance domain
decomposition methods

Engquist and Ying, ’11 Used ε ∼ k to stabilise their sweeping
preconditioner

...others...



Part 1

Theorem 1 (with Martin Gander and Euan Spence)
For Lipschitz star-shaped domains
Quasiuniform meshes:

‖I−A−1
ε A‖ .

ε

k
.

Shape regular meshes:

‖I−D1/2A−1
ε AD−1/2‖ .

ε

k
.

D = diag(MΩ).

So ε/k sufficiently small =⇒ k−independent GMRES
convergence.



Shifted Laplacian preconditioner ε = k

Solving A−1
ε Ax = A−1

ε 1 on unit square

h ∼ k−3/2

k # GMRES
10 6
20 6
40 6
80 6



Shifted Laplacian preconditioner ε = k3/2

Solving A−1
ε Ax = A−1

ε 1 on unit square

h ∼ k−3/2

k # GMRES
10 8
20 11
40 14
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Shifted Laplacian preconditioner ε = k2

Solving A−1
ε Ax = A−1

ε 1 on unit square

h ∼ k−3/2

k # GMRES
10 13
20 24
40 48
80 86



Proof of Theorem 1: via continuous problem

aε(u, v) =

∫
Ω
fv +

∫
Γ
gv , v ∈ H1(Ω) (∗)

Theorem (Stability) Assume Ω is Lipschitz and star-shaped.
Then, if ε/k sufficiently small,

‖∇u‖2L2(Ω) + k2‖u‖2L2(Ω)︸ ︷︷ ︸
=:‖u‖21,k

. ‖f‖2L2(Ω) + ‖g‖2L2(Γ) , k →∞

“.” indept of k and ε cf. Melenk 95, Cummings & Feng 06

More absorption: k . ε . k2 general Lipschitz domain OK.



Key technique in proof (star-shaped case)

Rellich/Morawetz Identity

Mu = x.∇u+ αu, α = (d− 1)/2
Lu = ∆u+ k2u

‖∇u‖2L2(Ω) + k2‖u‖2L2(Ω) = −2 Re

∫
Ω

(MuLu)

+

∫
Γ

[
2 Re(Mu

∂u

∂n
) + (k2|u|2 − |∇u|2)(x.n)

]

cf. “Green’s identity”

‖∇u‖Ω − k2‖u‖2Ω = −
∫

Ω
(uLu) +

∫
Γ
u
∂u

∂n
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Bound for ‖A−1
ε ‖2

Fix f ∈ CN , and consider the solution of Aεu = f .

Then uh :=
∑

j ujφj is FE solution of problem

aε(u, v) = (fh, v)

with ‖fh‖L2(Ω) ∼ h−d/2‖f‖2.
Then

k hd/2 ‖u‖2 ∼ k‖uh‖L2(Ω)

≤ ‖uh‖1,k (A)

≤ ‖u− uh‖1,k + ‖u‖1,k
≤ 2‖u‖1,k quasioptimality
. ‖fh‖L2(Ω) stability (B)

and so
‖A−1

ε ‖ . h−dk−1, for all ε . k2

By H.Wu (2013) (A) . (B) when hk3/2 . 1.



PDE Theory to bound the matrix A−1
ε

Fix f ∈ CN , and consider the solution of Aεu = f .

Then uh :=
∑

j ujφj is FE solution of problem

aε(u, v) = (fh, v)

with ‖fh‖L2(Ω) ∼ h−d/2‖f‖2.
Then

k hd/2 ‖u‖2 ∼ k‖uh‖L2(Ω)

≤ ‖uh‖1,k (A)

≤ ‖u− uh‖1,k + ‖u‖1,k
. 2‖u‖1,k quasioptimality
. ‖fh‖L2(Ω) stability (B)

and so
‖A−1

ε ‖ . h−dk−1, for all ε . k2

By H.Wu (2013) (A) . (B) when hk3/2 . 1. (without ε)



Corollary

‖I−A−1
ε A‖ ≤ ‖A−1

ε ‖‖Aε −A‖
≤ h−dk−1 ‖iεM‖
.

ε

k
.



Corollary

‖I−A−1
ε A‖ ≤ ‖A−1

ε ‖‖Aε −A‖
≤ h−dk−1 ‖iεM‖
.

ε

k
.

Locally refined meshes:

‖I−D1/2A−1
ε AD−1/2‖ .

ε

k
.



Exterior scattering problem with refinement

h ∼ k−1,

Solving A−1
ε Ax = A−1

ε 1 on unit square

# GMRES

with diagonal scaling
k ε = k ε = k3/2

20 5 8
40 5 11
80 5 13
160 5 16

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



A trapping domain

k ε = k ε = k3/2

10π/8 18 29
20π/8 19 41
40π/8 21 60
80π/8 22 89

Stability result fails when ε grows slower than k “quasimodes”

Betcke, Chandler-Wilde, IGG, Langdon, Lindner, 2010



Part 2: How to approximate A−1
ε ?

Erlangga, Osterlee, Vuik (2004):
Geometric multigrid: problem “elliptic”

Engquist & Ying (2012):
“Since the shifted Laplacian operator is elliptic, standard
algorithms such as multigrid can be used for its inversion”

Domain Decomposition:

Many non-overlapping methods (ε = 0)

Benamou & Després 1997.....Gander, Magoules, Nataf,
Halpern, Dolean........

General issue: coarse grids, scalability?

Conjecture If ε large enough, classical overlapping DD
methods with coarse grids will work (giving scalable solvers).

However Classical analysis for ε = 0 (Cai & Widlund, 1992)
leads to coarse grid size H ∼ k−2



Classical additive Schwarz

To solve a problem on a fine grid FE space Sh
• Coarse space SH (here linear FE) on a coarse grid

• Subdomain spaces Si on subdomains Ωi, overlap δ

Hsub ∼ H in this case



Classical additive Schwarz p/c for matrix C

Approximation of C−1:∑
i

RT
i C
−1
i Ri + RT

HC
−1
H RH

Ri = restriction to Si, RH = restriction to SH
Ci = RiCRT

i CH = RHCRT
H

Dirichlet BCs

Apply to Aε to get B−1
ε



Non-standard DD theory - applied to Aε

Coercivity Lemma There exisits |Θ| = 1, with

Im [Θaε(v, v)] &
ε

k2
‖v‖21,k. (?)

Projections onto subpaces:

aε(Qivh, wi) = aε(vh, wi), vh ∈ Sh, wi ∈ Si .

Guaranteed well-defined by (?).

Analysis of B−1
ε Aε equivalent to analysing

Q :=
∑
i

Qi + QH operator in FE space Sh .
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ε

k2
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. (?)
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Guaranteed well-defined by (?).
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Convergence results

Assume ε ∼ k2 and overlap δ ∼ H.

Theorem IGG, Spence, Vainikko, 2014

For all coarse grid sizes H,

‖Q‖1,k . 1 .

Theorem IGG, Spence, Vainikko, 2014

There exists C > 0 so that

dist(0, fov(Q)) & 1,

provided kH < C (no pollution!).

Hence k−independent GMRES convergence.

Numerical experiments: Interior impedance, unit square
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Theorem IGG, E. Spence, E. Vainikko, 2014

For all coarse grid sizes H,

‖Q‖1,k . 1 .

Theorem IGG, E. Spence, E. Vainikko, 2014

There exists C > 0 so that

dist(0, fov(Q)) &

(
1 +

H

δ

)−2

,

provided kH < C (no pollution!).

Hence k−independent GMRES convergence.

Numerical experiments: Interior impedance, unit square



B−1
ε as preconditioner for Aε

Numerical experiments: unit square

ε = k2 h ∼ k−3/2, H ∼ k−1 δ ∼ H

Classical additive Schwarz

k #GMRES
20 14
40 15
60 15
80 17

∼ k1/2
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Useful Variants

• Hybrid: Multiplicative between coarse and local solves
Mandel and Brezina: 1994,96

• RAS: only add up once on regions of overlap
Cai & Sarkis, 1999, Kimn & Sarkis 2010

• local Dirichlet→ local impedance (or PML) Toselli , 1999



B−1
ε as preconditioner for Aε ε = k2

h ∼ k−3/2, n ∼ k3, Hybrid RAS,
Dirichlet subdomain problems

H ∼ k−1
Relative Coarse and
subdomain problem size

Scale = 0.07

k #GMRES
20 8
40 8
60 8
80 8
100 8

20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
relative size of coarse and subdomain problems   H = k−1

 

 
coarse grid
subdomain

“Aggressive coarseing”



B−1
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h ∼ k−3/2, n ∼ k3, Hybrid RAS,
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B−1
ε as preconditioner for Aε ε = k2

h ∼ k−3/2, n ∼ k3, Hybrid RAS,
Dirichlet subdomain problems

H ∼ k−0.8
Relative Coarse and
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Scale = 0.03
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Solving the real problem: B−1
k as preconditioner for A

h ∼ k−3/2, n ∼ k3, Hybrid RAS,
Dirichlet subdomain problems ε ∼ k seems best choice

H ∼ k−1
Relative Coarse and
subdomain problem size

Without coarse grid

Scale = 0.07

k # GMRES
20 12
40 15
60 20
80 26
100 33

20 40 60 80 100
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0.07
relative size of coarse and subdomain problems   H = k−1
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subdomain



Solving the real problem: B−1
k as preconditioner for A

h ∼ k−3/2, n ∼ k3, Hybrid RAS,
Dirichlet subdomain problems

H ∼ k−1
Relative Coarse and
subdomain problem size

Without coarse grid

Scale = 0.07

k # GMRES
20 58
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Solving the real problem: B−1
k as preconditioner for A

20 grid points per wavelength, h ∼ k−1, n ∼ k2,
Hybrid RAS
Impedance subdomain problems H ∼ k−0.5

Relative Coarse and
subdomain problem size

Scale = 0.035

k #GMRES
120 51
140 56
160 59
180 57
200 61
220 64
240 65
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relative size of coarse and subdomain problems,   H= k−0.5
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# GMRES ∼ log k



Solving the real problem: B−1
k as preconditioner for A

20 grid points per wavelength, h ∼ k−1, n ∼ k2,
Hybrid RAS
Dirichlet subdomain problems H ∼ k−0.5

Relative Coarse and
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Scale = 0.035
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Summary

• k and ε explicit analysis allows rigorous explanation of some
empirical observations and formulation of new methods.

•When ε ∈ [0, k], A−1
ε is optimal preconditioner for A

•When ε ∼ k2, B−1
ε is “optimal” for Aε (H ∼ k−1)

• Analysis is for classical DP method - introduce more wavelike
components

•When preconditioning A with B−1
ε , empirical best choice is

ε ∼ k

• New framework for DD analysis for larger k.

• Open questions in analysis when ε
k2 � 1


