Interface Problem	The natural method	Our method	Error Analysis	Numerics	Summary

Finite Element Approximation To A Class of Interface Problems

Johnny Guzmán

Division of Applied Mathematics, Brown University.

May 13, 2014

Joint work with Manuel Sanchez-Uribe (Brown University) and Marcus Sarkis (WPI)

J. Guzmán

johnny_guzman@brown.edu

Division of Applied Mathematics, Brown University.

FEM for an Interface Problem

Interface Problem	The natural method	Our method	Error Analysis	Numerics	Summary
Outline					

- Interface Problem
- 2 The natural method
- Our method
- In Error Analysis
- 6 Numerics

J. Guzmán

johnny_guzman@brown.edu

Interface Problem	The natural method	Our method	Error Analysis	Numerics	Summary
Outline					

Interface Problem

- 2 The natural method
- Our method
- In Error Analysis
- **5** Numerics

3 Summary

J. Guzmán

johnny_guzman@brown.edu

Interface Problem

Interface Problem

$$\begin{aligned} -\Delta u^{\pm} &= f & \text{ in } \Omega^{\pm} \\ u &= 0 & \text{ on } \partial \Omega \\ [u] &= \alpha & \text{ on } \Gamma \\ [\nabla u \cdot \boldsymbol{n}] &= \beta & \text{ on } \Gamma. \end{aligned}$$

We denote $[u] = u^+ - u^-$, and

$$[
abla u \cdot \boldsymbol{n}] =
abla u^- \cdot \boldsymbol{n}^- +
abla u^+ \cdot \boldsymbol{n}^+$$

For simplicity we will assume that $\alpha \equiv 0$.

Illustration of Ω , Γ .

$$egin{aligned} &-\Delta u = f + F & ext{ in } \Omega \subset \mathbb{R}^2, \ &u = 0 & ext{ on } \partial \Omega \end{aligned}$$
 $F(x) = \int_0^A eta(s) \delta(x - X(s)) ds \quad orall x \in \Omega \end{aligned}$

where $X : [0, A) \to \Gamma$ is the arch-length parametrization of the curve Γ (closed curve X(0) = X(A)), and δ is a two-dimensional Dirac function.

• This could be thought of as Peskin's Formulation.

Some Finite Difference methods

• The immersed boundary method of Peskin (1977). This method is only first order accurate near interface. Y. Mori proved error estimates in 2008.

• The immersed interface method by Li and LeVeque (1994). T. Beale and A. Layton proved second order estimates for this method in 2006.

Some Finite Element Methods

• Z. Li and T. Lin with collaborators have developed many finite element methods.

• X. He, T. Lin and Y. Li (2012). Very similar to our method.

 \bullet Y. Gong, B. Li and Z. Li (2007). Proved second order accuracy in L^2 based norms.

Interface Problem	The natural method	Our method	Error Analysis	Numerics	Summary
Outline					

Interface Problem

2 The natural method

Our method

In Error Analysis

5 Numerics

3 Summary

J. Guzmán

johnny_guzman@brown.edu

Variational Formulation for Interface Problem

Find
$$u \in H_0^1(\Omega)$$
 such that

$$\int_{\Omega} \nabla u \cdot \nabla v dx = \int_{\Omega} f v dx + \int_{\Gamma} \beta v ds$$
for all $v \in H_0^1(\Omega)$.

Find $u_h \in V_h$ such that;

$$\int_{\Omega} \nabla u_h \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx + \int_{\Gamma} \beta v \, ds \quad \forall v \in V_h,$$

Here V_h is the space of piecewise linears.

• This is the method D. Boffi and L. Gastaldi have been analyzing and improving. Can be thought of as the finite element version of Peskin's method.

• Note that the left hand side does not change. Important for time dependent problem.

• Mesh does not have to conform to interface.

Consider a exact solution of the interface problem for $x \in \Omega = [-1,1]^2$

$$u(x) = \begin{cases} 1, & \text{if } r \leq R \\ 1 - \log(\frac{r}{R}), & \text{if } r > R \end{cases}$$

where $r = ||x||_2$ and R = 1/3. Then, the data is given by $f^{\pm} = 0$, $\alpha = 0$ and $\beta = \frac{1}{R}$.

Numerical Example

Plot of the approximate solution on a non-uniform grid.

Numerical Example

Plot of the error at the nodes for the "Natural" method on a uniform grid.

• The method is not optimal near interface. However, away from interface it appears to be optimal.

Numerical Result

h	$\ e_h^N\ _{L^2}$	r	$\ abla e_h^N\ _{L^2}$	r	$\ e_h^N\ _{L^\infty}$	r	$\ abla e_h^N\ _{L^\infty}$	r
1.8e-1	1.02e-1		4.71e-1		1.63e-1		7.01e-1	
8.8e-2	1.57e-2	2.70	1.38e-1	1.78	4.09e-2	2.00	3.26e-1	1.10
4.4e-2	6.72e-3	1.22	1.30e-1	0.09	2.85e-2	0.52	5.48e-1	-0.75
2.2e-2	2.02e-3	1.74	7.88e-2	0.72	1.07e-2	1.42	5.87e-1	-0.10
1.1e-2	7.65e-4	1.40	6.16e-2	0.36	7.24e-3	0.56	6.24e-1	-0.09
5.5e-3	2.71e-4	1.50	4.27e-2	0.53	4.39e-3	0.72	6.24e-1	0.00
2.8e-3	9.09e-5	1.58	2.83e-2	0.59	2.04e-3	1.11	7.80e-1	-0.32
1.4e-3	3.53e-5	1.36	2.24e-2	0.34	1.38e-3	0.57	8.78e-1	-0.17

 L^2 and L^∞ errors of the approximate solution of the natural method, on a non-uniform grid.

$$e_h^N := u_h^N - I_h u, \quad r(e, \|\cdot\|) := rac{\log(\|e_{h_{l+1}}\|/\|e_{h_l}\|)}{\log(h_{l+1}/h_l)}.$$

Interface Problem	The natural method	Our method	Error Analysis	Numerics	Summary
Outline					

- Interface Problem
- 2 The natural method

Our method

- In Error Analysis
- **5** Numerics

3 Summary

J. Guzmán

johnny_guzman@brown.edu

Our method

Goal

Correct the natural method to render it nearly second order accurate at vertices.

Find $u_h \in V_h$ such that for all $v \in V_h$ the following holds

$$\int_{\Omega} \nabla u_h \cdot \nabla v \, dx = \int_{\Omega} f \, v \, dx + \int_{\Gamma} \beta v \, ds - \sum_{e \in \mathcal{E}_h^{\Gamma}} \frac{h_{e^-} h_{e^+}}{2} a_e \beta(\mathbf{x}_e) [\nabla v \cdot n]|_e$$

Illustration of definitions

Idea for our method

We will be guided by the weak formulation $I_h u$ satisfies. Here I_h is the Lagrange interpolant.

We will be guided by the weak formulation $I_h u$ satisfies. Here I_h is the Lagrange interpolant.

It holds

$$\begin{split} \int_{\Omega} \nabla(I_h u) \cdot \nabla v \, dx &= \int_{\Omega} f \, v dx + \int_{\Gamma} \beta v \, ds \\ &- \sum_{e \in \mathcal{E}_h^{\Gamma}} \frac{h_{e^-} h_{e^+}}{2} a_e \beta(x_e) [\nabla v \cdot n]|_e + F_u(\nabla v) \end{split}$$

Where $F_u(\nabla v)$ is of higher order.

Therefore, we have defined our method such that

Lemma

Let $u_h \in V_h$ solution by our method, then it holds,

$$\int_{\Omega} \nabla (I_h u - u_h) \cdot \nabla v \, dx = F_u(\nabla v) \quad \text{for all } v \in V_h,$$

where

$$|F_u(
abla v)| \leq C_F h \|
abla v\|_{L^1(\Omega)}$$
 for all $v \in V_h$

and

$$C_F = C(\|u\|_{C^2(\Omega^-)} + \|u\|_{C^2(\Omega^+)})$$

Interface Problem	The natural method	Our method	Error Analysis	Numerics	Summary
Outline					

- Interface Problem
- 2 The natural method
- 3 Our method
- In Error Analysis
- **5** Numerics

3 Summary

J. Guzmán

johnny_guzman@brown.edu

Theorem

Then, there exists a constant C such that

$$\|\nabla (I_h u - u_h)\|_{L^{\infty}(\Omega)} \leq CC_F h$$

and

$$\|I_h u - u_h\|_{L^\infty(\Omega)} \leq CC_F h^2 \log(1/h)$$

where C is independent of h, the quasi-uniformity and shape regularity of the mesh.

and again

$$C_F \leq C(\|u\|_{C^2(\Omega^-)} + \|u\|_{C^2(\Omega^+)})$$

Summary

Error analysis for the Natural method

Theorem

Suppose that Ω is a rectangle and assume that u solves the interface problem with periodic boundary conditions. Let u_h be the approximation using the natural method. Let $z \in \Omega$ and let $d = dist(z, \Gamma) \ge \kappa h$ for a sufficiently large fixed constant κ . Then, we have

$$|
abla (I_h u - u_h)(z)| \leq Ch(\log(1/h)rac{h}{d^2} + 1)(\|u\|_{C^2(\Omega^-)} + \|u\|_{C^2(\Omega^+)}).$$

In particular optimal estimates are obtained for points z that are $O(\sqrt{h\log(1/h)})$ away from Γ .

Interface Problem	The natural method	Our method	Error Analysis	Numerics	Summary
Outline					

- Interface Problem
- 2 The natural method
- 3 Our method
- In Error Analysis
- 6 Numerics

J. Guzmán

Consider a exact solution of the interface problem for $\pmb{x} \in \Omega = [-1,1]^2$

$$u(x) = \begin{cases} 1, & \text{if } r \leq R \\ 1 - \log(\frac{r}{R}), & \text{if } r > R \end{cases}$$

where $r = ||x||_2$ and R = 1/3. Then, the data is given by $f^{\pm} = 0$, $\alpha = 0$ and $\beta = \frac{1}{R}$.

h	$\ e_h\ _{L^2}$	r	$\ \nabla e_h\ _{L^2}$	r	$\ e_h\ _{L^{\infty}}$	r	$\ \nabla e_h\ _{L^{\infty}}$	r
1.8e-1	1.39e-1		4.44e-1		2.53e-1		5.20e-1	
8.8e-2	3.09e-2	2.17	1.72e-1	1.37	6.40e-2	1.98	3.84e-1	0.44
4.4e-2	7.32e-3	2.08	5.75e-2	1.58	1.58e-2	2.02	1.79e-1	1.10
2.2e-2	1.81e-3	2.02	2.18e-2	1.40	4.19e-3	1.91	1.20e-1	0.58
1.1e-2	4.50e-4	2.01	8.57e-3	1.35	8.92e-4	2.23	6.45e-2	0.89
5.5e-3	1.12e-4	2.01	3.57e-3	1.26	2.37e-4	1.91	3.17e-2	1.02
2.8e-3	2.68e-5	2.06	1.55e-3	1.21	6.23e-5	1.93	1.71e-2	0.90
1.4e-3	6.89e-6	1.96	7.68e-4	1.01	1.68e-5	1.90	8.33e-3	1.03

 L^2 and L^∞ errors of the approximate solution of our method , on a non-uniform grid.

$$e_h := u_h - I_h u, \quad r(e, \|\cdot\|) := rac{\log(\|e_{h_{l+1}}\|/\|e_{h_l}\|)}{\log(h_{l+1}/h_l)}.$$

The result for the natural method

$$|
abla (I_h u - u_h)(z)| \le Ch(\log(1/h)rac{h}{d^2} + 1)(\|u\|_{C^2(\Omega^-)} + \|u\|_{C^2(\Omega^+)}).$$

Radial-Plot of the gradient of the error for the "Natural" method.

The result for the natural method

$$|\nabla (I_h u - u_h)(z)| \le Ch(\log(1/h)rac{h}{d^2} + 1)(\|u\|_{C^2(\Omega^-)} + \|u\|_{C^2(\Omega^+)}).$$

Semi-log plot of gradient error for the natural method with h = .0028. $|
abla e_h^N(d_T)|$ (red) for every triangle T and curve $2h + \log(1/h)(h/d)^2$ (blue).

Consider the exact solution

$$u(x_1, x_2) = \begin{cases} x_1^2 - x_2^2, & \text{if } r \leq R \\ 0, & \text{if } r > R \end{cases}$$

Therefore, the data for the problem is given by $f^{\pm} = 0$, $\alpha(\theta) = -R^2(\cos^2(\theta/R) - \sin^2(\theta/R))$ and $\beta(\theta) = 2R\cos^2(\theta/R) - 2R\sin^2(\theta/R))$, for $\theta \in [0, 2\pi R]$, and R = 2/3.

2nd example

h	$\ e_h\ _{L^2}$	r	$\ abla e_h\ _{L^2}$	r	$\ e_h\ _{L^{\infty}}$	r	$\ \nabla e_h\ _{L^{\infty}}$	r
1.8e-1	9.28e-3		3.27e-2		1.42e-2		4.23e-2	
8.8e-2	5.41e-3	0.78	3.50e-2	-0.10	8.23e-3	0.79	6.61e-2	-0.64
4.4e-2	1.19e-3	2.18	1.18e-2	1.56	2.19e-3	1.91	3.18e-2	1.06
2.2e-2	2.89e-4	2.05	5.06e-3	1.23	7.41e-4	1.56	2.25e-2	0.50
1.1e-2	7.51e-5	1.94	2.42e-3	1.06	1.64e-4	2.17	1.15e-2	0.97
5.5e-3	1.89e-5	1.99	1.18e-3	1.04	4.45e-5	1.88	5.57e-3	1.04
2.8e-3	4.71e-6	2.00	5.74e-4	1.03	1.20e-5	1.89	2.68e-3	1.06
1.4e-3	1.18e-6	2.00	2.86e-4	1.01	3.03e-6	1.98	1.35e-3	0.98

 L^2 and L^∞ errors of the approximate solution of our method (EBC-FEI).

Interface Problem	The natural method	Our method	Error Analysis	Numerics	Summary
Outline					

- Interface Problem
- 2 The natural method
- 3 Our method
- In Error Analysis
- **5** Numerics

J. Guzmán

johnny_guzman@brown.edu

- New finite element method to solve the interface model problem
- Nearly optimal order of convergence in the maximum norm
- Error analysis for the natural method

- Extend to fluid flow problems: Stokes, Navier-Stokes
- Higher order approximations
- 3d problems
- Discontinuous diffusion coefficients

Interface Problem	The natural method	Our method	Error Analysis	Numerics	Summary

THANKS.

J. Guzmán

johnny_guzman@brown.edu

Division of Applied Mathematics, Brown University.

FEM for an Interface Problem