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Outline

This talk will be about designing multiplasmonic solar cells and
solar concentrators, and beam splitters:

Introduction to the project and plasmonics
Design Problems
Validation for the solar cell
Numerical analysis
Optimizing the beam splitter
The time domain
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Surface Plasmons

Suppose we have an interface1 between two materials at z = 0
with electromagnetic parameters µ0 and εi , i = 1,2 respectively.

z=0

z<0

2 2
E , H

11

z>0

E , H

E , H

∇× H i = εi
1
c
∂E i

∂t

∇× E i = −1
c
∂H i

∂t

Assuming p-polarization, we seek solutions localized at the
boundary z = 0,

E i = (E i
x ,0,E

i
z)e−κi |z|ei(qx−ωt) and H i = (0,H i

y ,0)e−κi |z|ei(qx−ωt)

To satisfy Maxwell:

κi =
√

q2 − εiω2/c2.

1This introduction is taken from J. Pitarke et al, Rep. Prog. Phys., 70
(2007) 1-87
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Plasmon condition

Continuity at z = 0 of tangential components requires,

ε1
κ1

+
ε2
κ2

= 0

Suppose ε2 = 1 and the metal
is described by a Drude model:

ε2 = 1−
ω2

p

ω(ω + iη)

The plot shows ω versus <(q)
when η = 0. Red line: ωs =
ωp/
√

2, Green line: ω = cq.
Note <(ε2) < 0 for ω small
enough.
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SPPs in photovoltaics2

Motivation:

To absorb light well, Sili-
con solar cells need to be
thick. But efficiency (and
cost!) motivate thin film
cells.

Light is poorly absorbed in a thin-film solar cell

Solar spectrum 
absorbed in 2 �m 
thick Si

If incident light couples into SPP modes, these modes
might trap and guide light allowing a thinner or more
efficient cell.

2From: H. Atwater and A. Polman, Nature Materials, 9 (2010) 205-213
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SPPs in photovoltaics

A problem:

Incident light will not cou-
ple to SPP waves in a pla-
nar structure.

Light trapping in a thin-film solar cell

Nature Mater. 9, 205 (2010)

A metal grating can be used to generate surface waves.
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SOLAR project

Our project3 started with the work of M. Faryad and A.
Lakhtakia 4 showing that if ε1 is periodic in z multiple SPP
modes exist at each frequency.

Penn State Delaware
T. Mallouk (PI) Chemistry Monk Math
T. Mayer Electrical Engineering M. Solano Math
A. Lakhtakia Eng. Science and Mech, L. Fan Math
G. Barber Chemistry
M. Faryad Eng. Science and Mech.
L. Liu Eng. Science and Mech.
S. Hall Chemistry

3NSF-DMR-1125591
4See for example, M. Faryad and A. Lakhtakia, J. Opt. Soc. Am. B. 27

(2010) 2218-2223
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Typical Structures

Wavelength of light of interest: 400-1200nm
Period of the grating: ≈ 400nm
Height of structure: ≈ 2000nm
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5
M. Solano et al, Applied Optics, 52 (2013) 966-979

6
M. Solano et al., Appl. Phys. Lett. 103, 191115, 2013

7
L. Fan et al., SPIE San Diego, 2014
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Basic Multi-SPP cell

εT

Ld

Incident light

z

ε

z = 0

ε2n

ε2i

ε2p

d
d2n

d2i

d2p

ε3n

ε3i

ε3p

d3n

d3i

d3p

θ

0

+1

-1

-2
Reflected light

dT

εr1

L1 L
Metal

ε1n

ε1i

ε1p

da

d1n

d1i

Lm

Lg

ε2n
d1p

εa

0

+1

-1

-2

Transmitted light

Incident field: Let k = ω/c
ui = exp(ik(x sin θ + z cos θ)).
Equations:

∇ · A∇u + k2nu = 0 in (0,L)× R
e−ikL sin θu(x + L, z) = u(x , z) for all x , z

ui + us = u in (0,L)× R.

and us satisfies upward and down-
ward propagating wave conditions
above and below the cell.

For s polarization: A = 1, n = εr , u = E2
For p-polarization: A = 1/εr , n = 1, u = H2.
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Above and below the grating

For z < 0:

us =
∑
n∈Z

us
n exp

[
i
(

k (n)
x x − k (n)

z z
)]

,

where k (n)
x = k sin θ + 2πn/L,

k (n)
z =


√

k2 − (k (n)
x )

2
, k2 > (k (n)

x )
2

i
√

(k (n)
x )

2
− k2 , k2 < (k (n)

x )
2
,

Similarly for the transmitted wave in z > 0 and |z| large enough.

ut =
∑
n∈Z

ut
n exp

[
i
(

k (n)
x x + k (n)

z z
)]

,
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Computed Quantities

For s-polarized incidence, we compute the modal reflectances

R(n)
s = |us

n|2 Re
[
k (n)

z

]
/(k cos θ)

and modal transmittances

T (n)
s = |ut

n|2 Re
[
k (n)

z

]
/(k cos θ) .

The absorptance for s-polarized incident waves is given by

As = 1−
Nt∑

n=−Nt

[
R(n)

s + T (n)
s

]
.

Similar definitions hold for p-polarized waves.
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Variational Formulation

Let Ω = (0,L)× (0,H) where H is the height of the cell

H1
qp(Ω) = {u ∈ H1(Ω) | u(L, ·) = exp(ikL sin θ)u(0, ·)}

Seek u ∈ H1
qp(Ω) such that∫

Ω
A∇u · ∇v − k2nuv −

∫
ΓH

THuv +

∫
Γ0

(T0(u − ui) + ui)v = 0

for all v ∈ H1
qp(Ω) where TH is the Dirichlet to Neumann map on

the upper surface ΓH and similarly T0 on Γ0. These are
computed using the Fourier representation of the solution
above and below the grating.
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Numerical Method (I): Finite Element Methods

Let
Sh ⊂ H1

qp(Ω)

Seek uh,N ∈ Sh such that∫
Ω

A∇uh,N · ∇v − k2nuh,Nv dA

−
∫

ΓH

THPNuh,Nv ds +

∫
Γ0

(T0PN(uh,N − ui) + ui)v ds = 0

for all v ∈ Sh where PN is L2 projection onto the space spanned
by Fourier basis functions of degree n, −N ≤ n ≤ N.

Note: this requires the mesh on the left and right edges to be
identical.
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Theoretical papers

Uniqueness problems: Uniqueness except at a countable
set of exceptional frequencies 8

Grating theory and numerical analysis.9

Goal oriented adaptivity.10.

8
A.S. Bonnet-Bendhia and F. Starling, Mathematical Methods in the Applied Sciences, 17 (1994), 305-338.

9
A. Kirsch: Diffraction by periodic structures, Inverse Problems in Mathematical Physics (1993), L. Paivarinta

and E. Somersalo, Eds., pp. 87–102, A. Kirsch and P. Monk, IMA J. Numer. Anal., 10(1990) 425-447, G.C. Hsiao, N.
Nigam and J. Pasciak, J. Comp. Appl. Math. 235(2011) 4949-4965, J. Elschner and G.Schmidt, Math. Meth. Appl.
Sci., 21(1998), 1297-1342 (1998)

10
N.H.Lord and A.J. Mulholland, Proc. Roy. Soc. 469(2013), 20130176
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Numerical Method (II): Rigorous Coupled Wave
Expansion (RCWA)

RCWA11 is a commonly used scheme for this type of problem.
The relative permittivity in the region 0 ≤ z ≤ H is expanded as
a Fourier series with respect to x :

ε(x , z) =
∑
n∈Z

ε(n)(z) exp(i2πnx/L) , z ∈ [0,H] ,

where the z-dependent coefficients ε(n)(z) are known. The
electric field is similarly expanded

u(x , z) =
∑
n∈Z

u(n)(z) exp (i2πnx/L) , z ∈ [0,H] .

11L. Li, J. Opt. Soc. Am. A 12, 2581 (1993).
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Discretization in z

The Fourier series are substituted into the Maxwell system
and the results truncated to order N
The grating is divided into horizontal layers, and ε(n)(z) is
approximated by its mid-layer value.
The resulting coupled system of ordinary differential
equations in z is solved exactly and the map between
incident, transmitted and reflected fields can be computed.
The layers are combined by marching using a splitting into
upward and downward going waves to help stabilize the
procedure.
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Basic Multi-SPP cell
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Frequency dependence of coefficients
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Relative permittivity of aluminum
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Grating profiles I

Experimental setup12

HALL ET AL . VOL. 7 ’ NO. 6 ’ 4995–5007 ’ 2013

www.acsnano.org

4996

than three decades as a way of maximizing the con-
version of solar light into electricity. It is used in metal
grating-backed thin layers of crystalline silicon (∼5 μm
thick)9 and amorphous silicon (∼0.5 μm thick),10 which
can replace traditionally much thicker (∼100 μm)
layers of crystalline silicon.
Resonant absorption at the interface of a 1Dmetallic

grating and a homogeneous dielectric material occurs
with p-polarized light (i.e., light with its magnetic field
vector parallel to the grating lines) but not with
s-polarized light (electric field vector parallel to the
grating lines).2,11 Thus, the SPP-wave mode is p-polar-
ized but cannot be s-polarized. The optical energy is
confined to a subwavelength thickness in the dielectric
material,5,11,12 and only a single SPP-wave mode can
be excited at any given free-space wavelength λo over
a narrow range of the angle of incidence.1,11 Hence,
the experimental absorptance A (A = 1 ! R ! T, where
R and T are the reflectance and transmittance, respec-
tively) of unpolarized broadband light is considerably
less than 50%when a 1Dmetallic grating is employed.5

To address this problem of polarization sensitivity,
light-trapping structures that have angular insensitivity
and broadband absorption have been researched in
recent years. These structures typically employ two-
dimensional (2D) metallic gratings that lower the
polarization sensitivity by converting some of the
s-polarized light to p-polarized light.12,17 A strategy to
decrease angular sensitivity is to employ metal!
insulator!metal (MIM) layers.14!16 However, MIM
structures are highly dissipative because of short SPP
wave propagation lengths and large confinement
factors.11 Because of the loss of optical energy within
the metal, these structures are of limited use for
photovoltaics, which can be efficient only if most of
the light is absorbed within the semiconductor.9,10

The trapping of light by grating structures can
become more efficient if the homogeneous dielectric
material is replaced by a periodic multilayer, i.e., a 1D
photonic crystal (PC) with a piecewise homogeneous
refractive index in the thickness direction. In this case,
some recent studies have shown that both incident
p- and s-polarized light can excite SPP waves,18,19 even
when the wave vector of the incident light is wholly
perpendicular to the grating lines. In these reports, the
metal/dielectric interface was planar and a prism-
coupled configuration,20!22 widely used for optical
sensing, was employed. Only a single p-polarized SPP-
wave mode and at most a single s-polarized SPP-wave
mode were observed experimentally at any λo within
the photonic band gap of the periodicmultilayer. How-
ever, a theoretical study on a canonical boundary-value
problem has shown that if the dielectric material has a
sinusoidally graded refractive index in the thickness
direction, then multiple p-polarized and multiple
s-polarized SPP-wave modes can be excited at specific
wavelengths with high efficiency.23,24 This prediction

was shown theoretically to holdwell when the periodic
dielectric is backed by a metallic grating,25 but it has
not been experimentally validated.
In this paper, we provide the first experimental

evidence that multiple p- and multiple s-polarized
SPP-wave modes can be excited over a broad spectral
range, in a 1DPCbackedby a 1Dmetallic grating. In our
experiments, the wave vector of the incident light was
oriented perpendicular to grating lines, so that inci-
dent p (respectively s)-polarized light could excite only
p (respectively s)-polarized SPP-wavemodes. The chosen
PC was a nonabsorbing, periodic dielectric material of
two or three periods in thickness. Accompanying theore-
tical results show that many of the SPP-wave modes
are weakly localized to the interface of the metal
and the PC, display field enhancements that spread
throughout the entire two or three periods of the
PC, and have very long propagation lengths (on the
order of hundreds of micrometers). The latter implies
that less energy will be dissipated in the metal when
the nonabsorbing dielectric material is replaced by a
light absorber, such as the semiconductor layers of a

Figure 1. 1D metallic grating coupled to a 1D photonic
crystal (periodic multilayer). (a) Schematic of a 1D metallic
grating coupled to a multilayer dielectric material, which
forms one period of a 1D PC. (b) Top-down SEM image of a
gold grating (350 nm period, 80% duty cycle, 50 nm depth).
(c) Top-down SEM image of a gold grating (350 nm period,
50% duty cycle, 93 nm depth). (d) Cross-sectional TEM
image of a gold grating (350 nm period, 80% duty cycle,
50 nm depth) coupled to a 1D PC with two periods, each
consisting of nine layers. (e) Cross-sectional TEM image of a
gold grating (350 nm period, 50% duty cycle, 93 nm depth)
coupled to a 1D PC with three periods, each consisting of
nine layers. The dielectric layers in (d) exhibit some rough-
ness but are quite planar, but those in (e) are quite con-
formal to the metallic grating. The thickness direction is
along the z-axis, the grating plane is the xz-plane, the
grating lines are directed along the y-axis, the propagation
direction of the incident light lieswholly in the xz-planewith
the angle of incidenceθmeasuredwith respect to the z-axis,
and SPP waves propagate along the x-axis in the xy-plane.

A
RTIC

LE

12
A. Shoji Hall et al., ACS NANO 7(2013) 4995-5007.



Introduction Numerical Methods Validation Convergence Splitter Optim. Time Domain Conclusion

Grating profiles II
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RCWA validation
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FEM Validation
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Trapezoidal grating. Duty cycle 0.86. Upper base = 251 nm,
θ = 43◦. FEM convergence (left)
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FEM/RCWA Validation

400 500 600 700 800 900 1000 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
p−polarization, 43 deg

A
b
s
o
rp

ta
n
c
e

λ
0
 (nm)

 

 

RCWA Nt = 40

FEM

Shoji experiment

400 500 600 700 800 900 1000 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
s−polarization, 43 deg

A
b
s
o
rp

ta
n
c
e

λ
0
 (nm)

 

 

RCWA Nt = 12

FEM

Shoji experiment

Trapezoidal grating. Duty cycle 0.86. Upper base = 251 nm,
θ = 43◦, experimental results by Dr. Shoji Hall.
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Comparison to experiment: s-polarization

400 450 500 550 600 650 700 750 800

10

15

20

25

30

35

40

45

50

55  
S−pol, experiment Shoji 

λ nm

 

θ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

400 450 500 550 600 650 700 750 800

10

15

20

25

30

35

40

45

50

55  
S−pol, RCWA Manuel

λ nm

 
θ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Left panel: experiments by S. Hall. Right Panel: RCWA by M.
Solano. Two periods of photonic crystal.
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Comparison to experiment: p-polarization
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FE Convergence - planar back reflector

Errors and rates of convergence for the FEM when the metallic
backreflector is planar and θ = 0◦.

` Ne eAp rAp eAs rAs

1 342 4.30× 10−5 −
2 1880 3.64× 10−6 1.15 2.99× 10−6 3.13
3 7520 1.97× 10−7 4.21 1.91× 10−7 3.97
4 30080 1.16× 10−8 4.08 1.21× 10−8 3.98
5 120320 7.07× 10−10 4.04 7.58× 10−10 3.99
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FE/RCWA convergence for rectangular grating
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Source of the FE error

The solution looses regularity at the metal-dielectric corners.
Expect O(h0.06) in H1 norm. 13
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FE solution: refine near the offending point.
13

J. Elschner and G. Schmidt, Math. Meth. Appl. Sci. 21, 1297-1342 (1998).
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Refinement improves reliability
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Splitter geometry
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Optimize over L, dr , dg , qL, n2, ng (each in a limited range).
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Optimization of the Splitter

We want to send waves at frequencies below a cutoff frequency
c in the specular direction and waves above that frequency in
non-specular directions with no loss due to reflection. We set

F =

∫ λmax

λmin

0.1
[
(T 0

ss(λ)− H(λ− c))2 + (T n 6=0
ss (λ)− (1− H(λ− c)))2

]
0.9
[
(T 0

pp(λ)− H(λ− c))2 + (T n 6=0
pp (λ)− (1− H(λ− c)))2

]
dλ

where H(x) is the Heaviside step function and c = 650nm.
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Differential Evolution Algorithm

We use a genetic algorithm called the Differential Evolution
Algorithm14. Suppose we want to maximize f (v). DEA requires
three parameters C ∈ (0,1) the crossover probability, α ∈ (0,2)
the differential weight and M the number of vector initial
guesses (we use C = 0.7, α = 0.8 M = 10#parameters).

The steps to find vopt ∈ S are given on the next slide

mutation→recombination→selection

14
Storn, R. and Price, K. (1997), Differential Evolution - A Simple and Efficient Heuristic for Global Optimization

over Continuous Spaces, Journal of Global Optimization, 11, pp. 341-359.
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DEA
1: Randomly initialize a set of M vectors: {v (m)}M

m=1 ⊂ S
2: while stopping criterion is not satisfied do
3: for each v (ν), ν ∈ {1,M}, do
4: Randomly choose three different v (m1),v (m2),v (m3)

5: Choose a random index j ∈ {1, ...,n}
6: for all ` ∈ {1, ...,n} do
7: Pick r` ∈ U(0,1) to be a uniform random number in (0,1).
8: if r` < C or ` = j then
9: w` ← v (m1)

` + α(v (m2)
` − v (m3)

` )
10: else
11: w` ← v (ν)

`

12: end if
13: end for
14: if f (w) > f (v (ν)) then
15: v (ν) ← w
16: end if
17: end for
18: vopt is the vector for which f (vopt ) ≥ f (v (ν)) ∀ν ∈ {1, ...,M}
19: end while
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Before the optimization: L = 500, qL = 250, dt = 300,
dr = 100, nt = 1.9 and the incident angle is 6◦.
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Differential Evolution optimization starts with:

L ∈ [300 nm,600 nm]

dt ∈ [50 nm,300 nm]

dr ∈ [50 nm,300 nm]

nt ∈ [1.1,1.9]

qL/L ∈ [0.1,0.5]
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Optimized Results

Optimized Results, L = 600, qL = 240, dt = 300, dr = 255,
nt = 1.9
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Objective function
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The Time Domain

Let S = (0,L)× R. Taking the inverse Fourier transform of the
s-polarized time harmonic problem (setting n real and ignoring
frequency dependence!!) we get that the scattered field
us = us(x , z, t) satisfies

n
c2 us

tt = ∆us +
n − 1

c2 ui
tt in S × R

us(·,0) = 0 in S
us

t (·,0) = 0 in S
us(L, z, t) = us(0, y , t − d1L/c) in R× R.

where d = (sin θ, cos θ). We assume that
ui(x , z, t) = f (t − x · d/c) where f is such that f (ct − x · d) = 0
for t < 0 and (x , y) ∈ [0,L]× [0,H] (e.g. a windowed and
translated power of the sine function).
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Change of variables

Common to use the change of variables

w(x , z, t) = us(x , z, t + (x − L)d1/c)

Then recalling S = ((0,L)× R) we see that

n − d2
1

c2 wtt = ∆w − 2
d1

c
wxt +

n − 1
c2 w i

tt in S × R

w(·,0) = 0 in S
wt (·,0) = 0 in S

w(L, z, t) = w(0, z, t) in R× R.

Here w i(x , z, t) = f (t − d2z/c).
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Analysis in the time domain

Typically implicit methods are used to discretize in time. We
can provide an analysis for a small class of methods. To do this
we take the Laplace transform

ŵ(x , z, s) =

∫ ∞
0

w(x , y , t) exp(−st) dt , s = σ − iω,

where σ ∈ R is fixed and σ > 0, while ω ∈ R.
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Laplace domain problem

Find ŵ ∈ H1
p (S) such that

s2 n − d2
1

c2 ŵ = ∆ŵ − 2s
d1

c
ŵx + s2 n − 1

c2 ŵ i in (S)× R.

Here ŵ i(x , y) = f̂ (s) exp(−sd1y/c).
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The weak Laplace domain problem

For ŵ , ξ ∈ H1
p (S) define

a(ŵ , ξ) =

∫
S

(
∇ŵ · ∇ξ + s2 n − d2

1
c2 ŵξ + 2s

d1

c
ŵxξ

)
dA

F (ξ) = s2
∫

S

n − 1
c2 ŵ iξ dA

Then ŵ ∈ H1
p (S) satisfies

a(ŵ , ξ) = F (ξ), for all ξ ∈ H1
p (S).
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Coercivity and continuity

For ŵ , ξ ∈ H1
p (S) define

a(ŵ , sŵ) =

∫
S

(
s|∇ŵ |2 + s|s|2

n − d2
1

c2 |ŵ |2 + 2|s|2 d1

c
ŵx ŵ

)
dA

Then

<a(ŵ , sŵ) = σ

∫
S

(
s|∇ŵ |2 + |s|2

n − d2
1

c2 |ŵ |2
)

dA

so provided n − d2
1 > α > 0 for some constant α

<a(ŵ , sŵ) ≥ σmin(1, α)‖ŵ‖2

where

‖ŵ‖21 =

∫
S

(
|∇ŵ |2 +

|s|2

c2 |ŵ |
2
)

dA
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Laplace domain result

Obviously
|F (sŵ)| ≤ C|s|2‖ŵ i‖L2‖ŵ‖1

Lemma
Suppose α > 0. For each s = σ − iω, σ > 0, there exists a
unique solution ŵ ∈ H1

p (S) of the Laplace domain problem and

‖ŵ‖1 ≤ C
|s|2

σ
‖ŵ i‖L2

Taking the inverse Laplace transform establishes existence of
the time domain solution in suitable space-time function spaces
(note the exponential weight exp(−2σt) in the time direction). A
good choice might be σ = 1/T .
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Time domain result

Using Lubich’s convolution quadrature theory15 if Backward
Euler (p=1) or BDF2 (p=2) are used to discretize the problem
(leaving space continuous) at time steps tn = n∆t , and if a
sufficiently smooth (in time) incident field is used, then

‖∇(w(·, tn)− w∆t
n )‖+ ‖w(·, tn)− w∆t

n ‖ = O(∆tp), 0 < t < T ,

where ∆t > 0 is the time step size and w∆t
n ∈ H1

p (S) is the
discrete in time solution at tn.
We have yet to analyze the spatial discretization.

15
C. Lubich, Numer. Math. 67, 365-389 (1994).
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Current work

Optimization of the concentrator with matching layers, and
other splitter designs.
3D grating structure
Complete analysis of the time domain problem with
frequency dependent materials properties.
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