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Outline

This talk will be about designing multiplasmonic solar cells and
solar concentrators, and beam splitters:

m Introduction to the project and plasmonics
m Design Problems

m Validation for the solar cell

m Numerical analysis

m Optimizing the beam splitter

m The time domain
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Surface Plasmons

Suppose we have an interface! between two materials at z = 0
with electromagnetic parameters g and ¢;, i = 1,2 respectively.

z>0

E, H, ~ 10E;
V x H, = G,EW
1 0H;

E, H, E —-
2<0 v % ! (o at

Assuming p-polarization, we seek solutions localized at the
boundary z = 0,

E; = (E},0, EL)e "e@“1) and H; = (0, Hj, 0)e™"le(@0)

To satisfy Maxwell:
ki =1/ Q% — €jw? /2.

"This introduction is taken from J. Pitarke et al, Rep. Prog. Phys., 70
(2007) 1-87




Introduction
[e]e] lelelele]

Plasmon condition

Continuity at z = 0 of tangential components requires,

i+2:0

KA1 K2

Suppose e = 1 and the metal
is described by a Drude model:

2
“p

2T w i)

The plot shows w versus %(q)
when n = 0. Red line: ws =
wp/V2, Green line: w = cq.
Note R(e2) < 0 for w small
enough.

Angular frequency o

NG
Wave vector q
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SPPs in photovoltaics?

m Motivation:

16 Blue Green Red

To absorb light well, Sili-
con solar cells need to be
thick. But efficiency (and
cost!) motivate thin film
cells.

Spectral intensity [VWW/m?nm]

400 600 800 1000 1200

Free space wavelength [nm]

m If incident light couples into SPP modes, these modes
might trap and guide light allowing a thinner or more
efficient cell.

2From: H. Atwater and A. Polman, Nature Materials, 9 (2010) 205-213
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SPPs in photovoltaics

A problem:

Incident light will not cou-
ple to SPP waves in a pla-
nar structure.

A metal grating can be used to generate surface waves.
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SOLAR project

Our project® started with the work of M. Faryad and A.
Lakhtakia 4 showing that if ¢; is periodic in z multiple SPP
modes exist at each frequency.

Penn State Delaware
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A. Lakhtakia Eng. Science and Mech, | L. Fan Math
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4See for example, M. Faryad and A. Lakhtakia, J. Opt. Soc. Am. B. 27

(2010) 2218-2223
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Typical Structures

Wavelength of light of interest: 400-1200nm
Period of the grating: ~ 400nm
Height of structure: ~ 2000nm

Incident light 1 0

Reflected light

0
2 Transmitted light

Thin film solar cell®.  Concentrator. © Beam splitter’

5M. Solano et al, Applied Optics, 52 (2013) 966-979
6M. Solano et al., Appl. Phys. Lett. 103, 191115, 2013
7L. Fan et al., SPIE San Diego, 2014
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Basic Multi-SPP cell

nedentight 4 o Incident field: Let k = w/c
st yf = exp(ik(x sing + zcos h)).
Equations:

m V.AVU+ KU = 0in(0,L) xR
—ikLsinG u(x+Lz) = u(x,z)forall x,z
u+u$ = uin(0,L) xR,

and u® satisfies upward and down-
ward propagating wave conditions
above and below the cell.

For s polarization: A=1, n=¢, u=E

For p-polarization: A=1/e;, n=1, u = Hs.

_1'  Transmitted light
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Above and below the grating

For z < O:

= > ujexp [ (k(” x — kiMz )]

nez
where k" = ksin + 27n/L,

2 2
k(n) B k2 — (k)((n)) ) k2 > (k)((n))
z )

2 2
WV KD) — k2, K< (k")

Similarly for the transmitted wave in z > 0 and |z| large enough.

= > uhexp [ <k(" x+ k" z )]

nez
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Computed Quantities

For s-polarized incidence, we compute the modal reflectances
R = |uS[Re [k;")] /(k cos )

and modal transmittances
T{ = |ub2Re (K] /(K cos ).

The absorptance for s-polarized incident waves is given by

Nt

As=1- 3 [R§”>+ Té”’].
n=—N;

Similar definitions hold for p-polarized waves.
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Variational Formulation

Let Q = (0,L) x (0, H) where H is the height of the cell
Hyp(Q) = {u € H'(Q) | u(L,-) = exp(ikLsin §)u(0, )}

Seek u € H},(Q2) such that
/AVU-Vv—k2nuv— THuv+/ (To(u—u")+u)v=0
Q o

My

forall v e H;p(Q) where Ty is the Dirichlet to Neumann map on
the upper surface 'y and similarly 7o on I'y. These are
computed using the Fourier representation of the solution
above and below the grating.
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Numerical Method (1): Finite Element Methods

Let
Sh C H,(9)

Seek up N € Sp such that
/ AVup - VV — K2nup NV dA
Q

— THPNUh,NV as + / (TOPN(Uh,N — Ui) + Ui)V ds=0
MH Io

for all v € S, where Py is L2 projection onto the space spanned
by Fourier basis functions of degree n, —-N < n < N.

Note: this requires the mesh on the left and right edges to be
identical.
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Theoretical papers

m Unigueness problems: Uniqueness except at a countable
set of exceptional frequencies &

m Grating theory and numerical analysis.®
m Goal oriented adaptivity.©.

8A.S. Bonnet-Bendhia and F. Starling, Mathematical Methods in the Applied Sciences, 17 (1994), 305-338.

9A. Kirsch: Diffraction by periodic structures, Inverse Problems in Mathematical Physics (1993), L. Paivarinta
and E. Somersalo, Eds., pp. 87-102, A. Kirsch and P. Monk, IMA J. Numer. Anal., 10(1990) 425-447, G.C. Hsiao, N.
Nigam and J. Pasciak, J. Comp. Appl. Math. 235(2011) 4949-4965, J. Elschner and G.Schmidt, Math. Meth. Appl.
Sci., 21(1998), 1297-1342 (1998)

1ON.H.Lord and A.J. Mulholland, Proc. Roy. Soc. 469(2013), 20130176
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Numerical Method (ll): Rigorous Coupled Wave

Expansion (RCWA)

RCWA'" is a commonly used scheme for this type of problem.
The relative permittivity in the region 0 < z < H is expanded as
a Fourier series with respect to x:

e(x,z) =Y _e(2)exp(i2rnx/L),  z€[0,H],

nez

where the z-dependent coefficients (") (z) are known. The
electric field is similarly expanded

u(x,z) =Y uM(z)exp(i2nnx/L) , z € [0,H].
nez

"L, Li, J. Opt. Soc. Am. A 12, 2581 (1993).
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Discretization in z

m The Fourier series are substituted into the Maxwell system
and the results truncated to order N

m The grating is divided into horizontal layers, and €")(z) is
approximated by its mid-layer value.

m The resulting coupled system of ordinary differential
equations in z is solved exactly and the map between
incident, transmitted and reflected fields can be computed.

m The layers are combined by marching using a splitting into

upward and downward going waves to help stabilize the
procedure.
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Basic Multi-SPP cell

Incident light

0
Reflected light
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Frequency dependence of coefficients

10 T

N

f00 50 0 700 800 S0 1000 1100 200 500 600 700 BO0 00 1000 1100
o () Ay (nm)

(Left) Real and (right) imaginary parts of the relative
permittivities of all semiconductor layers as functions of the
free-space wavelength.
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Relative permittivity of aluminum

60

4
40 i tre,,

++
R .

20

< o +++t
£ 20
£ -40
K
© 60
I

80

e,

4 Ime,)

-100

_12 . , , , ,
550 500 600 700 800 900 1000 1100
A, (nm)

Real and imaginary parts of the relative permittivity of
aluminum as functions of the free-space wavelength.
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Grating profiles |

Experimental setup?

12A. Shoji Hall et al., ACS NANO 7(2013) 4995-5007.
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Grating profiles

0 T N L
Semiconductor
L,
’l Metal
L|
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N .
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Unit cell of a surface-relief grating with a (top) rectangular
corrugation, (bottom left) sinusoidal corrugation, or (bottom
right) trapezoidal corrugation.
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RCWA validation

p-polarization, 43 deg s-polarization, 43 deg

— Ni=i2
—— Nt=20

02
o \\_/—\
300 500 600 700 800 %00 1000 1100 300 500 600 700 800 %00 1000 1100
2 (0m) ()

Trapezoidal grating . Duty cycle 0.86. Upper dimension =
251 nm, 6 = 43°
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FEM Validation

p-polarization, 43 deg

FEM coarse mesh
—— FEM fine mesh

00 500 600 700 800 900 1000
2y (0m)

Trapezoidal grating. Duty cycle 0.86. Upper base = 251 nm,
6 = 43°. FEM convergence (left)
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FEM/RCWA Validation

00 500 600 700 800 %00 1000 1100 400 500 600 700 800 900 1000 1100
Ay (m) I (om)

Trapezoidal grating. Duty cycle 0.86. Upper base = 251 nm,
0 = 43°, experimental results by Dr. Shoji Hall.
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Comparison to experiment: s-polarization

S-pol, RCWA Manuel

450 500 550 60D 700 750 800 400 450 500
m Jonm

Left panel: experiments by S. Hall. Right Panel: RCWA by M.
Solano. Two periods of photonic crystal.
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Comparison to experiment: p-polarization

1000

Left panel: experiments by S. Hall. Right Panel: RCWA by M.
Solano.
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FE Convergence - planar back reflector

Errors and rates of convergence for the FEM when the metallic
backreflector is planar and 6 = 0°.

‘ Ne ‘ €Ap TAp ‘ €as Tas
342 430x10° —
1880 | 3.64x10% 1.15] 299x10°® 3.13
7520 | 1.97x10~7 421 ] 191 x107 3.97

30080 | 1.16 x 108 4.08 | 1.21 x108 3.98

120320 | 7.07 x 10°0 4.04 | 758 x 10~ 10 3.99

O B|WIN| = >




Convergence
[e] Jele]

FE/RCWA convergence for rectangular grating

Errors (top) é4s and (bottom) &4, versus © calculated with the
RCWA (+) and FEM (o) when 6 = 0°.

© = N for RCWA, © = /Ny for finite elements (uniform
mesh).
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Source of the FE error

The solution looses regularity at the metal-dielectric corners.
Expect O(h%%) in H' norm. 13

1 1 1

o 0
3 4 o 1 2 3 4 o 1
(b)

o T 2 2 3 4
(@) ()

FE solution: refine near the offending point.

13J. Elschner and G. Schmidt, Math. Meth. Appl. Sci. 21, 1297-1342 (1998).
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Refinement improves reliability

1‘01.35 1‘01 5 1‘01.65 1‘01.85
(€]

Errors égp (4) and &4, (o) versus © calculated with the refined
meshes when 6 = 0°
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Splitter geometry

ny

nt(glass)

Optimize over L, d;, dy, qi, N2, ng (each in a limited range).
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Optimization of the Splitter

We want to send waves at frequencies below a cutoff frequency
¢ in the specular direction and waves above that frequency in
non-specular directions with no loss due to reflection. We set

>\ max

F= [ 01 |(T&() = HO = e))? + (TN = (1= H(A = €)))?|

Amin

09 |(TH(A) = HOA = €))? + (TR °(N) = (1 = H(A - €)))?] o

where H(x) is the Heaviside step function and ¢ = 650nm.
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Differential Evolution Algorithm

We use a genetic algorithm called the Differential Evolution
Algorithm™*. Suppose we want to maximize f(v). DEA requires
three parameters C € (0, 1) the crossover probability, o € (0,2)
the differential weight and M the number of vector initial
guesses (we use C = 0.7, a = 0.8 M = 10#parameters).

The steps to find v°P! ¢ S are given on the next slide

mutation—recombination—selection

14Storn, R. and Price, K. (1997), Differential Evolution - A Simple and Efficient Heuristic for Global Optimization
over Continuous Spaces, Journal of Global Optimization, 11, pp. 341-359.
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Randomly initialize a set of M vectors: {v(M}M_ S
while stopping criterion is not satisfied do
for each v(¥), v € {1, M}, do
Randomly choose three different v(m) y(m2) y(ms)
Choose a random index j € {1, ..., n}
forall¢e{1,...n} do
Pick r, € U(0, 1) to be a uniform random number in (0,1).
if < Cort=jthen
Wy — Véﬂh) + Oz(VémZ) _ Vém3))
else
w, v
end if
end for
if f(w) > f(v(*)) then
v — w
end if
end for
vl is the vector for which f(voP!) > f(v(")) vu e {1,... M}
end while
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— 792 H

- - -|Tn=0J2
—|ROJ2

o
®

- - -|RN=0J2

o
o

Transmittance / Reflectance
o
'S

0.2

0
450 500 550 600 650 700 750 800 850 900 950

A (nm)

Before the optimization: L = 500, q; = 250, d; = 300,
d- = 100, n; = 1.9 and the incident angle is 6°.
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Differential Evolution optimization starts with:

L € [300 nm, 600 nm]
dr € [50 nm, 300 nm]
dr € [50 nm, 300 nm]
ni€[1.1,1.9]

q./L €[0.1,0.5]



Splitter Optim.
000000 @0

Optimized Results

Optimized Results, L = 600, q; = 240, d; = 300, d, = 255,
n=1.9

— T2 — TR
- - e o2 08 - - n=02
—IR%2 — RO

8 - - JRN=02 8 - - -|Rn =02

8 8

8 a8

kol T

< <

§ 5o

£ E

& &

2 2

g s

= o2

80 50 s 60 G0 70 750 800 @0 %0 950 80 50 s 600 650 700 750 G0 80 900 950
X (nm) X (nm)

Before After
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Objective function

230

225

220

215

210

205

value of objective function

195

190

number of iteration
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The Time Domain

Let S = (0, L) x R. Taking the inverse Fourier transform of the
s-polarized time harmonic problem (setting n real and ignoring
frequency dependence!!) we get that the scattered field

u® = u(x, z, t) satisfies

anutst = AU+ 1u,,lnSxIR
u’(-,0) = 0inS

uf(-,0) = 0inS

uS(L,z,t) = u%0,y,t—diL/c)inR x R.

where d = (sin 6, cos §). We assume that

u'(x,z,t) = f(t — x-d/c) where f is such that f(ct —x-d) =0
fort <0and (x,y) € [0, L] x [0, H] (e.g. a windowed and
translated power of the sine function).



Time Domain
0@000000

Change of variables

Common to use the change of variables
w(x,z,t) = u(x,z,t+ (x — L)d;/c)
Then recalling S = ((0, L) x R) we see that

n—d? d -1
‘wy = Aw-2 1th+ S Whin S xR

w(-,0) = 0inS
wi(-,0) = 0inS
w(L,z,t) = w(0,z,f)inR xR.

Here w/(x,z,t) = f(t — dhz/C).
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Analysis in the time domain

Typically implicit methods are used to discretize in time. We
can provide an analysis for a small class of methods. To do this
we take the Laplace transform

w(x,z,8) = / w(x,y,t)exp(—st)dt, s=o0—iw,
0

where o € R is fixed and o > 0, while w € R.
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Laplace domain problem

Find W € H}(S) such that

di .

n—1
Wy + s°

c2

n—d? . . i
s? W = AW -2s w'in (S) x R.

c2 c

Here Wi(x, y) = #(s) exp(—sd; y/c).
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The weak Laplace domain problem

For W, & € H)(S) define

R —d? di . -
aw, ) = / Vw - V£+s 2 W5+23— & | dA
S
> n—1., -
Fe) = s /S S WiEdA
Then W € H}(S) satisfies

a(Ww, &) = F(¢), forall £ € Hy(S).
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Coercivity and continuity

For W, ¢ € H)(S) define

a(w,sw) = /<S|Vl7v]2+s]s\2C1|W|2+2|s]2ww) dA
S

PR ST ]2 2n—df .o
Ra(w,sw) =o S|\Vw| + |s| T|W| dA
s

so provided n — d? > a > 0 for some constant o

Ra(W, sw) > o min(1,a)||W|?

”W'ﬁ:/s(‘ w2 + 1 rwrz) dA

where
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Laplace domain result

Obviously ‘
|[F(sW)| < Cls|?|| ]| 2| Wl

Lemma

Suppose o > 0. Foreach s = o — iw, o > 0, there exists a
unique solution w € H;,(S) of the Laplace domain problem and

2
~ S n
il < I i

Taking the inverse Laplace transform establishes existence of
the time domain solution in suitable space-time function spaces
(note the exponential weight exp(—2ct) in the time direction). A
good choice mightbe o = 1/T.
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Time domain result

Using Lubich’s convolution quadrature theory'® if Backward
Euler (p=1) or BDF2 (p=2) are used to discretize the problem
(leaving space continuous) at time steps f, = nAt, and if a
sufficiently smooth (in time) incident field is used, then

IV(W(, ta) = W) + [[w(-, t) — W]l = O(AtP), 0 < t < T,

where At > 0 is the time step size and w;'! € H;(S) is the
discrete in time solution at t,.
We have yet to analyze the spatial discretization.

156, Lubich, Numer. Math. 67, 365-389 (1994).
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Current work

m Optimization of the concentrator with matching layers, and
other splitter designs.

m 3D grating structure

m Complete analysis of the time domain problem with
frequency dependent materials properties.
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