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Problems for high order

Very large element matrices

Aij =

∫
K
w∇φi · ∇φj dx

Standard Tensor product

Basis size: O(nd)

Element matrix size: O(n2d)

Cost of local matvec: O(n2d) O(nd+1)
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But how do we go fast?

Tensor Products

I Sum factorization ↔ fast matvecs

I Operation count: O(n) per entry, O(nd+1) total

I Memory usage: O(nd)

Simplex?

I Collapsed-coordinates: Karniadakis & Sherwin for H1

I General elements: FIAT (RCK), FEMSTER (White, Castillo)
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Bernstein polynomials

{(
n

α

)∏
i

bαi
i

}
|α|=n
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Differentiation

It’s sparse in B-form

∂

∂x
=

d+1∑
i=1

∂bi
∂x

∂

∂bi
.

∂

∂bi
Bn
α =

{
0, αi = 0

αiB
n−1
α−edi

, αi 6= 0

D ↔ sparse matrix with at most d + 1 nonzeros per row
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Bernstein polynomials

Some history

I Approximation theory: Bernstein, quasi-interpolants, splines

I CAGD: stable and fast algorithms for curves/surfaces
I Finite element analysis?

I Peterson et. al.
I Schumaker (splines)
I NURBS - Hughes et. al.
I FEEC (Arnold, Falk, Winther)
I RCK & Ainsworth
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Duffy transforms and tensor products

[0, 1]d → d-simplex

Define inductively:

λ0 = t1

λi = ti+1

1−
i−1∑
j=0

λj


λn = 1−

n−1∑
j=0

λj

Tensorialize Bernstein

With

x(t) =
n∑

i=0

xiλi (t),

we have

B r
α(x(t)) =

n∏
i=0

B
r−

∑i
j=0 αj

αi (ti )
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What operations are fast?

Evaluation

Given u =
∑
|α|=n uαB

n
α,

{uα}α 7→ {u(ξq)}q ,

when {ξq}q are Stroud points.
Requires O(nd+1) and no
pre-tabulated data.

Moment computation

Given {fq = f (ξq)}q

{fq} 7→
{∫

T
fBn
αdx

}
α

requires O(nd+1) and no
pre-tabulated data.

Derivatives?

Evaluate/integrate followed by short linear combinations!
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Optimal-complexity assembly

Constant-order work per entry

Since B r
αB

s
β =

(α+βα )
(r+s

r )
B r+s
α+β, so matrix formation

Mαβ =

∫
T
fB r
αB

s
β

just requires (plus arithmetic/bookkeeping) all moments{∫
T
fB r+s
γ dx

}
γ

,
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The de Rham complex

FEEC (Arnold, Falk, Winther)

Basis functions for P−n Λ1: Bn−1
α φij

Basis functions for P−n Λ2: Bn−1
α φijk , where

φij = bidbj − bjdbi

φijk = bidbj ∧ dbk − bjdbi ∧ dbk + bkdλi ∧ dbj
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Convert to Bernstein form

Short linear combination

Bn−1
α φij = biB

n−1
α dbj − bjB

n−1
α dbi

= bi
(n − 1)!

α!
bαddbj − bj

(n − 1)!

α!
bαddbi

=
(n − 1)!

α!
bα+ei
d dbj −

(n − 1)!

α!
b
α+ej
d dbi

=
αi + 1

n
Bn
α+ei

dbj −
αj + 1

n
Bn
α+ej

dbi
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Algorithms

Conversion

I Each k-form basis function requires k + 1 Bernstein
polynomials

I Operator formation/application reuses fast
evaluation/integration kernels for Bernstein

I Optimal complexity for H(div) and H(curl).
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But I don’t like P−n Λk!

What about PnΛk?

“Second-kind” basis functions look like:

B r
αψ

α,f ,T
σ

Shorter linear combinations, but more geometric data to load.
Won’t discuss more here.
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1-form action and per-nonzero build time
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2-form action and per-nonzero build time
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Accuracy?

Maxwell cavity eigenvalue and mixed Poisson error on unit cube
meshed into six tetrahedra:
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Weak form

Elementwise IBP∑
e

[
(uh,t ,wh)e − (F (uh),∇wh)e + 〈F̂ · n,wh〉∂e

]
= 0

Can also consider “strong DG” (Hesthaven/Warburton)
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What does it cost?

∑
e

[
(uh,t ,wh)e − (F (uh),∇wh)e + 〈F̂ · n,wh〉∂e

]
= 0

Elementwise convection term

I Evaluate uh at QP: O(nd+1)

I Evaluate F (uh) at QP: O(nd)

I Moment calculation: O(nd+1)

Robert Kirby Bernstein polynomials and finite element algorithms



Motivation
Bernstein polynomials

FEEC
Discontinuous Galerkin

Concluding thoughts

What does it cost?

∑
e

[
(uh,t ,wh)e − (F (uh),∇wh)e + 〈F̂ · n,wh〉∂e

]
= 0

Boundary flux term

I Evaluate uh at boundary QP: O(nd)

I Riemann solve at each QP: O(nd−1)

I Boundary moment computation: O(nd).
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What does it cost?

∑
e

[
(uh,t ,wh)e − (F (uh),∇wh)e + 〈F̂ · n,wh〉∂e

]
= 0

Mass inversion

I Cholesky: O(n3d) startup plus O(n2d) per cell

I CG (Fast matvec plus neat theorem): O(nd+2) per cell

I Need a fast algorithm, or this is the bottleneck!
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All about the Bernstein mass matrix

Positive operators

6M1,1,1 =

(
2 1
1 2

)
,

30M1,2,2 =

 6 3 1
3 4 3
1 3 6

 ,

140M1,3,3 =


20 10 4 1
10 12 9 4
4 9 12 10
1 4 10 20

 .
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2d mass matrices

Positive and structured

1120M2,3,3 =



20 10 10 4 4 4 1 1 1 1
10 12 6 9 6 3 4 3 2 1
10 6 12 3 6 9 1 2 3 4
4 9 3 12 6 2 10 6 3 1
4 6 6 6 8 6 4 6 6 4
4 3 9 2 6 12 1 3 6 10
1 4 1 10 4 1 20 10 4 1
1 3 2 6 6 3 10 12 9 4
1 2 3 3 6 6 4 9 12 10
1 1 4 1 4 10 1 4 10 20


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Fast algorithm [RCK’11]

Two facts

I Each block a (scaled) lower-dimensional mass matrix

I Blocks in a column are related by (sparse) degree elevation

Algorithmic result

I x → Md ,n,nx requires O(dnd+1) complexity rather than
O(n2d)

I Allows fast matrix-free Krylov methods.
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Interesting spectrum

Theorem (RCK and Kieu)

The eigenvalues of Md ,n,n are

λi ,n,d =
(n!)2

(n + d + i)! (n − i)!
, 0 ≤ i ≤ n

The multiplicity of λi ,n,d is
(d+i−1

d−1
)
.

For each λi ,n,d , the eigenspace is spanned by B-form coefficients
for Pi ⊥ Pi−1
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How’d you get that?

The Bernstein-Durrmeyer operator

Dn(f ) =
∑
|α|=n

(f ,Bn
α)

(Bn
α,B

n
α)

Bn
α

See [Derriennic85, Farouki/Goodman/Sauer83]: the spectrum of
the B-D operator is already known!
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Fast inversion (a sketch)

Solve Mx = y in O(nd+1)

I Use “blockwise” Gaussian elimination:

mijM
d−1,n−i,n−j −

mi0m0j

m00

Md−1,n−i,n
(
Md−1,n,n

)−1
Md−1,n,n−j

,

becomes, with Bernstein magic

mijM
d−1,n−i,n−j −

mi0m0j

m00

Md−1,n−i,n−j =

(
mij −

mi0m0j

m00

)
Md−1,n−i,n−j

I “Auxilliary” matrix is scaled 1d mass matrix.

I Manipulate RHS by elevation + axpy.
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What we’ve seen

No new discretizations

I Bernstein polynomials: new bases for old spaces

I Optimal complexity evaluation/moment/assembly algorithms
on simplices

I Gets de Rham complex, (maybe) DG right

I Can we get Hermite, splines, etc? Elliptic DG?
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To-do list

Math

I Tool in other discretizations

I Stable fast mass inversion

I Preconditioning

Code

I Fine-grained parallelism: GPU/MIC/etc

I FEniCS: polyalgorithmic code generation?
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