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Outline

1 The construction of an MFD method:

- meshes;

degrees of freedom;
approximation of the bilinear form;
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- meshes;

- degrees of freedom;

- approximation of the bilinear form;
- approximation of the loading term.

2. Consistency condition and degrees of freedom:

- the conforming MFD formulation;
- the non-conforming MFD formulation.

3. Building a bridge with VEM.

4. Convergence results and numerical experiments.
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The linear diffusion problem

o Differential formulation:

—div(KVu) =f in Q,
u=g onl,

(this talk: constant K)

S. D. Poisson
(1771-1840)
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The linear diffusion problem

o Differential formulation:

—div(KVu) =f in Q,
u=g onl,

(this talk: constant K)

S. D. Poisson
(1771-1840)

e Variational formulation:

Find u € Hy(Q) such that:

/KVu-VvdV:/fvdV Yv e H)(Q),
Q Q
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Scheme construction in five steps
Steps 1 and 2

1. We decompose Q2 into a mesh Q2 of polygons (2-D) or polyhedrons
(3-D);

- admissible meshes may contain "crazy” cells (non-convex,
"singular” as in AMR);

- we need some regularity assumptions to avoid pathological cases
and perform the convergence analysis;
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Scheme construction in five steps
Steps 1 and 2

1. We decompose 2 into a mesh Q4 of polygons (2-D) or polyhedrons
(3-D);

- admissible meshes may contain "crazy” cells (non-convex,
"singular” as in AMR);

- we need some regularity assumptions to avoid pathological cases
and perform the convergence analysis;

2. degrees of freedom: V),
uveH(QNC*(Q) — UnVh€Vs  numbers!

(with o > 0).
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Scheme construction in five steps
Steps 3 and 4
3. bilinear form: Ax(-,-) : Vp x Vs = R
Ap(Up, vp) z/KVqudV,
Q

it is built by “mimicking” a fundamental relation of calculus
(integration by parts);
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Scheme construction in five steps
Steps 3 and 4
3. bilinear form: Ax(-,-) : Vp x Vs = R
Ap(Up, vp) z/KVqudV,
Q

it is built by “mimicking” a fundamental relation of calculus
(integration by parts);

4. linear functional: (f,-), : Vs = R

f vh / fvdV.
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MFD construction in five steps
Step 5

5. The variational formulation

Find u € H}(Q) such that:

/KVU-VvdV:/ fvdV  VYve HI(Q),
Q Q
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MFD construction in five steps
Step 5

5. The variational formulation
Find u € H}(Q) such that:
/ KVu-VvdV = / fvdV  VYve HI(Q),
Q Q
becomes the “mimetic variational” formulation:

Find up € V4 such that:

.Ah(Uh, Vh) = (f, Vh)h Vv € Vh,O-
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Meshes: why polygonal/polyhedral?

@ The meshes should be easily adaptable to the geometric characteristics
of the domain, but also to the solution:

\{

non-conforming meshes (hanging nodes);

v

(local) adaptive refinements (AMR);

v

highly deformed cells;

v

non-convex cells;

v

curved faces;

@ Growing interest to use them in scientific applications and commercial
codes, SINTEF, CD-ADAPCO, ANSYS;
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Meshes: academic examples

Examples: convex and non-convex polygonal cells




Meshes: academic examples

Examples: randomized quads and Adaptive Mesh Refinements (AMR)
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Meshes: academic examples

Examples: locally refined, prismatic and random hexahedral meshes

I I I |

G. Manzini Nonconforming MFD methods



Construction of Ap(up, vh)

o Ap(Un, vs) must be
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Construction of A (up, Vi)

o Ap(Un, vs) must be

e symmetric, bounded and semi-positive;
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Construction of Ap(up, vh)

o Ap(Un, vs) must be

e symmetric, bounded and semi-positive;

¢ locally defined through an assembly process (like FEM):

Anp(up, v) = Z Anp(Unp, Vhp)
P

where upp = Unjp, Vhp = Vhp;
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Construction of A (up, Vi)

o Ap(Un, vs) must be

e symmetric, bounded and semi-positive;

¢ locally defined through an assembly process (like FEM):

Anp(up, v) = Z Anp(Unp, Vhp)
P

where upp = Unjp, Vhp = Vhp;

e Any App(Unp, vhp) must be a local approximation:

VP e Qp - ./‘thD(UhJD7 Vhyp) ~ / KVu-vvdV.
P
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Construction of Ap(up, v4): consistency and stability

@ PROBLEM: in MFD we do not have an approximation space (as in FEM,
DG, VEM, etc). .. only degrees of freedom!
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Construction of Ap(up, v4): consistency and stability

@ PROBLEM: in MFD we do not have an approximation space (as in FEM,
DG, VEM, etc)...only degrees of freedom!

@ Consistency: exactness property on polynomials — accuracy
Let u,v € Px(P), Unp, Vi p their dofs:

Anpp(Unp, Vhp) = /PKVU-VV dv.

@ Stability: well-posedness property — continuity and coercivity
There exist two constants o, o* such that

ol [VaplF np < Anp(Vap, Vap) < o*[[Vapl hp

(for some suitable norm || - ||1,»p Which mimics the energy norm on P)
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Low order: towards a local consistency condition

The low-order setting, m=1,d =2

Let K be constant on P. We integrate by parts on the polygonal cell P.

@ IF uis alinear polynomialon P — KVu is a constant vector;

THEN
/KVU vvdV = — /d|v (KVu)vdV+ > KVu-np,e /vdS
ecop ——~—— Je
constant

equal to zero!

THUS,

/KVu VvdV=> Kvu- npe/vds

ecoP
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The local consistency condition: two options

The low-order setting, m=1,d =2

1. we use a numerical integration rule on each edge e = (V', V"),
we require the exactness for linear polynomials:

3" KVu-ee [vaS~ 3 KVu-mpg fo) V)T VX,
e 2
ecoP ecoP
trapezoidal rule
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The local consistency condition: two options

The low-order setting, m=1,d =2

1. we use a numerical integration rule on each edge e = (V', V"),
we require the exactness for linear polynomials:

3 KVu-np,e/vds S KU np g o] YY) L V).

2
ecoP ecdP
trapezoidal rule

2. we introduce the 0-th order moment of v as a degree of freedom:

> Kvu- npe/vdS > KVu-npgle| e o(v)

ecdP ecoP

where: i
teo(v) = E/evdS.
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1. Conforming mimetic discretization
The low-order setting, m=1,d =2

1. According to
V(Xy) + V(Xyr)
Z KVu~np,e/vdS Z KVu-npele| ——a—
ecoP ecoP
we require that
W + Wy
Anp(Unp, Vhp) Z KVu-npgle| —5
ecoP

when

» Upp is a discrete representation of the linear polynomial u on P;
» W, W are the degrees of freedom of vy, p at v/, v".

The dofs represent the vertex values of uxp, vy p
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2. Non-conforming mimetic discretization
The low-order setting, m=1,d =2

2. As |e| e o(v) = [, vdS, and according to:

Z KVu-np’e/vdS Z KVu-npelel peo(Vv)

ecoP ecoP

we require that

Anp (Unp, Vhp) = Z KVu-npele| veo
ecoP

when

» upp is a discrete representation of the linear polynomial u on P;

> Ve is the degree of freedom of v, p associated with edge e.

The dofs represent the zero-th order moments of uyp, V4 p
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Algebraic consistency: matrices N and R

Low order setting, m=1,d =2

@ basis of P;(P) = {1, (x — Xp), (y—yp)} = {uy, U, U3}
( (xp, yp) is the barycenter of P)
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Algebraic consistency: matrices N and R

Low order setting, m=1,d =2
@ basis of P{(P) = {1, (x — xp), (y—yp)} = {u1, U, Ug}
( (xp, yp) is the barycenter of P)

@ matrix N: degrees of freedom of the polynomial basis:
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Algebraic consistency: matrices N and R

Low order setting, m=1,d =2
@ basis of P¢(P) = {1, (x — xp), (y—yp)} = {uy, U, U3}
( (xp, yp) is the barycenter of P)
@ matrix N: degrees of freedom of the polynomial basis:

T (a—xe) (11— )p) o

o 1 (X2_.XP) (Y2—.YP)

1 (m— ) (Ym— o)
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Algebraic consistency: matrices N and R

Low order setting, m=1,d =2
@ basis of P¢(P) = {1, (x — xp), (y—yp)} = {uy, U, U3}
( (xp, yp) is the barycenter of P)
@ matrix N: degrees of freedom of the polynomial basis:

1T (x1—xe) (y1—yp)

o | 1 Gemxe) (- ) m 3

1 (m—6) (Vm— o) 2
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Algebraic consistency: matrices N and R

Low order setting, m=1,d =2

@ basis of P{(P) = {1, (x — xp), (y—yp)} = {u1, U, U3}
( (xp, yp) is the barycenter of P)

@ matrix N: degrees of freedom of the polynomial basis:

T (xi—xp) (V1 —yp)
N 1 (e—xe) (Y2—yp)

1 (Xm—xe) (Ym—Yyp)

Nonconforming MFD methods

G. Manzini

Durham 2014
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Algebraic consistency: matrices N and R

Low order setting, m=1,d =2

@ basis of P{(P) = {1, (x — xp), (y—yp)} = {u1, U, U3}
( (xp, yp) is the barycenter of P)

@ matrix N: degrees of freedom of the polynomial basis:

1T (x1—xe) (y1—yp) "
1 (e—xe) (Y2—yp) m
N= . B .
I R 5

@ matrix R : integration-by-parts for the polynomials vu;:

App (Uinp, Vhp) = Z KVu;-npe / vdS=v'R,
feP .=

Nonconforming MFD methods Durham 2014 17 /51
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Algebraic consistency: M N = R

Low order setting, m=1,d =2

RECALL THAT

Anp(Uinp, Vap) = Z KVu;-npe / vdS=V'R;

feP &
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Algebraic consistency: M N = R

Low order setting, m=1,d =2

RECALL THAT

Anp(Uinp, Vap) = Z KVu;-npe / vdS=V'R;

feP &

SINCE

Anp (Uinp, Vap) = VTMN;
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Algebraic consistency: M N = R

Low order setting, m=1,d =2

RECALL THAT

Anp(Uinp, Vap) = Z KVu;-npe / vdS=V'R;

feP &

SINCE

Anp (Uinp, Vap) = VTMN;

THEN

MN; =R, i=1,2,83.
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Algebraic consistency: M N = R

Low order setting, m=1,d =2

RECALL THAT

Anp(Uinp, Vap) = Z KVu;-npe / vdS=V'R;
e

feP
SINCE
Anp (Uinp, Vap) = VIMN;
THEN
MN; =R, i=1,23.
EQUIVALENTLY,

MN =R
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Algebraic consistency: MN = R

Low order setting, m = 1

@ The formula M N = R is ubiquitous in the MFD method.

@ Also,

N'R; = [ KVu;-Vu;dV where uj,uie{l,Xx—xp,y—yp
|if o f f

@ The (one-parameter) formula for the stiffness matrix:

M = R(N'R)'RT + (I - N(N"N)~"N") My + M

MIR=R stability

The second term depends on the parameter 1, and gives a
(one-parameter) family of methods.
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The stiffness matrix formula

The formula for the stiffness matrix:
M = R(N"R)'R” + 4(I - N(N"N)~'NT) = M, + M

MIR=R stability

Remarks:

@ The consistency term M is responsible of the accuracy of the method.
@ The stability term M ensures the well-posedness of the method.

@ The bilinear form A, p contains a stabilization term that depends on a
set of parameters = family of schemes!

@ Both terms can be given the same (algebraic) form of the corresponding
terms in the VEM.
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Three-dimensional case: conforming MFD

The low-order setting, m=1,d =3
@ Recallthat vp, :=w =~ v(xy) and

/KvU vvav =Y Kvu. npf/vds
feoP

@ we assume that there exists a quadrature rule {(x;,wr)vesr} ON €ach
face f € 9P such that

/ vaS~ Y wiyV(Xiy)
f

veof

is exact when v is a linear polynomial;

@ we require that for every linear polynomial v and every discrete field vj,
the bilinear form satisfies

Ah P uh P, Vh, p — Z KVu-np; Z wry W [V\, represents V(Xf7v):|.
feoP veof
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Three-dimensional case: non-conforming MFD

The low-order setting, m=1,d =3

Let K be constant on P, u a linear polynomial, and integrate by parts.

@ We use the 0-th order moment of v as a degree of freedom:

/KVU~VV av=>" KvU.np,f/vds =Y KVu-npgle| uo(v)
P feopP f feopP

where: .
palv) = 7 [vas
' Ifl Ji

@ The local consistency condition is:

Anp(Unp, Vhp) = Z KVu-npglff vio [V,0 represents 1it,0(V)]
feop
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Three-dimensional case: non-conforming MFD

The low-order setting, m=1,d =3

Let K be constant on P, u a linear polynomial, and integrate by parts.

@ We use the 0-th order moment of v as a degree of freedom:

/KVu vvdV = ZKVU nPf/VdS ZKVU npole| o(v)
P fcoP fcoP

pi0(vV m /VdS

@ The local consistency condition is:

where:

Anp(Unp, Vhp) = Y KVU-Mpelfvig  [vio represents s o(V)]
feoP

For both formulations, we do the same as in 2D!
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Summarizing the low-order formulation:
Low order setting, m = 1

@ Degrees of freedom:

Conforming MFD Non-conforming MFD

@ exactness for linear polynomials;
@ both 2D and 3D formulations are available (same dofs);

@ we only need to implement N and R and apply the stiffness matrix
formula for M.
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High order: towards a local consistency condition (2D)
The high-order setting, m > 1,d =2

Let K be constant and integrate by parts on the polygonal cell P:

/KVu~VvdV: —/div(KVu) vdV + Z KVu-npe v dS.
P P N—— ——

ecoP @
not zero! not constant!

If uis a polynomial of degree m on P:
e div(KVu) is a polynomial of degree m — 2;

o KVu-npg is a polynomial of degree m — 1;
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Divergence term
Internal degrees of freedom, m > 1,d =2

@ For the conforming and non-conforming case, we use the moments
of v to express the integral over P:

if
dIV(KVU) =gl +a1x+ aQy+...€ IPm,Q(P)
then
/div(KVu) vadV = ao/ 1vdV +ay /xvdV+ag/yvdV+...
P P P P
Upo Up 1, P,y

=apVpo+ aVp1x +aVp 1y +...

This choice suggests us to define

- m(m — 1)/2 internal degrees of freedom ~ Vp g, Vp 1 x, VP 1y, - - -
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Edge terms: conforming MFD

Nodal degrees of freedom, m > 1, d =2

@ We use a Gauss-Lobatto formula with m + 1 nodes and weights
{(Xe,g, We,q)} ON every (2D) edge e € 0P for:

m+1

/KVu~np,e vdS ~ Z We oKV U(Xe,q) - NPe V(Xe,q)-
e q—1

This choice suggests us to define:

- one degree of freedom per vertex,
Ve,d = W R V(Xyr), Vemi1 = W = V(Xyr);

- (m—1) nodal degrees of freedom per edge of P,
Ve,g = V(Xeq)forg=2,...m.
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High-order conforming MFD

The high-order setting, m > 1,d =2

Local Consistency Condition:

Let K be constant.

@ Forevery u € P(P) (m > 1) and every discrete field v, p € V, we
require that:

m(m—1)/2—1 m+1
Anp(Unp, vhp) = Z g+ Y > WegKVU(Xeq) Mpo Ve g
ecdP g=1
divergence boundary

(up,p are the dofs of u for P; terms a;¥p ; are conveniently renumbered).

G. Manzini Nonconforming MFD methods Durham 2014 27/51



Edge terms: non-conforming MFD

Edge degrees of freedom, m > 1, d =2
@ We use the moments of v to express the integral over e € OP:
if
(KVU)e - Npe = byl + b1& + bot? + ... € Pp_q(€)

then
/KVu-np_yevdS:bo/1vdS+b1/5vdS+b2/§2vdS+...
e e e e
.0 V1 2

=boVe o+ bi1Ve 1+ boVeo + ...

This choice suggests us to define

- mdegrees of freedom per edge ~ Ve g, Ve 1, Ve 2, . . .
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High-order non-conforming MFD
The high-order setting, m > 1,d =2

Local Consistency Condition:

Let K be constant.

@ Forevery u € P(P) (m > 1) and every discrete field v, p € V, we
require that:

m(m—1)/2—1
Anp (Unp, Vhp) = — Z ave; + Y Zb/Ve,/
ecdP j=0
divergence boundary

(up,p are the dofs of u for P; terms a;¥p ; are conveniently renumbered).
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Degrees of freedom

Conforming/non-conforming case

Conforming

Qe

Non-Conforming

slalt
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Algebraic consistency condition: MIN = R
Let M be a symmetric and semi-positive definite matrix such that

;
Anp (Unp, Vhp) = VypMupp.

e Forany ue {1,x,y,x2 xy,y?,...} and any discrete field v, p

- we write
Anp(Vhp,Unp) =V MN, where N, = [uyp] (*dofs”of u);
- we impose the local consistency condition:
Anp(Unp,Vhp) = ... =V Ry
- we obtain by comparison:

MN, = R,
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A family of schemes

@ Using N = [Ny,Np,...], R = [Ry, Ry, ...], we have:

MN = R and

(RTN); = / KVu-Vydv  where u, up € {1,x,y,x%,...}.
P

@ M (symmetric and semi-positive definite) is given by

M =R(R'N)"'RT+ M with  MN =0,
~~
MN=R stability

where dM is a symmetric matrix of parameters.

@ A one-parameter () choice for éM is given by:

SM = (I - N(N"N)~'NT).
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The linear functional (f, vp)p

The low-order case m = 1
Recall that (f,vs), ~ [, fvdV.

@ We assemble (f, v;), from local contribution:

(Fvn)p =D (f:vh),p where (f,vy), /fvdV

P

@ We approximate the forcing term by its average on P:

1/ -
~-— [ fdV =:fs;
P Jp i

@ We use a (first-order) quadrature based on vertex (conforming) or
edge (non-conforming) values. Example: let {(xy, wp )}:

/fvdV fp/ vdV =~ |P| fPZ We yV(Xy) [conforming]

veoP
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The linear functional (f, vp)p

The low-order case m = 1

@ Recall that (f,vs), :== > p (f, Vh), p» Where

(f.vh), /fvdV and /fvdV~|P| o Y weuw

veoP

@ Thus, for every cell P we define

(f, vh)h,P = |P| 7P Z Wp v W YVh € Vp
veoP

P|% = / fdv
P

wp y 1-st order integration weights.
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The linear functional (f, vp)p

High-order case m > 1

@ Again,

(fvn)p =D (f:vh),p Where (f,vh), /fvdV
P

@ For m > 1 we consider the orthogonal projection of f onto the
polynomials of degree m — 2:

frcl+ceix+ey+...cPpoP)
@ and use the moments of v to express the r.h.s. integral:

/fvdeco/1vdV+C1/xvdV+Cg/yvdV+...
P P P P

o Up 1.x Up1y

=coVpo+ CiVp1x+ CoVp 1y + ...
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The linear functional (f, vp)p

High-order case m > 1

@ Recall that

(f,vh), Z (f,vh), np Where (. vh)h’Px/fvdV.
S P

@ thus, for every cell P we define

f Vh ZC/VP/ VVh € Vp

f=~cpl +COX+CYy+...€ IPm_Q(P)
(¢))  projection coefficients

Vi moments, degrees of freedom of vj,

(The terms c;¥p ; are conveniently renumbered).
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Extension to 3D and variable coefficients
3D formulation

@ The 3D conforming formulation should have degrees of freedom
associated to vertices, edges, faces and cells: too many!

@ For the 3D non-conforming formulation: we use moments on the
faces and on the cells as for the VEM method.
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Extension to 3D and variable coefficients
3D formulation

@ The 3D conforming formulation should have degrees of freedom
associated to vertices, edges, faces and cells: too many!

@ For the 3D non-conforming formulation: we use moments on the
faces and on the cells as for the VEM method.

Variable coefficients (conforming/non-conforming)

@ Modified consistency condition.
If ue Pp(P) and K(X) is variable in P:

/K(x)Vu~Vvde/I'Im_1(K(x)Vu)-VvdV:...
P P

There exists a VEM counterpart using a modified projector 1V.
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Building a bridge with the VEM

Conforming/non-conforming MFD, m < 1

@ LetN=[1,N],R = [0,R];

0 0 . 0 0
N'R = o and (N'R)' = a
0 NTR 0 (N"R)-!

where NR is symmetric and positive definite.
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Conforming/non-conforming MFD, m < 1

@ LetN=[1,N],R = [0,R];

0 0 . 0 0
N'R = o and (N'R)' = a
0 NTR 0 (N"R)-!

where NR is symmetric and positive definite.
@ LetG = —[|P|NTR) ?R7. Then,

Mo = R(N'R)'RT = R(N"R)'RT = GG |P|.
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Building a bridge with the VEM

Conforming/non-conforming MFD, m < 1

@ LetN=[1,N],R = [0,R];

0 0 . 0 0
N'R = o and (N'R)' = a
0 NTR 0 (N"R)-!

where NR is symmetric and positive definite.
@ LetG = —[|P|NTR) ?R7. Then,
Mo = R(N'R)'RT = R(N"R)'RT = GG |P|.
@ Gupp =~ —KVu is the flux operator such that

UTMoV = (Gunp) Gvap [P ~ / KVN¥ (u) - V¥ (v) aV
P
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Building a bridge with the VEM

Similarities and differences:

For both the conforming and the non-conforming MFD and VEM formulations
we can prove that:
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Building a bridge with the VEM

Similarities and differences:

For both the conforming and the non-conforming MFD and VEM formulations
we can prove that:

@ the degrees of freedom are the same;

@ the consistency term is the same:

» in the MFD setting it relates to an exactness property;
» in the VEM setting it is the projection of the bilinear form on
polynomials;
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we can prove that:

@ the degrees of freedom are the same;

@ the consistency term is the same:

» in the MFD setting it relates to an exactness property;
» in the VEM setting it is the projection of the bilinear form on
polynomials;

@ the stabilization term of VEM forms a subset of those of MFD:

» in the MFD setting it gives the proper rank of the stiffness matrix;
» in the VEM setting it relates to the non-computable part of the
bilinear form;
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Building a bridge with the VEM

Similarities and differences:

For both the conforming and the non-conforming MFD and VEM formulations
we can prove that:

@ the degrees of freedom are the same;

@ the consistency term is the same:

» in the MFD setting it relates to an exactness property;
» in the VEM setting it is the projection of the bilinear form on
polynomials;

@ the stabilization term of VEM forms a subset of those of MFD:

» in the MFD setting it gives the proper rank of the stiffness matrix;
» in the VEM setting it relates to the non-computable part of the
bilinear form;

@ the formulation is different: VEM has the advantage of being a FEM!
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MFD and VEM: much more than a bridge!

For the Poisson equation (in primal form) we have:

@ Conforming MFD

2009 low-order, 2D-3D: Brezzi, Buffa, Lipnikov (M2AN);
2011 high-order, 2D: Beirao da Veiga, Lipnikov, M. (SINUM);

@ Conforming VEM
2013 any order, 2D: "volley” team (M3AS);

@ Non-conforming MFD
2014 any order, 2D-3D: Lipnikov, M., (JCP);

@ Non-conforming VEM
2014 any order, 2D-3D: Ayuso, Lipnikov, M. (submitted).
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A mesh-dependent norm

Conforming case
We consider the mesh-dependent norm

Ivallf =D |

PeQy

that mimics the |- |; , semi-norm;

o for the low-order method (m=1, d = 2,3), e = (V/,v”) being an edge,

2
IVall3 np = IGRADK(VA)|7p = hp Y [Ver — v [*;
ecoP

o for the high-order method (m > 1, d = 2), e = (V/,v"’) being an edge,

OV |2
Ivolfne = e 3 |52

[ ’moments”]
L2(e)
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Convergence results

Conforming case

The consistency and the stability conditions allow us to determine a family
of mimetic schemes:

@ for the low-order method m = 1:
lu" = unll1,n < Ch( flo.g +1ulyq+lulag);

(Brezzi, Buffa, Lipnikov, M2AN (2009)),

@ for the high-order method m > 1:

llu' — up

l1,n < CA™||Ul|m+1.0:

(Beirao da Veiga, Lipnikov, M., SINUM (2011); VEM, Brezzi et. al. M3AS
("volley” paper)

(For the non-conforming case refer to the talk of Blanca A.).
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Conforming MFD method

Meshes with randomized quadrilaterals

o Meshes:

« Exact solution: u(x,y) = (x - ez(x—ﬂ) <y2 - e3(y—1)>

- (49)
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o Diffusion tensor



Conforming MFD method

Randomized quadrilaterals, || - ||1,» errors, constant K
m=2 m=3
n h Error Rate Error Rate
0 192210 T [ 1416107 —— [ 7454102 ——
1 97051072 | 2441102 257 | 8.6321073 3.15
2 4.8381072 | 5366102 2.18 | 1.53610"° 2.48
3 24671072 | 1.39910~% 199 | 1.73910~% 3.23
4 12631072 | 3.52410~* 206 | 222710° 3.07
m=4 m=>5
n h Error Rate Error Rate
0 1922107 [ 1031102 —— [456710°° ——
1 9.7051072 | 1.69010=2 2.65 | 2.67410~* 4.15
2 48381072 | 1.27310~% 3.71 | 1.33610°° 4.30
3 24671072 | 827910~ 4.06 | 458610~7 5.01
4 12631072 | 554510~ 4.04 S =
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Conforming MFD method

Meshes with non-convex polygons

e Meshes:

e Exact solution: u(x, y) = e2™ sin(27x)

¢ Diffusion tensor

k=5 9) and Koyy= (IS 0L
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Conforming MFD method

Non-convex polygons, || - ||1,» errors, constant K
m=2 m=3
n h Error Rate Error Rate
0 1.45810°7 2.858 — 1.007 ——
1 72891072 | 7.86710~' 1.86 | 2.81910~" 1.84
2 36441072 | 2.04910°" 194 | 5597102 2.33
3 1.8221072 | 52891072 1.95| 8.89710°% 265
m=14 m=5
n h Error Rate Error Rate
0 1.45810°T ] 1943107 —— [2282102 ——
1 7.2891072 | 1.2761072 3.93 | 1.1281073 4.34
2 36441072 | 7.07510~* 4.17 | 4.40610°° 4.68
3 1.8221072 | 3.95010~° 4.16 = =
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Conforming MFD method

Non-convex polygons, || - ||1,» errors, non-constant K
m=2 m=3
n h Error Rate Error Rate
0 1.45810°7 3.007 —— 19.8731077 =
1 72891072 | 8.08110~" 1.89 | 2.76010~" 1.84
2 36441072 | 207110°" 196 | 56211072 2.29
3 1.8221072 | 5303102 1.97 | 9.08310~% 2.63
m=14 m=5
n h Error Rate Error Rate
0 1.45810-T ] 2059107 —— [ 1988102 ——
1 7.2891072 | 1.3671072 3.92 | 1.0161073 4.29
2 36441072 | 7.56210~* 4.18 | 3.92410°° 4.69
3 1.8221072 | 421010°°> 417 S S

G. Manzini Nonconforming MFD methods

Durham 2014 47 /51



Non-conforming MFD method

Meshes with random hexahedra

o Meshes:

e Exact solution: u(x,y,z) = x3y?z + x sin(2rxy) sin(2ryz) sin(2rz)

o Diffusion tensor

1+y?+ 22 —Xxy —xz
K= —Xy 14+ x2+ 22 —yz
—xz —yz 14+ x2+y?
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Non-conforming MFD method

Meshes with random hexahedra

Ayiys

0
Mesh size h

H'(Q) relative error

10°E T 10°E

' 2 3 |
@ £ @ 100
- E - E
g I 2 r
S L ] 5 f
- 3 g
=Y C =
< L <

107
10 4 E F
10° \4\ L 107 —
0
Mesh size h
L2(Q) relative error
The error is given by u — MY (up)
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Conclusions

@ The conforming and non-conforming MFD methods are such that:

(i) the low-order formulation uses either vertex or edge values to
represent linear polynomials; it works in 2-D and 3-D;

(i) the high-order formulation uses edge nodal values and moments to
represent m-degree polynomials; it works in 2-D and 3-D (only
non-conforming).

(iii) a reformulation as finite element exists in the virtual element
framework.
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Conclusions

@ The conforming and non-conforming MFD methods are such that:

(i) the low-order formulation uses either vertex or edge values to
represent linear polynomials; it works in 2-D and 3-D;

(i) the high-order formulation uses edge nodal values and moments to
represent m-degree polynomials; it works in 2-D and 3-D (only
non-conforming).

(iii) a reformulation as finite element exists in the virtual element
framework.

@ Possible future developments:

(i) more complex operators (+convection, +reaction);
i) exploit the strong connection with the VEM,;

) curved faces;
) -

(i
(iii

(iv
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