
Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

Bernstein polynomials and finite element
algorithms

Robert Kirby1

1Baylor University

14 July 2014

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

Motivation

Bernstein polynomials

FEEC

Discontinuous Galerkin

Concluding thoughts

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

Problems for high order

Very large element matrices

Aij =

∫
K
w∇φi · ∇φj dx

Standard Tensor product

Basis size: O(nd)

Element matrix size: O(n2d)

Cost of local matvec: O(n2d) O(nd+1)

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

But how do we go fast?

Tensor Products

I Sum factorization ↔ fast matvecs

I Operation count: O(n) per entry, O(nd+1) total

I Memory usage: O(nd)

Simplex?

I Collapsed-coordinates: Karniadakis & Sherwin for H1

I General elements: FIAT (RCK), FEMSTER (White, Castillo)

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

Bernstein polynomials

{(
n

α

)∏
i

bαi
i

}
|α|=n

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

Differentiation

It’s sparse in B-form

∂

∂x
=

d+1∑
i=1

∂bi
∂x

∂

∂bi
.

∂

∂bi
Bn
α =

{
0, αi = 0

αiB
n−1
α−edi

, αi 6= 0

D ↔ sparse matrix with at most d + 1 nonzeros per row

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

Differentiation

It’s sparse in B-form

∂

∂x
=

d+1∑
i=1

∂bi
∂x

∂

∂bi
.

∂

∂bi
Bn
α =

{
0, αi = 0

αiB
n−1
α−edi

, αi 6= 0

D ↔ sparse matrix with at most d + 1 nonzeros per row

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

Differentiation

It’s sparse in B-form

∂

∂x
=

d+1∑
i=1

∂bi
∂x

∂

∂bi
.

∂

∂bi
Bn
α =

{
0, αi = 0

αiB
n−1
α−edi

, αi 6= 0

D ↔ sparse matrix with at most d + 1 nonzeros per row

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

Bernstein polynomials

Some history

I Approximation theory: Bernstein, quasi-interpolants, splines

I CAGD: stable and fast algorithms for curves/surfaces
I Finite element analysis?

I Peterson et. al.
I Schumaker (splines)
I NURBS - Hughes et. al.
I FEEC (Arnold, Falk, Winther)
I RCK & Ainsworth

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

Duffy transforms and tensor products

[0, 1]d → d-simplex

Define inductively:

λ0 = t1

λi = ti+1

1−
i−1∑
j=0

λj


λn = 1−

n−1∑
j=0

λj

Tensorialize Bernstein

With

x(t) =
n∑

i=0

xiλi (t),

we have

B r
α(x(t)) =

n∏
i=0

B
r−

∑i
j=0 αj

αi (ti)

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

What operations are fast?

Evaluation

Given u =
∑
|α|=n uαB

n
α,

{uα}α 7→ {u(ξq)}q ,

when {ξq}q are Stroud points.
Requires O(nd+1) and no
pre-tabulated data.

Moment computation

Given {fq = f (ξq)}q

{fq} 7→
{∫

T
fBn
αdx

}
α

requires O(nd+1) and no
pre-tabulated data.

Derivatives?

Evaluate/integrate followed by short linear combinations!

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

Optimal-complexity assembly

Constant-order work per entry

Since B r
αB

s
β =

(α+βα)
(r+s

r)
B r+s
α+β, so matrix formation

Mαβ =

∫
T
fB r
αB

s
β

just requires (plus arithmetic/bookkeeping) all moments{∫
T
fB r+s
γ dx

}
γ

,

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

The de Rham complex

FEEC (Arnold, Falk, Winther)

Basis functions for P−n Λ1: Bn−1
α φij

Basis functions for P−n Λ2: Bn−1
α φijk , where

φij = bidbj − bjdbi

φijk = bidbj ∧ dbk − bjdbi ∧ dbk + bkdλi ∧ dbj

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

Convert to Bernstein form

Short linear combination

Bn−1
α φij = biB

n−1
α dbj − bjB

n−1
α dbi

= bi
(n − 1)!

α!
bαddbj − bj

(n − 1)!

α!
bαddbi

=
(n − 1)!

α!
bα+ei
d dbj −

(n − 1)!

α!
b
α+ej
d dbi

=
αi + 1

n
Bn
α+ei

dbj −
αj + 1

n
Bn
α+ej

dbi

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

Algorithms

Conversion

I Each k-form basis function requires k + 1 Bernstein
polynomials

I Operator formation/application reuses fast
evaluation/integration kernels for Bernstein

I Optimal complexity for H(div) and H(curl).

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

But I don’t like P−n Λk!

What about PnΛk?

“Second-kind” basis functions look like:

B r
αψ

α,f ,T
σ

Shorter linear combinations, but more geometric data to load.
Won’t discuss more here.

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

1-form action and per-nonzero build time

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

2-form action and per-nonzero build time

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

Accuracy?

Maxwell cavity eigenvalue and mixed Poisson error on unit cube
meshed into six tetrahedra:

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

Weak form

Elementwise IBP∑
e

[
(uh,t ,wh)e − (F (uh),∇wh)e + 〈F̂ · n,wh〉∂e

]
= 0

Can also consider “strong DG” (Hesthaven/Warburton)

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

What does it cost?

∑
e

[
(uh,t ,wh)e − (F (uh),∇wh)e + 〈F̂ · n,wh〉∂e

]
= 0

Elementwise convection term

I Evaluate uh at QP: O(nd+1)

I Evaluate F (uh) at QP: O(nd)

I Moment calculation: O(nd+1)

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

What does it cost?

∑
e

[
(uh,t ,wh)e − (F (uh),∇wh)e + 〈F̂ · n,wh〉∂e

]
= 0

Boundary flux term

I Evaluate uh at boundary QP: O(nd)

I Riemann solve at each QP: O(nd−1)

I Boundary moment computation: O(nd).

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

What does it cost?

∑
e

[
(uh,t ,wh)e − (F (uh),∇wh)e + 〈F̂ · n,wh〉∂e

]
= 0

Mass inversion

I Cholesky: O(n3d) startup plus O(n2d) per cell

I CG (Fast matvec plus neat theorem): O(nd+2) per cell

I Need a fast algorithm, or this is the bottleneck!

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

All about the Bernstein mass matrix

Positive operators

6M1,1,1 =

(
2 1
1 2

)
,

30M1,2,2 =

 6 3 1
3 4 3
1 3 6

 ,

140M1,3,3 =


20 10 4 1
10 12 9 4
4 9 12 10
1 4 10 20

 .

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

2d mass matrices

Positive and structured

1120M2,3,3 =



20 10 10 4 4 4 1 1 1 1
10 12 6 9 6 3 4 3 2 1
10 6 12 3 6 9 1 2 3 4
4 9 3 12 6 2 10 6 3 1
4 6 6 6 8 6 4 6 6 4
4 3 9 2 6 12 1 3 6 10
1 4 1 10 4 1 20 10 4 1
1 3 2 6 6 3 10 12 9 4
1 2 3 3 6 6 4 9 12 10
1 1 4 1 4 10 1 4 10 20



Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

Fast algorithm [RCK’11]

Two facts

I Each block a (scaled) lower-dimensional mass matrix

I Blocks in a column are related by (sparse) degree elevation

Algorithmic result

I x → Md ,n,nx requires O(dnd+1) complexity rather than
O(n2d)

I Allows fast matrix-free Krylov methods.

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

Fast algorithm [RCK’11]

Two facts

I Each block a (scaled) lower-dimensional mass matrix

I Blocks in a column are related by (sparse) degree elevation

Algorithmic result

I x → Md ,n,nx requires O(dnd+1) complexity rather than
O(n2d)

I Allows fast matrix-free Krylov methods.

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

Interesting spectrum

Theorem (RCK and Kieu)

The eigenvalues of Md ,n,n are

λi ,n,d =
(n!)2

(n + d + i)! (n − i)!
, 0 ≤ i ≤ n

The multiplicity of λi ,n,d is
(d+i−1

d−1
)
.

For each λi ,n,d , the eigenspace is spanned by B-form coefficients
for Pi ⊥ Pi−1

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

How’d you get that?

The Bernstein-Durrmeyer operator

Dn(f) =
∑
|α|=n

(f ,Bn
α)

(Bn
α,B

n
α)

Bn
α

See [Derriennic85, Farouki/Goodman/Sauer83]: the spectrum of
the B-D operator is already known!

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

Fast inversion (a sketch)

Solve Mx = y in O(nd+1)

I Use “blockwise” Gaussian elimination:

mijM
d−1,n−i,n−j −

mi0m0j

m00

Md−1,n−i,n
(
Md−1,n,n

)−1
Md−1,n,n−j

,

becomes, with Bernstein magic

mijM
d−1,n−i,n−j −

mi0m0j

m00

Md−1,n−i,n−j =

(
mij −

mi0m0j

m00

)
Md−1,n−i,n−j

I “Auxilliary” matrix is scaled 1d mass matrix.

I Manipulate RHS by elevation + axpy.

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

What we’ve seen

No new discretizations

I Bernstein polynomials: new bases for old spaces

I Optimal complexity evaluation/moment/assembly algorithms
on simplices

I Gets de Rham complex, (maybe) DG right

I Can we get Hermite, splines, etc? Elliptic DG?

Robert Kirby Bernstein polynomials and finite element algorithms

Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

To-do list

Math

I Tool in other discretizations

I Stable fast mass inversion

I Preconditioning

Code

I Fine-grained parallelism: GPU/MIC/etc

I FEniCS: polyalgorithmic code generation?

Robert Kirby Bernstein polynomials and finite element algorithms

	Motivation
	Bernstein polynomials
	FEEC
	Discontinuous Galerkin
	Concluding thoughts

