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e D. Mitsoudis (Athens), P. Rosakis (Crete) [A/C coupling: MultiD]
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Plan of the talk

e Part | : General discussion

e numerical modeling-sensitivity of schemes
e model adaptivity

e Part Il : Atomistic to continuum passage: Consistency of
Cauchy-Born Approximations

e Part lll: Atomistic/continuum coupling : design of ghost force free
methods



Self adapted methods: smart use of computational resources

For a given number of degrees of freedom Nx, we seek
approximations u . (t) such that

® un.(t) is much better approximation than
® U N« uniform (t)
Key issues:

e the algorithm should be able to detect the areas of interest
of the solution

e Goal: design of intelligent algorithms able to adapt to the
“solution” during computation



Self adapted methods: Mesh Adaptation




Self adapted methods: adaptive modeling

What about if we are not happy with our model?

change the model during the computation: Use different models in different
areas of the computational domain / multiscale - complex systems

models coupling information at different scales.

WHY?

e reduce the prohibitively high number of degrees of freedom
e not known models at the macroscale

We face new problems for numerical modeling where modelling, analysis,

computations should be combined.
We focus on an important such class of problems: atomistic - continuum

coupling in crystals.



An example where continuum theory fails to provide satisfactory
models: Crack propagation in Crystals

e Valid model only at the microscopic (atomistic) scale.

e There is no (nonlinear) PDE which serves as an acceptable model (at
the macro scale) (!)

e Direct atomistic simulations: Extremely high number of unknowns



Modeling and adaptivity: coupled atomistic / continuum models

e Aim: design of computational methods, based on hybrid (atomistic-
continuous) approximations, for both stationary and evolution problems.
Goal: Computation with atomistic accuracy at the cost of continuous
computational techniques.



Crystals in Materials

Ortiz et. all. 2003



The quasi-continuum idea (atomistic/continuum

coupling) seems natural Tadmor, Ortiz & Phillips 1996 compare to the work
in multiscale modeling of materials, e.g., Lu & Kaxiras: Review article 2005.

Several works in the engineering literature.
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Figure 6. Example of a multiscale si using the
model dislocation-grain boundary interaction. The surface marked AB s rigidly indented to generate dislocations

at A (distance in Amstroms). (b) Snapshots of atomic positions at different stages in the deformation history.
Absorption of the first pair of dislocations at the GB results in a step, while the second pair form a pileup.

Figure: Lu & Kaxiras 2005



Mathematical understanding and method development: Current
status and open problems

e The formulation and behavior of such methods has been understood to
a satisfactory extend in one dimension. Luskin, et al, Dobson, Luskin &
Ortner, Ortner & Slili,

Ming & E, Abdulle, Lin & Shapeev, Gunzburger & Zhang, ....

e Ongoing work by several groups: The foundation and analysis of
methods of quasicontinuum character in two and three dimensions.

e Time-dependent case: Models are used for the qualitative study of the
propagation of face change interfaces as well as crystal dislocations
arising in crystal grids. The evolution problem is of particular interest
but it still remains unaccessible even at the engineering level.

A basic technical issue: The existence of traveling waves of kink type
(transition from one well to another) corresponding to moving
dislocations under external pressure: Mathematical issues:
nonclassical/dispersive shocks, oscillations, dispersive approximations,
reflections at the interfaces



Atomistic problems in crystalline materials

e The atoms within a undeformed crystalline structure are assumed to be
nodes of an R? rectangular lattice.

e The (closest) interatomic distance is denoted by ¢ (lattice mesh size).

e The energy of a deformed crystal is described through given potentials
accounting for interactions between atoms. (a highly nonlinear function
involving “discrete derivatives”)

e Atomistic problem: energy minimisation problem (Euler-Largange
equations: “nonlinear difference equation”)



Notation

Lattice, discrete domain, continuous domain: We consider a simple two
dimensional lattice which is generated by two independent vectors of R?.
For simplicitywe will assume that the lattice Lenire is generated by the the unit
vectors of R?, e, es.
We will consider discrete periodic functions on Lentire With periodic domain L.
To be specific let

L= {162 ([1,€2) 6220 [7N1 71,N1] X [7N2 71,N2}}.

The actual configuration of the atoms is thus a subset of R* which we call
discrete domain and we denote by Qgiser. The corresponding continuous
domain is denoted by Q2 :

Qgiser = {l‘l = (Iel 71‘22) = e/, KGL‘,},

Q= {x € [x*lelvaJ X [m*szthQ]}ov



Functions and spaces: We consider atomistic deformations

ye =y(xze), £€ L oftheform
ye = Faxy +ve, with vy = v(x,) periodic with respect to £ .

The corresponding spaces for y and v are denoted by X and V :

X={y: LR’ yo=Fai+uv, wveV},
V={u:L—>R* wu =u(x,) periodic with respectto L} .

For functions y,v : £ — R? we define the product

(9,0). =Y yeve.

LEL



Discrete and continuous derivatives:

Doye = w 6, L+neL,
000 = 2t o (g6,
Ved(0) = {0640} .

Vu(z) = %(:)}m.

To avoid confusion we distinguish between derivatives with respect to
arguments—denoted by d.,—which usually appear in composite functions
and derivatives with respect to the spatial variable xz; and denoted by 9, .



Atomistic and Cauchy Born potential:
We consider the atomistic potential

‘I)a Z Z ¢n n?JZ

el neR
where R is the set of interaction vectors.

Tetn

Tetnzey

Ttes

T Totey Letnrer

For a given field of external forces f : £ — R? the atomistic problem reads:
find a local minimizer y“ in X of :
o (y) — (f,y"). .
If such a minimizer exists, then
(DO (y*),v). = (f,v)_, forallv e V.

(DO (y),v Z Z Vedn (Dyye) - Dyvg .

leL mMmeER

Here,



Reverse point of view:

e The atomistic problem is the exact problem (discrete difference scheme)
e Aim: find a continuum approximation (a PDE) to the atomistic model



A continuum model for smooth deformations: Cauchy Born
approximation

The corresponding Cauchy-Born stored energy function is

W(F) =Wep(F) = ¢, (Fn),

neR
find a local minimizer 4y in X of :
2 () ~ (10" = [ W)~ (1,4°7).
Here ’
X={y:y: Q>R y&)=Fr+v(z), veV},

V={u:Q—>R’ uweW"”(QR)NW,PQR?), /uda::O}.
Q



If such a minimizer exists, then
D) 0) = [ SulTu@) O’ @) ds = (fi0), ve V.
Q
The stress tensor is defined through
OW (F) }
8Fz‘a [Xe ’

A simple calculation yields the relation between the stress tensor and the
atomistic potential,

‘ 76W(F)7 0
Sia =g —8Fm;%¢n(Fn)
n

SE=

0 1o}
=or Z ¢n (Fipmp) = Z 9¢;dn (Fjp Wﬂ)ijﬂ ns

neER neR

:Z 8Ci¢ﬂ (F77) Na -

neR



Remarks on the relation between the atomistic and continuum
CB models

e The continuum model approximates the atomistic only when
deformations are sufficiently smooth. X. Blanc, C.LeBris & PL. Lions
2002 and W. E. & P. Ming 2008
See also: G. Friesecke & F. Theil 2002

e results based on different notions of consistency

® Key issues:

o The interaction potential is non-convex: e.g. ¢,(r) = V (|r|),
V the Lennard-Jones-Potential:

e Long range interactions vs. interactions only of next
neighbors (only adjacent atoms interact)



One dimensional example.

e The simplest model:

y) = EZ Z ér (Drye) = 62 ¢1 (D1ye) + ¢2 (Daye) -

EeEL r=1 el

Then the corresponding Cauchy-Born stored energy function is
W (F) = Wep(F) = Z ¢r (Fr) = ¢1 (F) + ¢2 (2F).

Then the atomistic Cauchy-Born model is defined through the atomistic
potential:

®"P(y) =Y W (Diye) = Y _ ¢1 (Drye) + ¢2 (2Drye)
EEL EeL

The continuous potential is defined through

d°B(y) = | W(/ (z))dz
) / ()



e 1D results / Consistency error on potentials (energies) periodicity +
symmetry — O(e?)

e Standard coupling (coupling of energies)): O(g)

¢ Main Computational Problem: ad-hoc coupling — Ghost
Forces

o Why?

e Other couplings / other consistency notions Methods with ghost forces
are energy consistent

e Can we design Ghost-Force-Free methods?

e Force based coupling Dobson & Luskin 2008: Ghost-Force-Free / not
energy based.



To understand better we need to go back to the uncoupled
problem.

e We need a sharp analysis on the approximation properties
of the continuum model

e Consistency analysis:
e Variational Consistency:
Cv(y) = sup { (DD (y),v), — (DB (y),v) :
veY with ||’U||W1,p(Q) =1 },
where in the last relation y is any smooth function. We we

shall refer to Cy (y) as the variational consistency error.
o Energy Consistency error

Ce(y) = |2%(y) — 2P (y)|.



Construction of an atomistic Cauchy-Born model in MultiD

e We provide a link of the continuous model to the atomistic model by
introducing an intermediate model which we call atomistic Cauchy-Born
model (A-CB) .

e To construct this model we start from the continuous model and perform
appropriate approximate steps yielding finally the A-CB model. [Key :
Link to Finite Elements]

e The final model has variational consistency error of the order O(e?)
compared to the continuous Cauchy-Born.

e We show that the A-CB has O(e?) variational consistency error
compared to the original atomistic model.

Bilinear Finite Elements on the Lattice: Let V) be the space of bilinear
periodic functions on the Lattice £ . To be specific let

T={KCQ: K= (@q,%e+1) X (Tey,Teo+1), Te = (T, ,Te,) € Qaiser}
Vi={v:Q—=R> veCQ), vlx €Qi(K) and v, = v(x,) periodic},

where Q1 (K) denotes the set of bilinear functions on K :
v () = ao + 121 + @22 + azrizs .



The atomistic Cauchy-Born model :

Definition of the model.
We define the average discrete derivatives as follows:

ol

e1Ve = % {Eelvé +ﬁelvﬁ+eg} y

S|

1 (— _
ex Ut = 5 {Degvl aF Degvl+el} .
Thus we can define the discrete gradient matrix as
{?’U[} ) = fea ’Uz 5
We introduce the atomistic potential

2" Py) ="y Y ¢y (Vyen)

LeL nER

= Ed Z Wcs(vyg) .

Lel



Now, for a given field of external forces f : £ — R¢ the atomistic
Cauchy-Born problem reads:

find a local minimizer y*“* in X of :
: CB
By E) — (f,y%). .

If such a minimizer exists, then

(D@a’CB(ya’CB),@s = (f,v),, forallveV.



Theorem. (ENERGY CONSISTENCY.) Let y be a smooth function. Then the
atomistic energy ®“(y) is is a second order approximation of the continuum
Cauchy-Born energy ®“2(y) in the sense that there exists a constant

Mg = Mu(y),

o) - 2“2 (w)| < Me<®

Sketch of the Proof: We start from the continuum Cauchy-Born energy

d°E (y /WCB (Vy(z))de = Z/ Wes(Vy(z)) do

KeT

—Z|K|WCB Vy(mxk)) +Z/ Wen(Vy( ))*WCB(Vy(mK))}d‘T

KeT KeT
=:0LL+1

where mx is the barycenter of K. Using Bramble-Hilbert Lemma we get
|| < C(y)e?

We will compare I to the atomistic energy ®°(y).



Since my is the barycenter of K the key point here is to rearrange the terms
in ®°(y) in order to create symmetries around the cell K. In fact, using the
periodicity, we have

®(y) =* Y > éu (Do)

teL mMmER

=€ Z Z |: ”Iyz +¢77( nYe—(n1— 161)+¢77( nYe—(nay— 1)62)

teL meER

+¢77( nYt—(n1—1)e1—(n2— 1)62)]‘



Comparison of atomistic Cauchy-Born and atomistic models:
Atomistic stresses

To compare the atomistic and atomistic Cauchy-Born models we start from
the atomistic potential and notice:

(DB (y),v), =" Y Ve, (Dyye) - Dyve

leL meER
1 1—
=€ Z Z Vo ( nye : {5 nei Ve + §Dn161v€+n262}
LeL meER
1 1—
Z Z V<¢n nyl : {5 n2ea Ve + §Dnzezw+mel}
LeL mMmER

To4n

Te—miey Ty Lotey



Due to the periodicity,

(D2 (y e =€ Z Z Ve ( nyi EnW

leL nmeER
1
:5(12 Z {§VC¢W( nye) + 5 Vc%( nYe— 77262)} - Dyeyve
el meR
1 — 1 —
r e Z Z {§VC¢7] (Dyye) + §VC¢W (DnYe—nyes) } “ Dygepve .
el meR
Since, o - -
Dnlelvé = Del'UZ qFoooaF D81U€+(7}1—1)el )
ﬁngegvl = ESQUZ AFoooaF 562v2+(7]2—1)€2 )
we conclude
(D2 (y),v),

1 —1

=& Z Z Z { VC¢7I 7]?” k81)+ v§¢77( nYt—kes— 7]252)} - D

e1 Ve
LeL nER k=0

n2—1

+e Z Z Z { Ve ( TIW kes) T V€¢U( nYl—kez— 17161)} * Deyvg .

LeL meR k=0



we can show

Theorem (VARIATIONAL CONSISTENCY) Let y be a smooth function; then, for
any v € Vy, the continuum Cauchy—Born variation (D®“Z(y),v) is a
second-order approximation to the atomistic variation (D®*(y), v)_ in the
sense that there exist a constant My = My (y,p), 1 < p < oo, independent
of v, such that

(D87 (1), ) — (D2"(y), ). | < My & olwinga-

In addition, there exists a constant M;, = My, (y, p), 1 < p < oo, independent
of v, such that

'<Dq)a,CB(y)7U>s . (D@a(y)ﬂ})s’ < M{/ &2 |U|W1,p(Q).



Remarks

e Comparison with the results of X. Blanc, C.LeBris & PL. Lions 2002 and
W. E. & P Ming 2008, and the recent result of Ortner & Theil 2013

Definitions of QC methods in 2 and 3D via the atomistic CB model

Analysis of QC methods in 2 and 3D as well as of models accounting
for surface energy, cf. Recent work by Phoebus Rosakis.

Extensions: a) AC models based on triangular and tetrahedral meshes,
b) multibody potentials



Towards the construction of ghost free methods in multi-D

What is a ghost-force free coupling?
e The energy & is said to be free of ghost forces, if
<D5(yF)7U>:O7 yF(.T):FQZ,

for all appropriate variations v: Q@ N L — R? such that v, = 0 outside a
compact set.

e Ad-hoc coupling of energies leads to ghost forces... “energy consistent”
coupling may still lead to ghost forces

e Dynamic problem (!!!)



State of the art

1D & 2D : Energy based couplings free of ghost forces have been
constructed recently.
3D : Next

e 1D :Li & Luskin 2011 and Shapeev 2011
e 2D : Shapeev 2011

e Other works (mainly special cases) : Belytschko et. al. 2002,
Shimokawa et. al. 2004, W. E, J. Lu, & J. Yang 2006, Ortner & Zhang
2011, Shapeev 2011(3D)



Towards the construction of ghost free methods in multi-D:
Notation

Let 2, Q, and Q. each be the interior of the closure of the union of lattice
cells K € 7o and connected, and suppose

Q=0,UQ, T'=0Q,n00.
Here I is the interface.

e Fixn € R and define the bond b, = {z € R?: & = x, +tem, 0 < t < 1}.
The set of all bonds 5, is defined as consists of all b = b, for £ € L.



The approach of A. Shapeev

e Work with each bond separately
e Represent long-range differences as line integrals over bonds:

][Vyn— nYe
by

e In two space dimensions was then possible to transform the assembly
of line integrals over all possible interactions into an area integral
through a counting argument known as bond density lemma
Lemma (Shapeev) Let S be a set consisting of unions of triangles
T € Tr. Then for any fixed € R the following identity holds:

$ ][ xs dr = |5].
beB,

e Limitations: Lemma valid only in 2D; the construction works only on
piecewise linears over triangles.



Towards the construction of ghost free methods in multi-D:

A bond volume approach

e Represent long-range differences as volume integrals over bond
volumes

e Construction of an underlined globally continuous function representing
the coupled modeling method

e Work in two phases: first use in the continuum region appropriate
atomistic Cauchy-Born models

e Subsequently: Use in the continuum region finite elements of arbitrary
high order

e Possibility of using discontinuous finite elements
e Work in both 2 and 3D.



Finite elements for elliptic problems: methods without ghost
forces: consistent discretisations

For a finite element function with support in the interior of the domain ©
(ignore boundary effects)

()0 =(Vyr, Vv) :F/ Vvdz, yr(z) = Fz.
Q

Relation to ‘patch test consistency”/ nonconforming methods.



Energy free of ghost forces: what we want to prove

For a fixed n we have

()0 =(DE,(ye), ) =d,(Fn)- {3 Dywe+ / Vo () d
LeL
By, ,CQa

+ Z |7]1772‘/ Qavvanndx}

EL
By, n€Br

— ¢(Fn) - / VW (@) da(?)



2D: bond volumes and long range differences

We construct methods based on bond volumes instead of bonds. For fixed
n € R bond volume By, , is the interior of a parallelogram with diagonal b,
ie.,

By, , is the open quadrilateral with vertices ¢, ein,e1, Totnzens Lot -

Lemma
Letv € Q1(Be, ). Then

— 1
2 Dyvg = —— / Vou(z)ndz .
By

T+

Tetmaes

Teten

ke Tete; Totnyey



2D: bond volumes and energies

The method is designed with respect to bond volumes By, ,,. In particular, we
consider three cases determined by the location of each bond volume B, ,,

a. The closure of the bond volume is contained in the atomistic region:
Bg,n C Qg

b. The bond volume is contained in the region Q. : B, C Q.

c. We denote by Br the set of bond volumes which do not satisfy a) or b).
In fact Be, , € Br if the bond volume intersects the interface:
Bi,NT #£Porif Be,y CQand By, NT # 0

For a fixed 7, the contribution to the energy corresponding to a) is

Eg, niy} = & Z qbn(ﬁnyi) .
el
By, nCQa

The contribution to the energy from the atomistic CB region will be

EGS {y} = /cbn (Vy(z)n)dz



2D: energies on the interface

For each bond volume intersecting the interface we denote by y“" a
continuous piecewise polynomial function on an appropriate decomposition
T (Bg,r) of Be, ,. satisfying
(e) only requirement: conforming glue of 7 (B, ,) with the neighbor bond
volumes.

Bl,n
xp I
Corresponding energy:
1
Br,{y}= Y 7/ Xa, $n(Vy"") d .
Imnz| Jp
er £, m

By, n€Br



Total energy

the total energy is defined through
Ennfy} =) Enfy}
neRr

where
Enly} = Ed, o{y} + BS {y} + Er oy}

Tpgn

Totn

x4 T

Figure - Alternative decompositions 7 (B, ,,) of B, ,, for two different bonds.

Energy free of ghost forces



Energy free of ghost forces: Idea of the proof

First we fix n and we consider decompositions consisting of bond volumes
which cover R? :

g, = {Ben: ) BenNBiy=0,i0#j, (i)R*=UBe, },

m =1,...,|mnz|. The number of different such coverings is |n172| , hence
the numbering m,m =1, ..., |nin2|. Notice that bond volumes corresponding
to different m may overlap, but within a single Sg! its elements consist a
decomposition of non-overlapping bond volumes.

"
Sk,

)
Sk,

Figure : Two different coverings Sj; and S}g’n



Energy free of ghost forces: Idea of the proof I

For a fixed n we have

(10 =(DE(ye)v) =6y(Fm) - {2 3 Dyuu+ / Vo(zynds

teL
By, ,CQ
+ Xo. VU ndx
ZZ |"71772\ / e }
ec
By, n€Br

The main idea of the proof is to write the above sum as

Z an—i—/ Vo(z)nds + Z |771772‘ xn Vot da

LeLl el
By, ,CQ% Bg, n€Br

1 [m1m2|
= vol™ (z)n dx
7172 mz;: /Q )

where o™ m =1,... nin. are appropriate conforming functions (in H'(9))
each one associated to a different covering Sp: consisting of bond volumes.



Energy free of ghost forces: Idea of the proof I

For a fixed n we have

()0 =(DEn(ye),v) =ty(Fn) - {2 3 Dyvet / To(z)n d

el
By, nCQa
> / X V9" do}
— |m772\
By, n€Br

The main idea of the proof is to write the above sum as

Yynda+ | Vo dr + Vot dz
mr/z\/ ] / (z)n Z Imnzl/ Xay, n

ZEE Q2.
Be nCQa By, nEBF
[m17m2]
vol™ (z)n dx
|?71772| Z /
where o™ m =1,.. ., |mim2| are appropriate conforming functions (in

H'(Q)) each one associated to a different covering SE,, consisting of bond
volumes.



Litey

-T{Jrc\ﬁzs

Ll4ey+eatey

Te+ey

Te+ert+es

Construction in 3 D: We need to work with tetrahedra

Titestes

Litey

FIgU '€ © A type A decomposition of the cell K, into six tetrahedra.



Construction in 3 D: Atomistic CB model in tetrahedra

Tr={T Cc Q: T is atetrahedron whose vertices are lattice vertices of
Ko, 2o € Qdisor}s

Vir={v:Q—=R* wveC(Q)), v|lr € P (T)
and vy = v(z¢) periodic with respect to L},

R OES 6 Z Z Z on (V) = @ Z Z Wen(Vy).

LeL TeK,(T)neR LeL TEK,(T)



Construction in 3 D: A key result

Figure : A bond volume By, ,, and its type A decomposition into six
tetrahedra.

Lemma
Let v be a piecewise linear and continuous function on a type A
decomposition of the bond volume By, ,, into tetrahedra. Then

53— 1

e Dpvy = ——— Vou(x)nde .
nve |7]17]2773| Be., ()/'7



Construction in 3 D: Proof

We have,
1 1
—_— Vou(z)nde = ——— vv-nds
1 M2 M3 M1 M2 M3
Be,n 9By, q
3
1
B——— E { (=mi)vds + mvdS},
m M2 13
il 9By, p(—e;) 9By p(e;)

where 9By (e;) is the face of By ,, with outward unit normal e; . Therefore, if 7 is a triangle on a face:

3
7|
nivds = T n; v(25),

T j=1

. . . ) 2
where z; are the vertices of 7. Since T is one of the two triangles of 9By (1), | 7| n: = 5~ m1 m2 n3. Hence,

2
1 g2 _
_— n;vds = — E {v(z]-)+2'u(zj')}.
71 M2 N3 6
0By, p(es) j=1

We notice that ¢, ,, is a shared vertex at each 9By, ,,(e;), while x is a shared vertex at each 9B, _, (—e;),
foralli = 1,2, 3.

1
_— Vou(z) - nde = 2 (W+n - ve),
1 M2 M3
Ben



Construction in 3 D: Sensitivity on the type of decomposition

Decomposition into 5 tetrahedra, one of them without faces on the boundary

The result is sensitive to the particular decomposition of the bond volume
By, ,, into tetrahedra.



Construction in 3 D: Energy on interface

BLW

Figure : A possible decomposition 7 (B, ) of By, .

1 ¢
E = Vy©"n)dz .
iy} E o /Bl n Xa, P (Vy~"n)

LeL
By, n€Br



Construction in 3 D: The method is consistent

The energy is free of ghost forces, in the sense that

(D& (yr),v) =0, yr(z)=TFz,



Construction in 3 D: Alternative construction: discontinuous on T’

1
ER{y}= Y ?71772173[/3 Xa, on(Vy""n) dz

el Z,n
By, n€Br

- [ saviapas).
By ,NT



Remarks

e The first systematic approach in the literature that leads to ghost force
free couplings in dimensions 1, 2 and 3 and for all interatomic potentials
of finite range. In particular:

e The method allows to replace atomistic CB models by any
high-order finite element discretization of the continuum energy.
The new method is still consistent.

e The discontinuous method is very flexible:

e [t allows the introduction of penalty-type stabilisation terms,
e |t allows DG finite element discretisations of the continuum
energy.

e There are several alternative ways to treat the interface and its
discretisation.



Remarks Il

e Finite elements, and modern numerical analysis in general, provide a
very valuable toolbox to address subtle modelling issues.

e Several exciting open problems related to physical phenomena are
described by discrete models at micro scales.



thank you !



