A virtual element method for a Steklov eigenvalue problem

L. Beirão da Veiga 1 , D. Mora 2,3 , G. Rivera 3,4 , R. Rodríguez 3,4

¹ Dipartimento di Matematica, Università di Milano Statale, Italy.
² Departamento de Matemática, Universidad del Bío-Bío, Chile.
³ Centro de Investigación en Ingeniería Matemática (Cl² MA-UdeC), Chile.
⁴ Departamento de Ingeniería Matemática, Universidad de Concepción, Chile.

Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations EPSRC Durham Symposium University of Durham. UK. July 8–16, 2014.

Contents

- The spectral problem
- Spectral characterization
- The discrete problem
- Spectral approximation
- Numerical tests

The spectral problem.

Figure 1: H. MAYER AND R. KRECHETNIKOV, *Walking with coffee: Why does it spill?*. Phys. Rev. E, 85 (2012), 046117 (7 pp.).

The spectral problem. (cont.)

Steklov Eigenvalue Problem:

Let $\Omega \subset \mathbb{R}^2$ be a bounded domain with polygonal boundary Γ . Let Γ_0 and Γ_1 be disjoint open subsets of Γ , with $|\Gamma_0| \neq 0$, such that $\Gamma = \overline{\Gamma}_0 \cup \overline{\Gamma}_1$. We consider the following spectral problem^{a b}:

Find $(\lambda,w)\in \mathbb{R}\times H^1(\Omega),$ $w\neq 0,$ such that

$$\begin{split} \Delta w &= 0 & \text{ in } \Omega, \\ \partial_n w &= \left\{ \begin{array}{ll} \lambda w & \text{ on } \Gamma_0, \\ 0 & \text{ on } \Gamma_1, \end{array} \right. \end{split}$$

where

•
$$\lambda = \frac{\omega^2}{g}$$

• w is the pressure of the fluid.

^aV.A. STEKLOV, *Sur les problèmes fondamentaux de la physique mathematique*, Annales sci. ENS, Sér. 3, 19, 1902, pp. 191–259 and pp. 455–490.

^bN. KUZNETSOV, T. KULCZYCKI, M. KWAŚNICKI, A. NAZAROV, S. POBORCHI, I. POLTEROVICH, AND B. SIUDEJA, *The legacy of Vladimir Andreevich Steklov*, Notices Amer. Math. Soc., 61(1), 2014, pp. 9–22.

A virtual element method for a Steklov eigenvalue problem. - 4 - L BEIRÃO DA VEIGA, D. MORA, G. RIVERA, R. RODRÍGUEZ

The spectral problem. (cont.)

Problem 1 Find $(\lambda, w) \in \mathbb{R} \times H^1(\Omega)$, $w \neq 0$, such that

$$\int_{\Omega} \nabla w \cdot \nabla v = \lambda \int_{\Gamma_0} wv \qquad \forall v \in H^1(\Omega).$$

We introduce the bilinear forms

$$a(w,v) := \int_{\Omega} \nabla w \cdot \nabla v \quad \forall w, v \in H^{1}(\Omega),$$
$$b(w,v) := \int_{\Gamma_{0}} wv \quad \forall w, v \in H^{1}(\Omega).$$

Problem 2 Find $(\lambda, w) \in \mathbb{R} \times H^1(\Omega)$, $w \neq 0$, such that

$$\hat{a}(w,v) = (\lambda + 1)b(w,v) \quad \forall v \in H^1(\Omega),$$

where the bounded bilinear form is given by

$$\hat{a}(w,v) := a(w,v) + b(w,v) \quad \forall w,v \in H^1(\Omega).$$

A virtual element method for a Steklov eigenvalue problem. - 5 - L BEIRÃO DA VEIGA, D. MORA, G. RIVERA, R. RODRÍGUEZ

Spectral characterization.

We introduce the solution operator:

$$T: H^1(\Omega) \longrightarrow H^1(\Omega),$$
$$f \longmapsto Tf := u,$$

where $u \in H^1(\Omega)$ is the solution of the source problem

$$\hat{a}(u,v) = b(f,v) \quad \forall v \in H^1(\Omega).$$

Lemma 1 There exists a constant $\alpha > 0$, depending on Ω , such that

$$\hat{a}(v,v) \ge \alpha \|v\|_{1,\Omega}^2 \quad \forall v \in H^1(\Omega).$$

The linear operator T is well defined and bounded. Moreover, $(\lambda, w) \in \mathbb{R} \times H^1(\Omega)$ solves **Problem 1** if and only if

$$Tw = \mu w, \quad \text{with } \mu := \frac{1}{1+\lambda} \neq 0, \quad \text{and } w \neq 0.$$

A virtual element method for a Steklov eigenvalue problem. - 6 - L BEIRÃO DA VEIGA, D. MORA, G. RIVERA, R. RODRÍGUEZ

Spectral characterization. (cont.)

We have the following additional regularity result.

Lemma 2 (i) For all $f \in H^1(\Omega)$ there exists $r \in (\frac{1}{2}, 1]$ such that the solution u of the source problem satisfies $u \in H^{1+r}(\Omega)$, and there exists C > 0 such that

$$\|u\|_{1+r,\Omega} \le C \, \|f\|_{1/2,\Gamma_0} \le C \, \|f\|_{1,\Omega} \, .$$

(ii) If w is an eigenfunction of **Problem 2** with eigenvalue λ , there exist $r_{\Omega} > \frac{1}{2}$ and $\tilde{C} > 0$ (depending on λ) such that for all $r \in (\frac{1}{2}, r_{\Omega})$, the following estimate holds:

$$\left\|w\right\|_{1+r,\Omega} \le \tilde{C} \left\|w\right\|_{1,\Omega}.$$

Remark 1 The constant $r_{\Omega} > \frac{1}{2}$ is the Sobolev exponent for the Laplace problem with Neumann boundary conditions. If Ω is convex, then $r_{\Omega} > 1$; otherwise, $r_{\Omega} := \frac{\pi}{\theta}$, where θ being the largest reentrant angle of Ω .

Spectral characterization. (cont.)

Hence, because of the compact inclusion $H^{1+r}(\Omega) \hookrightarrow H^1(\Omega)$, T is a compact operator. Therefore, we have the following spectral characterization of T:

Theorem 1 The spectrum of T decomposes as follows: $sp(T) = \{0, 1\} \cup \{\mu_k\}_{k \in \mathbb{N}}$, where:

- i) $\mu = 1$ is an eigenvalue of T and its associated eigenspace is the space of constant functions in Ω ;
- ii) $\mu = 0$ is an eigenvalue of T and its associated eigenspace is $H^1_{\Gamma_0}(\Omega) := \{q \in H^1(\Omega) : q = 0 \text{ on } \Gamma_0\};$
- iii) $\{\mu_k\}_{k\in\mathbb{N}} \subset (0,1)$ is a sequence of finite-multiplicity eigenvalues of T which converges to 0 and the corresponding eigenspaces lie in $H^{1+r}(\Omega)$.

The discrete problem.

Virtual Element Discretization ^a

Let $\{\mathcal{T}_h\}_h$ be a sequence of decompositions of Ω into polygons K and let \mathcal{E}_h be the set of edges e of \mathcal{T}_h . Each edge $e \in \partial K$ has a length h_e . Moreover, h_K denotes the diameter of the element K. Finally, h will also denote the maximum of the diameters of the elements, i.e., $h := \max_{K \in \Omega} h_K$.

We consider now a simple polygon K and we define for a fixed $k \ge 1$ (that will be our order of accuracy) the finite-dimensional space:

$$V^{\mathbf{K},k} := \{ v \in H^1(\mathbf{K}) : v_{|_e} \in \mathbb{P}_k(e) \quad \forall e \in \partial \mathbf{K} \text{ and } \Delta v_{|_{\mathbf{K}}} \in \mathbb{P}_{k-2}(\mathbf{K}) \},$$

where we denote $\mathbb{P}_{-1}(K):=\{0\}.$

- the functions $v \in V^{\mathrm{K},k}$ are continuous and explicitly known on $\partial \mathrm{K}$.
- the functions $v \in V^{\mathrm{K},k}$ are virtually known inside the element $\mathrm{K}.$
- there holds $\mathbb{P}_k(\mathbf{K}) \subseteq V^{\mathbf{K},k}$.

^aL. BEIRÃO DA VEIGA, F. BREZZI, A. CANGIANI, G. MANZINI, L. D. MARINI AND A. RUSSO, *A. Basic Principles of Virtual Element Methods*, Math. Models Methods Appl. Sci., 23(1), 2013, pp. 199–214.

The dimension of the space $V^{\mathrm{K},k}$ is

$$dim(V^{K,k}) = N_e k + k(k-1)/2,$$

with N_e the number of edges of K.

Degrees of freedom for $V^{K,k}$:

- pointwise values for every vertex.
- for each edge e, (k-1) pointwise values.
- volume moments:

$$\int_{\mathcal{K}} v p_{k-2} \qquad \forall p_{k-2} \in \mathbb{P}_{k-2}(\mathcal{K}).$$

For every decomposition \mathcal{T}_h of Ω into simple polygons K and a fixed $k \geq 1$, we define

$$V_h := \{ v \in H^1(\Omega) : v |_{\mathcal{K}} \in V^{\mathcal{K},k} \}.$$

The total dofs are one per internal vertex, k-1 per internal edge and k(k-1)/2 per element.

The bilinear form $\hat{a}(\cdot, \cdot)$ can be split as

$$\hat{a}(u,v) = \sum_{\mathbf{K}\in\mathcal{T}_h} a^{\mathbf{K}}(u,v) + b(u,v) \qquad \forall u,v \in H^1(\Omega),$$

where $a^{\mathrm{K}}(\cdot, \cdot)$ is defined by

$$a^{\mathrm{K}}(u,v) := \int_{\mathrm{K}} \nabla u \cdot \nabla v \qquad \forall u, v \in H^{1}(\Omega).$$

A virtual element method for a Steklov eigenvalue problem. - 11 - L BEIRÃO DA VEIGA, D. MORA, G. RIVERA, R. RODRÍGUEZ

In order to construct the discrete scheme, we define the operator $\Pi_k^{\mathrm{K}}: V^{\mathrm{K},k} \to \mathbb{P}_k(\mathrm{K}) \subseteq V^{\mathrm{K},k}$ as the solution of

$$a^{\mathrm{K}}(\Pi_{k}^{\mathrm{K}}v,q) = a^{\mathrm{K}}(v,q) \qquad \forall q \in \mathbb{P}_{k}(\mathrm{K}),$$
$$\overline{\Pi_{k}^{\mathrm{K}}v} = \overline{v},$$

for all $v \in V^{\mathrm{K},k}$, where for any sufficiently regular function φ ,

$$\bar{\varphi} := \frac{1}{n} \sum_{i=1}^{n} \varphi(\nu_i), \quad \nu_i = \text{ vertices of K.}$$

A virtual element method for a Steklov eigenvalue problem. - 12 - L BEIRÃO DA VEIGA, D. MORA, G. RIVERA, R. RODRÍGUEZ

Now, let $S^{\rm K}(u,v)$ be any symmetric positive definite bilinear form to be chosen to satisfy

$$c_0 a^{\mathrm{K}}(v,v) \le S^{\mathrm{K}}(v,v) \le c_1 a^{\mathrm{K}}(v,v) \qquad \forall v \in V^{\mathrm{K},k},$$

for some positive constants c_0 , c_1 independent of K and h_K .

Then, the bilinear form

$$a_h(u_h, v_h) := \sum_{\mathbf{K} \in \mathcal{T}_h} a_h^{\mathbf{K}}(u_h, v_h) \qquad \forall u_h, v_h \in V_h,$$

where $a_h^{\rm K}(\cdot,\cdot)$ is the bilinear form on $V^{{\rm K},k}\times V^{{\rm K},k}$ defined by

$$a_h^{\mathsf{K}}(u,v) := a^{\mathsf{K}}(\Pi_k^{\mathsf{K}}u, \Pi_k^{\mathsf{K}}v) + S^{\mathsf{K}}(u - \Pi_k^{\mathsf{K}}u, v - \Pi_k^{\mathsf{K}}v) \qquad \forall u, v \in V^{\mathsf{K},k},$$

which is consistent and stable.

More precisely:

• *k*-Consistency:

$$a_h^{\mathcal{K}}(p, v_h) = a^{\mathcal{K}}(p, v_h) \quad \forall p \in \mathbb{P}_k(\mathcal{K}) \quad \forall v_h \in V^{\mathcal{K}, k}.$$

• Stability: There exist two positive constants α_* and α^* , independent of h_K and K, such that:

$$\alpha_* a^{\mathrm{K}}(v_h, v_h) \le a^{\mathrm{K}}_h(v_h, v_h) \le \alpha^* a^{\mathrm{K}}(v_h, v_h) \qquad \forall v_h \in V^{\mathrm{K}, k}.$$

The discrete virtual element formulation asociated to the spectral **Problem 1** reads:

Problem 3 Find $(\lambda_h, w_h) \in \mathbb{R} \times V_h$, $w_h \neq 0$, such that

$$a_h(w_h, v_h) = \lambda_h b(w_h, v_h) \quad \forall v_h \in V_h.$$

We use again a shift argument to rewrite this discrete eigenvalue problem as follows:

Problem 4 Find $(\lambda_h, w_h) \in \mathbb{R} \times V_h$, $w_h \neq 0$, such that

$$\hat{a}_h(w_h, v_h) = (\lambda_h + 1)b(w_h, v_h) \qquad \forall v_h \in V_h,$$

where

$$\hat{a}_h(w_h, v_h) := a_h(w_h, v_h) + b(w_h, v_h) \qquad \forall w_h, v_h \in V_h.$$

We observe that from the stability condition and the trace theorem, the bilinear form $\hat{a}_h(\cdot, \cdot)$ is continuous, and uniformly elliptic.

The discrete version of the operator T is then given by

$$T_h: H^1(\Omega) \longrightarrow H^1(\Omega),$$

 $f \longmapsto T_h f := u_h,$

where $u_h \in V_h$ is the solution of the discrete source problem,

$$\hat{a}_h(u_h, v_h) = b(f, v_h) \quad \forall v_h \in V_h.$$

As in the continuos case, $(\lambda_h, w_h) \in \mathbb{R} \times V_h$ solves **Problem 3** if and only if

$$T_h w_h = \mu_h w_h$$
, with $\mu_h := \frac{1}{1 + \lambda_h} \neq 0$ and $w_h \neq 0$.

A virtual element method for a Steklov eigenvalue problem. - 16 - L BEIRÃO DA VEIGA, D. MORA, G. RIVERA, R. RODRÍGUEZ

As a consequence, the following spectral characterization holds true.

Theorem 2 The spectrum of T_h consists of $M = \dim(V_h)$ eigenvalues, repeated accordingly to their respective multiplicities. The spectrum decomposes as follows: $sp(T_h) = \{0, 1\} \cup \{\mu_{hk}\}_{k=1}^J$, where:

- i) the eigenspace associated with $\mu_h = 1$ is the space of constant functions in Ω ;
- ii) the eigenspace associated with $\mu_h = 0$ is $K_h := V_h \cap H^1_{\Gamma_0}(\Omega)$;
- iii) $\mu_{hk} \subset (0,1), k = 1, \ldots, J := M \dim(K_h) 1$, are eigenvalues, repeated accordingly to their respective multiplicities.

Spectral approximation.

To prove that T_h provides a correct spectral approximation of T, we will resort to the classical theory for compact operators^a.

Lemma 3 There exists C > 0 such that, for all $f \in H^1(\Omega)$, if u = Tf and $u_h = T_h f$, then

$$\|(T - T_h) f\|_{1,\Omega} = \|u - u_h\|_{1,\Omega} \le C \left(\|u - u_I\|_{1,\Omega} + |u - u_\pi|_{1,h} \right),$$

for all $u_I \in V_h$ and for all $u_\pi \in L^2(\Omega)$ such that $u_\pi|_K \in \mathbb{P}_k(K) \ \forall K \in \mathcal{T}_h$.

^aI. BABUŠKA AND J. OSBORN, *Eigenvalue problems*, in *Handbook of Numerical Analysis*, Vol. II, P.G. Ciarlet and J.L. Lions, eds., North-Holland, Amsterdam, 1991, pp. 641–787.

Now, if the sequence of meshes \mathcal{T}_h satisfy the following assumptions:

- A0.1 There exists $\gamma > 0$ such that, for all h, each polygon K in \mathcal{T}_h is star-shaped with respect to a ball of radius $\geq \gamma h_{\rm K}$.
- A0.2 There exists $\delta > 0$ such that for all h and for each polygon K in \mathcal{T}_h , the distance between any two vertices of K is $\geq \delta h_K$.

As a consequence we have the following results ^a.

Proposition 1 Assume that assumption **A0.1** is satisfied. Then, there exists a constant C, depending only on k and γ , such that for every s with $1 \le s \le k+1$ and for every $u \in H^s(K)$ there exists $u_{\pi} \in \mathbb{P}_k(K)$ such that

$$||u - u_{\pi}||_{0,\mathrm{K}} + h_{\mathrm{K}}|u - u_{\pi}|_{1,\mathrm{K}} \le Ch_{\mathrm{K}}^{s}|u|_{s,\mathrm{K}}.$$

Proposition 2 Assume that assumptions **A0.1** and **A0.2** are satisfied. Then, there exists a constant C > 0, depending only on k, δ and γ , such that for every s with $1 < s \le k + 1$, for every h, for all $K \in \mathcal{T}_h$ and for every $u \in H^s(K)$ there exists $u_I \in V^{K,k}$ such that

$$||u - u_I||_{0,\mathrm{K}} + h_{\mathrm{K}}|u - u_I|_{1,\mathrm{K}} \le Ch_{\mathrm{K}}^s|u|_{s,\mathrm{K}}.$$

A virtual element method for a Steklov eigenvalue problem. - 20 - L BEIRÃO DA VEIGA, D. MORA, G. RIVERA, R. RODRÍGUEZ

^aS. C. BRENNER AND R. L. SCOTT, *The Mathematical Theory of Finite Element Methods*, Texts in Applied Mathematics, 15. Springer, New York, 2008.

The following theorem yields the convergence in norm of T_h to T as $h \to 0$.

Theorem 3 There exist C > 0 and $r \in (\frac{1}{2}, 1]$ such that for all $f \in H^1(\Omega)$, $\|(T - T_h) f\|_{1,\Omega} \leq Ch^r \|f\|_{1,\Omega}.$

Let (λ_h, w_h) be a solution of **Problem 3** with $||w_h||_{1,\Omega} = 1$. It can be proved that, there exists a solution (λ, w) of **Problem 1** with $||w||_{1,\Omega} = 1$. Moreover, the following error estimates hold true:

Theorem 4 There exists C > 0 such that for all $r \in (\frac{1}{2}, r_{\Omega})$

$$\|w - w_h\|_{1,\Omega} \le Ch^{\min\{r,k\}}, |\lambda - \lambda_h| \le Ch^{2\min\{r,k\}}, w - w_h\|_{0,\Gamma_0} \le Ch^{r_1/2 + \min\{r,k\}},$$

where as before, the constant $r_{\Omega} > \frac{1}{2}$ is the Sobolev exponent for the Laplace problem with Neumann boundary conditions. If Ω is convex, then $r_{\Omega} > 1$; otherwise, $r_{\Omega} := \frac{\pi}{\theta}$, where θ being the largest reentrant angle of Ω , and $r_1 \in (\frac{1}{2}, 1]$.

A virtual element method for a Steklov eigenvalue problem. - 22 - L BEIRÃO DA VEIGA, D. MORA, G. RIVERA, R. RODRÍGUEZ

Numerical tests.

VEM implementation ^a

- $\Omega := (0,1)^2$.
- We take Γ_0 as the top boundary.
- We take k = 1.

The analytical solution of this particular problem is given by:

 $\omega_n = \sqrt{n\pi \tanh(n\pi)},$ $w(x, y) = \cos(n\pi x) \sinh(n\pi y).$

^aL. BEIRÃO DA VEIGA, F. BREZZI, L. D. MARINI AND A. RUSSO, *The Hitchhiker's Guide to the Virtual Element Method*, Math. Models Methods Appl. Sci., 24(8), 2014, pp. 1541–1573.

- \mathcal{T}_h^1 : Triangular mesh, considering the middle point of each edge as a new degree of freedom.
- \mathcal{T}_h^2 : Trapezoidal meshes which consist of partitions of the domain into $N \times N$ congruent trapezoids, all similar to the trapezoid with vertexes $(0,0), (\frac{1}{2},0), (\frac{1}{2},\frac{2}{3})$, and $(0,\frac{1}{3})$.
- \mathcal{T}_h^3 : Meshes built from \mathcal{T}_h^1 with the edge midpoint moved randomly; note that these meshes contain non-convex elements.

A virtual element method for a Steklov eigenvalue problem. - 24 - L BEIRÃO DA VEIGA, D. MORA, G. RIVERA, R. RODRÍGUEZ

Table 1: Computed lowest sloshing frequencies ω_{hi} , i = 1, 2, 3.

\mathcal{T}_h	ω_{hi}	N = 16	N = 32	N = 64	N = 128	Order	Extrap.	ω_i
	ω_{h1}	1.7716	1.7697	1.7693	1.7692	2.0400	1.7691	1.7691
\mathcal{T}_h^1	ω_{h2}	2.5211	2.5101	2.5074	2.5068	2.0700	2.5066	2.5066
	ω_{h3}	3.1114	3.0796	3.0723	3.0705	2.1100	3.0700	3.0700
	ω_{h1}	1.7897	1.7744	1.7705	1.7695	1.9500	1.7691	1.7691
\mathcal{T}_h^2	ω_{h2}	2.6133	2.5361	2.5142	2.5085	1.8400	2.5060	2.5066
	ω_{h3}	3.3267	3.1477	3.0906	3.0752	1.8900	3.0667	3.0700
	ω_{h1}	1.7721	1.7698	1.7692	1.7691	2.1600	1.7691	1.7691
\mathcal{T}_h^3	ω_{h2}	2.5242	2.5108	2.5075	2.5068	2.0600	2.5065	2.5066
	ω_{h3}	3.1203	3.0819	3.0727	3.0706	2.0800	3.0699	3.0700

Table 2: Errors of the sloshing mode $||w - w_h||_{0,\Gamma_0}$ for the lowest sloshing frequency computed on meshes \mathcal{T}_h^1 .

1/h	$\ w-w_h\ _{0,\Gamma_0}$	Order
16	4.6159e-3	-
32	1.1022e-3	2.07
64	2.9076e-4	1.92
128	7.0619e-5	2.04
256	1.8353e-5	1.94

Figure 2 shows the first (left), second (middle) and third (right) sloshing modes of the fluid on the top.

Figure 2: Vibration modes: u_{h1} (left), u_{h2} (middle) and u_{h3} (right) for h = 1/256.

A virtual element method for a Steklov eigenvalue problem. - 27 - L BEIRÃO DA VEIGA, D. MORA, G. RIVERA, R. RODRÍGUEZ

Many thanks for your attention.

A virtual element method for a Steklov eigenvalue problem. - 28 - L BEIRÃO DA VEIGA, D. MORA, G. RIVERA, R. RODRÍGUEZ