FEM for degenerate isotropic Hamilton–Jacobi–Bellman Equations

Max Jensen

University of Sussex

with Gabriele Braconi and Iain Smears

An optimal control problem

- ► We have **paths**, e.g. all roads from Brighton *B* to Durham *A*.
- ► We have controls, e.g. steering wheel + accelerator + brake.
- We have a cost functional on the set of paths, e.g. the driving time or petrol cost.
- ► We denote the minimal cost to get from B to A by v(B).
- ▶ We can assign to every *C* on the map a minimal cost.
- ▶ This defines the value function v.

An optimal control problem

- ► We have **paths**, e.g. all roads from Brighton *B* to Durham *A*.
- ► We have controls, e.g. steering wheel + accelerator + brake.
- We have a cost functional on the set of paths, e.g. the driving time or petrol cost.
- ➤ We denote the minimal cost to get from B to A by v(B).
- ► We can assign to every C on the map a minimal cost.
- This defines the value function v.

- Now suppose that the path choice depends on the control through an Itô process.
- If v is smooth it solves the Hamilton–Jacobi–Bellman equation.

► Set

$$\mathcal{H}w := \sup_{\alpha} (\underline{-a^{\alpha} \Delta w + b^{\alpha} \cdot \nabla w} - r^{\alpha}).$$

linear, 2nd order non-divergence form

Hamilton-Jacobi-Bellman problem

Find the (right kind of) solution of

 $-\partial_t v + \mathcal{H} v = 0$

with final conditions $v(T, \cdot) = \Psi$ and homogeneous Dirichlet BCs.

- Now suppose that the path choice depends on the control through an Itô process.
- If v is smooth it solves the Hamilton–Jacobi–Bellman equation.

Set

$$\mathcal{H}w := \sup_{\alpha} (\underbrace{-a^{\alpha} \Delta w + b^{\alpha} \cdot \nabla w}_{\alpha} - r^{\alpha}).$$

linear, 2nd order non-divergence form

Hamilton-Jacobi-Bellman problem

Find the (right kind of) solution of

$$-\partial_t v + \mathcal{H} v = 0$$

with final conditions $v(T, \cdot) = \Psi$ and homogeneous Dirichlet BCs.

- ► From (Avellaneda, Levy, Paras; 1995).
- Consider stock prices as geometric Brownian motions

 $dS = f S dt + \sigma S dw(t)$ (w Brownian motion)

An option is a financial product whose value

 $\mathcal{J}(t,S(t),\sigma)$

depends on the stock price S(t) and the volatility $\sigma : [0, T] \to \mathbb{R}_+$. This value is the cost of hedging against the risk associated with the option.

Suppose the volatility is uncertain, however, guaranteed to be

$$\sigma: [0,T] \to [\sigma_*,\sigma^*].$$

To hedge against the uncertain volatility costs at time t and price S

$$V(t,S) = \sup_{\sigma} \mathcal{J}(t,S,\sigma).$$

- ► From (Avellaneda, Levy, Paras; 1995).
- Consider stock prices as geometric Brownian motions

 $dS = f S dt + \sigma S dw(t) \qquad (w \text{ Brownian motion})$

An option is a financial product whose value

 $\mathcal{J}(t, S(t), \sigma)$

depends on the stock price S(t) and the volatility $\sigma : [0, T] \to \mathbb{R}_+$. This value is the cost of hedging against the risk associated with the option.

Suppose the volatility is uncertain, however, guaranteed to be

$$\sigma: [0,T] \to [\sigma_*,\sigma^*].$$

To hedge against the uncertain volatility costs at time t and price S

$$V(t,S) = \sup_{\sigma} \mathcal{J}(t,S,\sigma).$$

One can derive directly or in the stochastic HJB framework that

$$0 = \frac{\partial}{\partial_t} V + \min_{\sigma} \left(\frac{1}{2} \sigma^2 S^2 \frac{\partial^2}{\partial_{SS}} V + r S \frac{\partial}{\partial_s} V - r V \right)$$
$$= \frac{\partial}{\partial_t} V + \frac{1}{2} \varsigma \left(\frac{\partial^2}{\partial_{SS}} V \right)^2 S^2 \frac{\partial^2}{\partial_{SS}} V + r S \frac{\partial}{\partial_s} V - r V$$

with

$$\varsigma\left(\frac{\partial^2}{\partial_{SS}}V\right) = \begin{cases} \sigma^*: & \partial^2_{SS}V < 0, \\ \sigma_*: & \partial^2_{SS}V \ge 0. \end{cases}$$

▶ Three features we want to address:

- fully-nonlinear (= nonlinear in highest derivative)
- discontinuous in nonlinearity ς
- ▶ degenerate at S = 0

One can derive directly or in the stochastic HJB framework that

$$0 = \frac{\partial}{\partial_t} V + \min_{\sigma} \left(\frac{1}{2} \sigma^2 S^2 \frac{\partial^2}{\partial_{SS}} V + r S \frac{\partial}{\partial_s} V - r V \right)$$
$$= \frac{\partial}{\partial_t} V + \frac{1}{2} \varsigma \left(\frac{\partial^2}{\partial_{SS}} V \right)^2 S^2 \frac{\partial^2}{\partial_{SS}} V + r S \frac{\partial}{\partial_s} V - r V$$

with

$$\varsigma\left(\frac{\partial^2}{\partial_{SS}}V\right) = \begin{cases} \sigma^*: & \partial^2_{SS}V < 0, \\ \sigma_*: & \partial^2_{SS}V \ge 0. \end{cases}$$

- Three features we want to address:
 - fully-nonlinear (= nonlinear in highest derivative)
 - discontinuous in nonlinearity ς
 - degenerate at S = 0

There is a wide range of Optimal Control applications, e.g. in Finance:

- Merton portfolio problem
- Irreversible and reversible abandonment and investment
- Valuation of natural resources

▶ ...

Moreover, many nonlinear equations with a convex structure can be modelled in the HJB setting (often requiring **anisotropic** diffusions):

- Monge-Ampère equation
- Pucci's equations

Viscosity solutions

▶ Weak solutions of these problems are usually not unique.

• Suppose v was smooth. If $v - \psi$ has a maximum, then there

$$\nabla v = \nabla \psi, \quad D^2 v \le D^2 \psi \qquad (D^2 \text{ Hessian})$$

where

 $A \leq B : \Leftrightarrow B - A$ is positive semi-definite.

► Instead of plugging the derivatives of v into HJB, we want to work with the derivatives of ψ. This is the trick!

Viscosity solutions

▶ Weak solutions of these problems are usually not unique.

• Suppose v was smooth. If $v - \psi$ has a maximum, then there

$$abla \mathbf{v} =
abla \psi, \quad D^2 \mathbf{v} \le D^2 \psi \qquad (D^2 \text{ Hessian})$$

where

$$A \leq B :\Leftrightarrow B - A$$
 is positive semi-definite.

► Instead of plugging the derivatives of v into HJB, we want to work with the derivatives of ψ. This is the trick! The trick works because of the following:

If $A \leq B$ then with $q_0 \in \mathbb{R}, \vec{q} \in \mathbb{R}^n$

$$-q_0 + \mathfrak{H}(x,t,\vec{q},A) \geq -q_0 + \mathfrak{H}(x,t,\vec{q},B).$$

Theorem

• v is C^2 solution of HJB. Then for all smooth ψ

 $-\partial_t\psi(t,x) + \mathcal{H}(x,t,\nabla\psi(t,x),D^2\psi(t,x)) \leq 0$

at every (t, x) which maximises $v - \psi$ with $v(t, x) = \psi(t, x)$.

Viscosity Solution (Crandall, Lions)

▶ $v \in C^0$ is a subsolution of HJB if for all smooth ψ

 $-\partial_t\psi(t,x) + \mathfrak{H}(x,t,
abla\psi(t,x),D^2\psi(t,x)) \leq 0$

at every (t, x) which maximises $v - \psi$ with $v(t, x) = \psi(t, x)$.

▶ Supersolution similar. Subsolution + supersolution =: solution.

The trick works because of the following:

If $A \leq B$ then with $q_0 \in \mathbb{R}, \vec{q} \in \mathbb{R}^n$

$$-q_0 + \mathfrak{H}(x,t,\vec{q},A) \geq -q_0 + \mathfrak{H}(x,t,\vec{q},B).$$

Theorem

• v is C^2 solution of HJB. Then for all smooth ψ

$$-\partial_t\psi(t,x) + \mathfrak{H}(x,t,\nabla\psi(t,x),D^2\psi(t,x)) \leq 0$$

at every (t, x) which maximises $v - \psi$ with $v(t, x) = \psi(t, x)$.

Viscosity Solution (Crandall, Lions)

• $v \in C^0$ is a subsolution of HJB if for all smooth ψ

$$-\partial_t\psi(t,x) + \mathcal{H}(x,t,\nabla\psi(t,x),D^2\psi(t,x)) \leq 0$$

at every (t, x) which maximises $v - \psi$ with $v(t, x) = \psi(t, x)$.

► Supersolution similar. Subsolution + supersolution =: solution.

Theorem (Comparison principle)

Let w^* be a viscosity subsolution and w_* be a viscosity supersolution then

$$\sup_{\Omega_{T}}(w^{*}-w_{*})=\sup_{\partial_{\mathrm{p}}\Omega_{T}}(w^{*}-w_{*}).$$

Here $\partial_p \Omega_T$ parabolic boundary.

Corollary (Uniqueness)

The HJB viscosity solution is unique and equal to the value function.

Theorem (v viscosity solution \rightarrow existence)

The value function of the optimal control problem is a viscosity solution of the HJB equation.

For proofs see for instance (Fleming, Soner; Chapter V).

Summary of the PDE Theory ...

- The value function is defined in terms of the original optimal control problem.
- ▶ We now have a very nice theory of the HJB equation, which gives us
 - ▶ in a general context the value function as solution of the HJB eqn
 - and no other wrong solution
 - without need to solve path integrals of the underlying optimal control problem.
- ▶ It is not really a differential equation anymore (in a narrow sense).
- Instead it is a problem posed on the set of continuous functions using monotonicity properties of the equation.
- If we use continuous functions, what about the Greeks (finance speak for partial derivatives)?
- The research I present today addresses this question in the context of computational methods.

Summary of the PDE Theory ...

- The value function is defined in terms of the original optimal control problem.
- ▶ We now have a very nice theory of the HJB equation, which gives us
 - ► in a general context the value function as solution of the HJB eqn
 - and no other wrong solution
 - without need to solve path integrals of the underlying optimal control problem.
- ► It is not really a differential equation anymore (in a narrow sense).
- Instead it is a problem posed on the set of continuous functions using monotonicity properties of the equation.
- If we use continuous functions, what about the Greeks (finance speak for partial derivatives)?
- The research I present today addresses this question in the context of computational methods.

Summary of the PDE Theory ...

- The value function is defined in terms of the original optimal control problem.
- ▶ We now have a very nice theory of the HJB equation, which gives us
 - ► in a general context the value function as solution of the HJB eqn
 - and no other wrong solution
 - without need to solve path integrals of the underlying optimal control problem.
- ► It is not really a differential equation anymore (in a narrow sense).
- Instead it is a problem posed on the set of continuous functions using monotonicity properties of the equation.
- If we use continuous functions, what about the Greeks (finance speak for partial derivatives)?
- The research I present today addresses this question in the context of computational methods.

Task:

• Discretise HJB equations with a Finite Element Method.

Main Results:

- First proof of uniform convergence of Galerkin approximations with
 - non-smooth viscosity solutions (e.g. no classical solutions),
 - non-smooth HJB operators (no linearisation of \mathcal{H}).

(To my knowledge this has been an open problem for a long time.)

- ► Novel variational argument for gradient convergence.
- Unstructured meshes permitted and Newton solvers globally convergent from above.
- ► HJB operators may be **degenerate**, but assumed **isotropic**.

Notation:

- y^{ℓ} is ℓ th node
- s^k is the *k*th time step
- h time step size

• ϕ^{ℓ} is the hat function at y^{ℓ} with volume $\|\phi^{\ell}\|_{L^{1}(\Omega)} = 1$

Add artificial diffusion:

$$ar{a}_h^lpha \geq a^lpha$$

Numerical scheme/framework

• Let
$$v_h(T, \cdot) = \Psi$$

Find $v_h(s^k, \cdot)$ such that

$$-\frac{v_{h}(s^{k+1},y^{\ell})-v_{h}(s^{k},y^{\ell})}{h}+\sup_{\alpha}\left(\bar{a}_{h}^{\alpha}(y^{\ell})\underbrace{\langle\nabla v_{h},\nabla\phi^{\ell}\rangle}_{\text{conceptually}}+\langle b^{\alpha}\cdot\nabla v_{h}-r^{\alpha},\phi^{\ell}\rangle\right)=0.$$

Consistency

As $h \rightarrow 0$

$$\|a^{\alpha}-\bar{a}_{h}^{\alpha}\|_{L^{\infty}(\Omega)} \rightarrow 0$$

Weak discrete maximum principle (wDMP)

For fixed $\alpha,$ discrete linear operators have M-matrix property.

Elliptic projection converging in W_1^{∞}

Finite element solutions to the Laplace equation converge in $W_1^{\infty}(\Omega)$ E.g. see recent work by Demlow, Schatz, Wahlbin, etc.

Selected literature

► Finite element methods

- (Smears,Süli; 2013) DG method, Cordes theory, *hp* convergence proof under H² regularity.
- (Lakkis, Pryer; 2011) similar to our method, also anisotropic-diffusion numerical experiments; a convergence result by Neilan for 2D Monge-Ampère for *smooth* operator + solution
- Feng, Neilan; 2011) primarily for Monge-Ampère equations, special case of HJB, biharmonic regularisation 'εΔ²ν + Fν = 0', convergence for *smooth* operator + solution, see also Brenner et al.
- ► (Böhmer; 2008) approximation with smooth functions (C¹ approximation space), convergence for *smooth* operator + solution
- ▶ (Cortey-Dumont; 1987) ~→ (Boulbrachene; 2001, 2004)
 QVI approach: convergence rates, but expensive!

► Finite difference methods

- method design: (Kushner; 1977), (Lions, Mercier; 1980), (Lions, Souganidis; 1995), (Froese, Oberman; 2012)
- convergence: (Barles, Souganidis; 1991)
- convergence rates: (Barles, Jakobsen; 2002, 2005, 2007), (Caffarelli, 2008), (Krylov; 2005), (Dong, Krylov; 2007)

My personal view is that current methods struggle to combine all of the following features in a single framework:

- $\blacktriangleright \ \textbf{Uniqueness:} \ \textbf{monotonicity} \leftrightarrow \textbf{smoothness}$
- Anisotropy
- Consistency (of second derivative)
- ► Efficiency (large stencils, ...)
- Geometry
- We don't do anisotropy.
- Other methods balance the challenge in other ways.

$$v^*(t,x) = \limsup_{\substack{(s_h^k, y_h^\ell) \to (t,x) \\ h \to 0}} v_h(s_h^k, y_h^\ell) ,$$

upper semi-continuous envelope

lower semi-continuous envelope

Theorem

 v^* is a HJB viscosity subsolution and v_* is a HJB viscosity supersolution.

- ► The proof is based on (Barles, Souganidis).
- However, finite element methods not pointwise consistent.

$$\langle
abla \mathbb{J} w,
abla \phi_i
angle = -rac{3}{2} \Delta w(x) + \mathcal{O}\left(\Delta x_i^2\right)$$

- ▶ But FEM for HJB and Laplace are inconsistent in the same way: → use cancellation of consistency error with elliptic projection.
- ► The above theorem and a comparison principle give uniform convergence.

$$v^*(t,x) = \limsup_{\substack{(s_h^k, y_h^\ell) \to (t,x) \\ h \to 0}} v_h(s_h^k, y_h^\ell) \quad ,$$

upper semi-continuous envelope

lower semi-continuous envelope

Theorem

 v^* is a HJB viscosity subsolution and v_* is a HJB viscosity supersolution.

- ► The proof is based on (Barles, Souganidis).
- However, finite element methods not pointwise consistent.

$$\langle \nabla \mathfrak{I} w, \nabla \phi_i \rangle = -\frac{3}{2} \Delta w(x) + \mathcal{O}(\Delta x_i^2)$$

- The above theorem and a comparison principle give uniform convergence.

Convergence of Derivatives

 The partial derivatives of the value function contain crucial information

Uncertain volatility model: $\partial V/\partial S$ amount of stock in hedging portfolio.

It has been our aim to design a scheme which naturally provides control of gradient.

Variational bound

Since $v \ge 0$,

$$\partial_t v + \sup_{\alpha} (L^{\alpha} v - r^{\alpha}) = 0 \implies \partial_t v + L^{\alpha} v \le r^{\alpha} \text{ for any } \alpha$$
$$\implies \langle \partial_t v, v \rangle + \langle L^{\alpha} v, v \rangle \le \langle r^{\alpha}, v \rangle$$

Variational structure not good enough to identify 'correct solution'. However, once convergence to viscosity solution guaranteed, variational structure can be very useful!

Convergence of Derivatives

 The partial derivatives of the value function contain crucial information

Uncertain volatility model: $\partial V/\partial S$ amount of stock in hedging portfolio.

It has been our aim to design a scheme which naturally provides control of gradient.

Variational bound

Since $v \ge 0$,

$$\partial_t v + \sup_{\alpha} (L^{\alpha} v - r^{\alpha}) = 0 \implies \partial_t v + L^{\alpha} v \le r^{\alpha} \text{ for any } \alpha$$
$$\implies \langle \partial_t v, v \rangle + \langle L^{\alpha} v, v \rangle \le \langle r^{\alpha}, v \rangle$$

 Variational structure not good enough to identify 'correct solution'. However, once convergence to viscosity solution guaranteed, variational structure can be very useful!

- While HJB operator not smooth, in above applications there is at least one semi-definite L^α with smooth coefficients!
- This gives (in spirit) a 'discrete variational bound'

 $``\|w_h\|_{L^2(H^1_{\gamma})} \lesssim \langle \partial_t w_h, w_h \rangle + \langle L^{\alpha}_h w_h, w_h \rangle \leq \langle r^{\alpha}, w_h \rangle'' \quad (w_h = Q_h v - v_h)$

if $Q_h v$ is

- approximates v in $H^1((0, T) \times \Omega)$,
- non-negative,
- satisfies boundary conditions,
- is bounded from above by v_h .

 H^1_{γ} is a weighted Sobolev space.

Precisely

$$\begin{split} \|w_{h}\|_{L^{2}(H^{1}_{\mathcal{T}})} &\lesssim \sum_{k} \left(\left\langle (hL_{h}^{\alpha} + \mathrm{Id} \right) w_{h}^{k}, \cdot \right) - w_{h}^{k+1}, w_{h}^{k} \right\rangle \right) + \frac{1}{2} \left\langle \left\langle w_{h}(\mathcal{T}, \cdot), w_{h}(\mathcal{T}, \cdot) \right\rangle \right\rangle \\ &\lesssim \sum_{k} \left\langle \left\langle hr^{\alpha}, w_{h}^{k} \right\rangle \right\rangle - \sum_{k} \left\langle \left\langle Q_{h}v(s^{k+1}, \cdot) + (hL_{h}^{\alpha} + \mathrm{Id})Q_{h}v(s^{k}, \cdot), w_{h}^{k} \right\rangle \right\rangle \\ &+ \frac{1}{2} \left\langle \left\langle w_{h}^{\mathcal{T}/h}, w_{h}^{\mathcal{T}/h} \right\rangle \right\rangle \end{split}$$

using for non-constant coefficients a super-approximation result **(Demlow, Guzmán, Schatz; 2011)** and a 'quadrature' L^2 scalar product $\langle\!\langle\cdot,\cdot
angle\!\rangle$.

- While HJB operator not smooth, in above applications there is at least one semi-definite L^α with smooth coefficients!
- ► This gives (in spirit) a 'discrete variational bound'

 $``\|w_h\|_{L^2(H^1_{\gamma})} \lesssim \langle \partial_t w_h, w_h \rangle + \langle L^{\alpha}_h w_h, w_h \rangle \leq \langle r^{\alpha}, w_h \rangle'' \quad (w_h = Q_h v - v_h)$

if $Q_h v$ is

- approximates v in $H^1((0, T) \times \Omega)$,
- non-negative,
- satisfies boundary conditions,
- is bounded from above by v_h .

 H^1_{γ} is a weighted Sobolev space.

Precisely

$$\begin{split} \|w_{h}\|_{L^{2}(H^{1}_{\gamma})} &\lesssim \sum_{k} \left(\left\langle \left(hL_{h}^{\alpha} + \mathsf{Id} \right) w_{h}^{k}, \cdot \right) - w_{h}^{k+1}, w_{h}^{k} \right\rangle \right) + \frac{1}{2} \left\langle \left(w_{h}(\mathcal{T}, \cdot), w_{h}(\mathcal{T}, \cdot) \right) \right\rangle \\ &\lesssim \sum_{k} \left\langle \left\langle hr^{\alpha}, w_{h}^{k} \right\rangle \right\rangle - \sum_{k} \left\langle \left\langle Q_{h}v(s^{k+1}, \cdot) + (hL_{h}^{\alpha} + \mathsf{Id})Q_{h}v(s^{k}, \cdot), w_{h}^{k} \right\rangle \right\rangle \\ &+ \frac{1}{2} \left\langle \left\langle w_{h}^{\mathcal{T}/h}, w_{h}^{\mathcal{T}/h} \right\rangle \right\rangle \end{split}$$

using for non-constant coefficients a super-approximation result (Demlow, Guzmán, Schatz; 2011) and a 'quadrature' L^2 scalar product $\langle\!\langle\cdot,\cdot\rangle\!\rangle$.

• Here
$$Q_h$$
: $w \mapsto \mathcal{I}_h \max\{w - \|v - v_h\|_{L^{\infty}}, 0\}$.

A crucial step in proof is to bound projection error in red region.

Theorem

lf

- value function belongs to $W^{1,d+1+\varepsilon}((0,T)\times\Omega)$, $\varepsilon > 0$,
- ▶ for an α the L^{α} is semi-definite with diffusion coefficient $a^{\alpha} \in W^{2,\infty}$,
- ▶ O(h) stabilisation with artificial diffusion,

then $\|v - v_h\|_{L^2(H^1_{\gamma})} \to 0$ with $\gamma = \sqrt{a^{\alpha}}$.

Semi-smooth Newton

 Semi-smooth Newton methods use a weakened concept of differentiability:

 Analysis of Newton methods for discrete HJB equations: (Howard; 1960), (Lions, Mercier; 1980), (Bokanowski, Maroso, Zidani; 2009), (Lakkis, Pryer; 2011) ...

Theorem

Our scheme has non-negative uniformly bounded unique solutions. Semi-smooth Newton methods converge 'globally from above', monotone and superlinearly.

Numerical Experiment

▶ We examine the equation

$$-v_t + \sup_{\alpha \in [\alpha_0, \alpha_1]} \{-\alpha \Delta v\} + |\nabla v| = f,$$

DoF v. Newton iterations

DoF	aver. no. Newton it.
674	3
2858	3.67
11759	4.04
47693	4.22
192089	4.86

Remark

For smooth problems we observe optimal rates in $L^2,\,L^\infty$ and $H^1.$

Thank you for the attention!

Proof – HJB sub- and supersolutions.

- Suppose $v^* \psi$ has (strict) maximum at (t, x).
- Let P_h be the elliptic projection:

$$\langle \nabla P_h \psi, \nabla \phi_h^\ell \rangle = \langle \nabla \psi, \nabla \phi_h^\ell \rangle.$$
(1)

- Show there are nodes (s_h^k, y_h^k)
 - converging to (t, x)
 - maximise $v_h P_h \psi$ locally
- Then

$$0 \stackrel{(a)}{=} F_h(v_h)(s_h^k, y_h^k) \stackrel{(b)}{\geq} F_h(P_h\psi)(s_h^k, y_h^k) + \underset{\text{perturbation}}{\overset{\text{small}}{\to}} \frac{(c)}{F}(\psi)(t, x).$$

using

- (a) definition of scheme
- (b) monotonicity property
- (c) orthogonality (1) for elliptic term, otherwise approximation bounds of elliptic projection

$$a^{lpha}(y^{\ell})\langle
abla P_{h}\psi,
abla \phi_{h}^{\ell}
angle = a^{lpha}(y^{\ell})\langle
abla \psi,
abla \phi_{h}^{\ell}
angle$$

• Corresponding argument if $v_* - \psi$ minimum at (t, x).