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We have paths, e.g. all roads from
Brighton B to Durham A.

We have controls, e.g. steering
wheel + accelerator + brake.
We have a cost functional on the

set of paths, e.g. the driving time
or petrol cost.

We denote the minimal cost to get
from B to A by v(B).




An optimal control problem

» We have paths, e.g. all roads from
Brighton B to Durham A.

» We have controls, e.g. steering
wheel + accelerator + brake.

» We have a cost functional on the
set of paths, e.g. the driving time
or petrol cost.

» We denote the minimal cost to get
from B to A by v(B).

» We can assign to every C on the
map a minimal cost.

» This defines the value function v.
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» Now suppose that the path choice depends on the control through
an Itd process.

» If v is smooth it solves the Hamilton—Jacobi—Bellman equation.



» Now suppose that the path choice depends on the control through
an Itd process.

» If v is smooth it solves the Hamilton—Jacobi—Bellman equation.

> Set

Hw :=sup(—a“ Aw + b - Vw —r?).

linear, 2nd order
non-divergence form

Hamilton-Jacobi-Bellman problem
Find the (right kind of) solution of

—O0:v+Hv=0

with final conditions v(T,:) = W and homogeneous Dirichlet BCs.



Model Problem: Uncertain volatility
» From (Avellaneda, Levy, Paras; 1995).
» Consider stock prices as geometric Brownian motions
dS=fSdt + o Sdw(t) (w Brownian motion)
An option is a financial product whose value
a(t, 5(t),0)

depends on the stock price S(t) and the volatility o : [0, T] — R+.
This value is the cost of hedging against the risk associated with the
option.



Model Problem: Uncertain volatility
» From (Avellaneda, Levy, Paras; 1995).
» Consider stock prices as geometric Brownian motions
dS=fSdt + o Sdw(t) (w Brownian motion)
An option is a financial product whose value
a(t, 5(t),0)

depends on the stock price S(t) and the volatility o : [0, T] — R+.
This value is the cost of hedging against the risk associated with the
option.

» Suppose the volatility is uncertain, however, guaranteed to be

o: [0, T] = [os, %]
To hedge against the uncertain volatility costs at time t and price S

V(t,S) =supd(t,S,o).



» One can derive directly or in the stochastic HJB framework that
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Model Problem: Uncertain volatility

» One can derive directly or in the stochastic HJB framework that
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» Three features we want to address:

» fully-nonlinear (= nonlinear in highest derivative)
» discontinuous in nonlinearity ¢

» degenerate at S =10



There is a wide range of Optimal Control applications, e.g. in Finance:
» Merton portfolio problem
Irreversible and reversible abandonment and investment

>
» Valuation of natural resources
>

Moreover, many nonlinear equations with a convex structure can be
modelled in the HJB setting (often requiring anisotropic diffusions):

oL~

» Monge-Ampeére equation

» Pucci's equations



» Weak solutions of these problems are usually not unique.
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Viscosity solutions

» Weak solutions of these problems are usually not unique.

» Suppose v was smooth. If v — 1) has a maximum, then there
Vv=Vy, D?v<D*  (D? Hessian)

where
A< B:& B — Ais positive semi-definite.

» Instead of plugging the derivatives of v into HJB, we want to work
with the derivatives of 1. This is the trick!

~



The trick works because of the following:
If A< B then with go € R, g € R"
—q0 +H(x, t,G,A) = —q0 + H(x, t, G, B).
Theorem
» v is C? solution of HJB. Then for all smooth 1
—0gb(t, x) + H(x, t, Vi (t, x), D*)(t,x)) < 0

at every (t, x) which maximises v — ¢ with v(t,x) = (t, x).



The trick works because of the following:
If A< B then with gp € R, g € R”
—qo + j{(X7 ta C77 A) Z —qo + j{(X7 ta C_fv B)

Theorem
» v is C? solution of HJB. Then for all smooth 1
—0e(t, x) + H(x, t, Vip(t, x), D*¥(t, x)) < 0

at every (t, x) which maximises v — ¢ with v(t,x) = (t, x).

Viscosity Solution (Crandall, Lions)
» v € COis a subsolution of HJB if for all smooth
*5#/)(73 X) + J{(X’ ta V¢(tax), D2w(t7 X)) S O

at every (t, x) which maximises v — ¢ with v(t, x) = 9(t, x).

» Supersolution similar. Subsolution + supersolution =: solution.



Under Reasonable Assumptions . ..

Theorem (Comparison principle)

Let w* be a viscosity subsolution and w, be a viscosity supersolution then

Here 0y, Q1 parabolic boundary.

Corollary (Uniqueness)

The HJB viscosity solution is unique and equal to the value function.

Theorem (v viscosity solution ~~ existence)

The value function of the optimal control problem is a viscosity solution
of the HJB equation.

For proofs see for instance (Fleming,Soner; Chapter V).



Summary of the PDE Theory ...

» The value function is defined in terms of the original optimal control
problem.

» We now have a very nice theory of the HJB equation, which gives us
> in a general context the value function as solution of the HJB eqn
» and no other wrong solution
» without need to solve path integrals of the underlying optimal
control problem.
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» and no other wrong solution

» without need to solve path integrals of the underlying optimal
control problem.

It is not really a differential equation anymore (in a narrow sense).

> Instead it is a problem posed on the set of continuous functions

using monotonicity properties of the equation.

If we use continuous functions, what about the Greeks
(finance speak for partial derivatives)?



Summary of the PDE Theory ...

The value function is defined in terms of the original optimal control
problem.
We now have a very nice theory of the HIB equation, which gives us

> in a general context the value function as solution of the HJB eqn

» and no other wrong solution

» without need to solve path integrals of the underlying optimal
control problem.

It is not really a differential equation anymore (in a narrow sense).

> Instead it is a problem posed on the set of continuous functions

using monotonicity properties of the equation.

If we use continuous functions, what about the Greeks
(finance speak for partial derivatives)?

The research | present today addresses this question in the context
of computational methods.



Task:
» Discretise HJB equations with a Finite Element Method.

Main Results:
» First proof of uniform convergence of Galerkin approximations
with
» non-smooth viscosity solutions (e.g. no classical solutions),
» non-smooth HJB operators (no linearisation of ().
(To my knowledge this has been an open problem for a long time.)
» Novel variational argument for gradient convergence.

» Unstructured meshes permitted and Newton solvers globally
convergent from above.

» HJB operators may be degenerate, but assumed isotropic.



Notation:
» y' is fth node
> s¥is the kth time step
> h time step size
> ¢' is the hat function at y* with volume [¢*]|;1(q) = 1

Add artificial diffusion:
ap > a”

Numerical scheme/framework

> Let vy(T,:) = V.
» Find v,(s%,-) such that

k+1 ¢ k L ) ,
— w00 L sup, (37 (1) (Vv Vo) +{B%- T — 1%, 64) = 0.
——

conceptually
—(Avi,¢e)~—Avi(y*)



As h— 0

la® — a5l L@ — 0

For fixed a, discrete linear operators have M-matrix property.

Finite element solutions to the Laplace equation converge in W;>(Q)
E.g. see recent work by Demlow, Schatz, Wahlbin, etc.
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Selected literature

» Finite element methods

>

(Smears,Siili; 2013) DG method, Cordes theory, hp convergence
proof under H? regularity.

(Lakkis, Pryer; 2011) similar to our method, also
anisotropic-diffusion numerical experiments; a convergence result by
Neilan for 2D Monge-Ampére for smooth operator + solution
(Feng, Neilan; 2011) primarily for Monge-Ampére equations, special
case of HJB, biharmonic regularisation ‘eA%v + Fv = 0',
convergence for smooth operator + solution, see also Brenner et al.
(Bdhmer; 2008) approximation with smooth functions (C*
approximation space), convergence for smooth operator + solution
(Cortey-Dumont; 1987) ~~ (Boulbrachene; 2001, 2004)

QVI approach: convergence rates, but expensive!

» Finite difference methods

>

method design: (Kushner; 1977), (Lions, Mercier; 1980), (Lions,
Souganidis; 1995), (Froese, Oberman; 2012)

» convergence: (Barles, Souganidis; 1991)
» convergence rates: (Barles, Jakobsen; 2002, 2005, 2007), (Caffarelli,

2008), (Krylov; 2005), (Dong, Krylov; 2007)



Current numerical methods

» My personal view is that current methods struggle to combine all of
the following features in a single framework:

» Uniqueness: monotonicity <+ smoothness

v

Anisotropy

v

Consistency (of second derivative)

v

Efficiency (large stencils, ...)

» Geometry
» We don't do anisotropy.

» Other methods balance the challenge in other ways.



» Set

* H k L
v¥(t,x) =limsup vu(sy,yy)
(k)= (tx)
h—0

upper semi-continuous envelope

vi(t,x) = lim inf Vh(Sk, ¥) -
(k)= (6%
h—0

lower semi-continuous envelope



» Set

* . k YA . . k ¢
v¥(t,x) =limsup vu(sy,yy) vi(t, x) = liminf  vy(sp,y,) -
(k)= (ex) (sfoyf)= ()
h—0 h—0
upper semi-continuous envelope lower semi-continuous envelope
Theorem

v* is a HJB viscosity subsolution and v, is a HJB viscosity supersolution.

» The proof is based on (Barles, Souganidis).

» However, finite element methods not pointwise consistent.

@ (Viw, V) = _%AW(X) + O(Axiz)

» But FEM for HJB and Laplace are inconsistent in the same way:
~> use cancellation of consistency error with elliptic projection.

» The above theorem and a comparison principle give uniform
convergence.



» The partial derivatives of the value function contain crucial
information

Uncertain volatility model: 9V /0S amount of stock in hedging
portfolio.

» |t has been our aim to design a scheme which naturally provides
control of gradient.
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Convergence of Derivatives

» The partial derivatives of the value function contain crucial
information

Uncertain volatility model: 9V /9S amount of stock in hedging
portfolio.

> It has been our aim to design a scheme which naturally provides
control of gradient.

Variational bound
Since v > 0,

Orv +sup(L¥ — r¥) =0 = Oyv + L% < r® for any a
(e
= (Ov,v) + (L%, v) < (r%, v)
» Variational structure not good enough to identify ‘correct solution’.

However, once convergence to viscosity solution guaranteed,
variational structure can be very useful!



» While HJB operator not smooth, in above applications there is at
least one semi-definite L™ with smooth coefficients!

» This gives (in spirit) a ‘discrete variational bound’
“NIwallz(mry S (Oewh, wh)+(Liy wh, wh) < (r®, wn)”  (wh = Qpv—vh)

if th is
» approximates v in H((0, T) x ),
» non-negative,
» satisfies boundary conditions,
» is bounded from above by v;.
H! is a weighted Sobolev space.



» While HJB operator not smooth, in above applications there is at
least one semi-definite L™ with smooth coefficients!

» This gives (in spirit) a ‘discrete variational bound’
“||Wh||L2(H}Y) 5 <8tWh, Wh>-‘r<LgWh, Wh> < <r04’ Wh>// (Wh _ QhV_Vh)

if th is
» approximates v in H((0, T) x ),
> non-negative,
» satisfies boundary conditions,
» is bounded from above by v;.
H! is a weighted Sobolev space.
» Precisely

lIwhll 211 S S (QCALE +H1d)wy )= wy ™ Wi D)+ 5 (wa( T, ), wn (T 1))
Sk (b Wi ) =30 (Qnv(s* ) +(hLy +1d) Quv(s* ), wh))
T/h T/h

+5{w, w, )

using for non-constant coefficients a super-approximation result
(Demlow, Guzman, Schatz; 2011) and a ‘quadrature’ L2 scalar
product (-, ).



» Here Qn: w — Jpmax{w — ||v — vpl|1,0}.

» A crucial step in proof is to bound projection error in red region.

Theorem

If
» value function belongs to WY4t1+<((0, T) x Q), € > 0,
» for an « the LY is semi-definite with diffusion coefficient a% € W%,
» O(h) stabilisation with artificial diffusion,

then ||v — vall2(r1) — O with v = Va*,



Semi-smooth Newton

» Semi-smooth Newton methods use a weakened concept of
differentiability:

-~

» Analysis of Newton methods for discrete HJB equations: (Howard;
1960), (Lions, Mercier; 1980), (Bokanowski, Maroso, Zidani; 2009),
(Lakkis, Pryer; 2011) ...

Theorem

Our scheme has non-negative uniformly bounded unique solutions.
Semi-smooth Newton methods converge ‘globally from above’, monotone
and superlinearly.



Numerical Experiment

» We examine the equation

—vi+ sup {—aAv}+|Vv| =",

a€lag,a]
» DoF v. Newton iterations

DoF aver. no. Newton it.

674 3
2858 3.67
11759 4.04
47693 4.22
192089 4.86

Remark

For smooth problems we observe optimal rates in
L2, [ and H*.




Thank you for the attention!



Proof — HJB sub- and supersolutions.

» Suppose v* — ) has (strict) maximum at (t, x).
> Let P, be the elliptic projection:

(VPw), V) = (Vib, V). (1)

» Show there are nodes (sf, y¥)
» converging to (t,x)
» maximise v, — Ppt) locally
» Then
02 Fu(w)(sk, ) 2 FalPro)(o 1) + permition  FO(E ).
’ = ’ perturbation ’
using
(a) definition of scheme
(b) monotonicity property
(c) orthogonality (1) for elliptic term, otherwise approximation
bounds of elliptic projection

a*(y ) (V Py, Vo) = a®(y*) (Vi) Vi)

» Corresponding argument if v, — ¢ minimum at (t, x).



